101
|
An T, Cai Y, Zhao S, Zhou J, Song B, Bux H, Qi X. Brachypodium distachyon T-DNA insertion lines: a model pathosystem to study nonhost resistance to wheat stripe rust. Sci Rep 2016; 6:25510. [PMID: 27138687 PMCID: PMC4853781 DOI: 10.1038/srep25510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/18/2016] [Indexed: 11/24/2022] Open
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most destructive diseases and can cause severe yield losses in many regions of the world. Because of the large size and complexity of wheat genome, it is difficult to study the molecular mechanism of interaction between wheat and PST. Brachypodium distachyon has become a model system for temperate grasses' functional genomics research. The phenotypic evaluation showed that the response of Brachypodium distachyon to PST was nonhost resistance (NHR), which allowed us to present this plant-pathogen system as a model to explore the immune response and the molecular mechanism underlying wheat and PST. Here we reported the generation of about 7,000 T-DNA insertion lines based on a highly efficient Agrobacterium-mediated transformation system. Hundreds of mutants either more susceptible or more resistant to PST than that of the wild type Bd21 were obtained. The three putative target genes, Bradi5g17540, BdMYB102 and Bradi5g11590, of three T-DNA insertion mutants could be involved in NHR of Brachypodium distachyon to wheat stripe rust. The systemic pathologic study of this T-DNA mutants would broaden our knowledge of NHR, and assist in breeding wheat cultivars with durable resistance.
Collapse
Affiliation(s)
- Tianyue An
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Yanli Cai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Suzhen Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jianghong Zhou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bo Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hadi Bux
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Institute of Plant Sciences, University of Sindh, Jamshoro, 76080, Pakistan
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
102
|
Huang L, Sela H, Feng L, Chen Q, Krugman T, Yan J, Dubcovsky J, Fahima T. Distribution and haplotype diversity of WKS resistance genes in wild emmer wheat natural populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:921-34. [PMID: 26847646 DOI: 10.1007/s00122-016-2672-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/09/2016] [Indexed: 05/18/2023]
Abstract
The wheat stripe rust resistance gene Yr36 ( WKS1 ) with a unique kinase-START domain architecture is highly conserved in wild emmer wheat natural populations. Wild emmer wheat (Triticum dicoccoides) populations have developed various resistance strategies against the stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst). The wild emmer gene, Yr36 (WKS1), which confers partial resistance to a broad spectrum of Pst races, is composed of a kinase and a START lipid-binding domain, a unique gene architecture found only in the Triticeae tribe. The analysis of 435 wild emmer accessions from a broad range of natural habitats revealed that WKS1 and its paralogue WKS2 are present only in the southern distribution range of wild emmer in the Fertile Crescent, supporting the idea that wheat domestication occurred in the northern populations. An analysis of full-length WKS1 sequence from 54 accessions identified 15 different haplotypes and very low-nucleotide diversity (π = 0.00019). The high level of WKS1 sequence conservation among wild emmer populations is in contrast to the high level of diversity previously observed in NB-LRR genes (e.g., Lr10 and Pm3). This phenomenon may reflect the different resistance mechanisms and different evolutionary pathways that shaped these genes, and may shed light on the evolution of genes that confer partial resistance to stripe rust. Only five WKS1 coding sequence haplotypes were revealed among all tested accessions, encoding four different putative WKS1 proteins (designated P0, P1, P2, and P3). Infection tests showed that P0, P1, and P3 haplotypes display a resistance response, while P2 displayed a susceptible response. These results show that the WKS1 proteins (P0, P1, and P3) can be useful to improve wheat resistance to stripe rust.
