101
|
Beckmann BM, Granneman S. Probing the RNA-Binding Proteome from Yeast to Man: Major Advances and Challenges. Methods Mol Biol 2019; 2049:213-231. [PMID: 31602614 DOI: 10.1007/978-1-4939-9736-7_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA-binding proteins are important for core cellular processes such as mRNA transcription, splicing, transport, translation, and degradation. Recently, hundreds of novel RNA-binders have been identified in vivo in various organisms and cell types. We discuss the RNA interactome capture technique which enabled this boost in identifying new RNA-binding proteins in eukaryotes. A focus of this chapter, however, is the presentation of different challenges and problems that need to be addressed to be able to understand the conserved mRNA-bound proteomes from yeast to man.
Collapse
Affiliation(s)
- Benedikt M Beckmann
- Molecular Infection Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Sander Granneman
- Centre for Systems and Synthetic Biology (SynthSys), University of Edinburgh, Edinburgh, UK
| |
Collapse
|
102
|
Lee CH, Carroll BJ. Evolution and Diversification of Small RNA Pathways in Flowering Plants. PLANT & CELL PHYSIOLOGY 2018; 59:2169-2187. [PMID: 30169685 DOI: 10.1093/pcp/pcy167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Small regulatory RNAs guide gene silencing at the DNA or RNA level through repression of complementary sequences. The two main forms of small RNAs are microRNA (miRNA) and small interfering RNA (siRNAs), which are generated from the processing of different forms of double-stranded RNA (dsRNA) precursors. These two forms of small regulatory RNAs function in distinct but overlapping gene silencing pathways in plants. Gene silencing pathways in eukaryotes evolved from an ancient prokaryotic mechanism involved in genome defense against invasive genetic elements, but has since diversified to also play a crucial role in regulation of endogenous gene expression. Here, we review the biogenesis of the different forms of small RNAs in plants, including miRNAs, phased, secondary siRNAs (phasiRNAs) and heterochromatic siRNAs (hetsiRNAs), with a focus on their functions in genome defense, transcriptional and post-transcriptional gene silencing, RNA-directed DNA methylation, trans-chromosomal methylation and paramutation. We also discuss the important role that gene duplication has played in the functional diversification of gene silencing pathways in plants, and we highlight recently discovered components of gene silencing pathways in plants.
Collapse
Affiliation(s)
- Chin Hong Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
103
|
Perez-Perri JI, Rogell B, Schwarzl T, Stein F, Zhou Y, Rettel M, Brosig A, Hentze MW. Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nat Commun 2018; 9:4408. [PMID: 30352994 PMCID: PMC6199288