Collapse
Affiliation(s)
- Lin Huang
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Hanan Sela
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
- The Institute for Cereal Crops Improvement, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Lihua Feng
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Qijiao Chen
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Tamar Krugman
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Jun Yan
- Faculty of Industrial Biotechnology, Chengdu University, Chengdu, 610106, China
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tzion Fahima
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
103
|
Jin X, Gou JY. A rapid and cost-effective fluorescence detection in tube (FDIT) method to analyze protein phosphorylation. PLANT METHODS 2016; 12:43. [PMID: 27822293 PMCID: PMC5094037 DOI: 10.1186/s13007-016-0143-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/17/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Protein phosphorylation is one of the most important post-translational modifications catalyzed by protein kinases in living organisms. The advance of genome sequencing provided the information of protein kinase families in many organisms, including both model and non-model plants. The development of proteomics technologies also enabled scientists to efficiently reveal a large number of protein phosphorylations of an organism. However, kinases and phosphorylation targets are still to be connected to illustrate the complicated network in life. RESULTS Here we adapted Pro-Q® Diamond (Pro-Q® Diamond Phosphoprotein Gel Stain), a widely used phosphoprotein gel-staining fluorescence dye, to establish a rapid, economical and non-radioactive fluorescence detection in tube (FDIT) method to analyze phosphorylated proteins. Taking advantages of high sensitivity and specificity of Pro-Q® diamond, the FDIT method is also demonstrated to be rapid and reliable, with a suitable linear range for in vitro protein phosphorylation. A significant and satisfactory protein kinase reaction was detected as fast as 15 min from Wheat Kinase START 1.1 (WKS1.1) on a thylakoid ascorbate peroxidase (tAPX), an established phosphorylation target in our earlier study. CONCLUSION The FDIT method saves up to 95% of the dye consumed in a gel staining method. The FDIT method is remarkably quick, highly reproducible, unambiguous and capable to be scaled up to dozens of samples. The FDIT method could serve as a simple and sensitive alternative procedure to determine protein kinase reactions with zero radiation exposure, as a supplementation to other widely used radioactive and in-gel assays.
Collapse
Affiliation(s)
- Xiao Jin
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jin-Ying Gou
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
104
|
A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 2015; 47:1494-8. [PMID: 26551671 DOI: 10.1038/ng.3439] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/13/2015] [Indexed: 01/25/2023]
Abstract
As there are numerous pathogen species that cause disease and limit yields of crops, such as wheat (Triticum aestivum), single genes that provide resistance to multiple pathogens are valuable in crop improvement. The mechanistic basis of multi-pathogen resistance is largely unknown. Here we use comparative genomics, mutagenesis and transformation to isolate the wheat Lr67 gene, which confers partial resistance to all three wheat rust pathogen species and powdery mildew. The Lr67 resistance gene encodes a predicted hexose transporter (LR67res) that differs from the susceptible form of the same protein (LR67sus) by two amino acids that are conserved in orthologous hexose transporters. Sugar uptake assays show that LR67sus, and related proteins encoded by homeoalleles, function as high-affinity glucose transporters. LR67res exerts a dominant-negative effect through heterodimerization with these functional transporters to reduce glucose uptake. Alterations in hexose transport in infected leaves may explain its ability to reduce the growth of multiple biotrophic pathogen species.
Collapse
|
105
|
Häffner E, Konietzki S, Diederichsen E. Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense. PLANTS (BASEL, SWITZERLAND) 2015; 4:449-88. [PMID: 27135337 PMCID: PMC4844401 DOI: 10.3390/plants4030449] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/24/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022]
Abstract
Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host. Necrotrophic pathogens promote senescence in the host, and preventing early senescence is a resistance strategy of plants. For hemibiotrophic pathogens both patterns may apply. Most signaling pathways are involved in both developmental and defense reactions. Increasing knowledge about the molecular components allows to distinguish signaling branches, cross-talk and regulatory nodes that may influence the outcome of an infection. In this review, recent reports on major molecular players and their role in senescence and in pathogen response are reviewed. Examples of pathosystems with strong developmental implications illustrate the molecular basis of selected control strategies. A study of gene expression in the interaction between the hemibiotrophic vascular pathogen Verticillium longisporum and its cruciferous hosts shows processes that are fine-tuned to counteract early senescence and to achieve resistance. The complexity of the processes involved reflects the complex genetic control of quantitative disease resistance, and understanding the relationship between disease, development and resistance will support resistance breeding.
Collapse
Affiliation(s)
- Eva Häffner
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany.
| | - Sandra Konietzki
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Elke Diederichsen
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany.
- Norddeutsche Pflanzenzucht H.G. Lembke KG, Hohenlieth, D-24363 Holtsee, Germany.
| |
Collapse
|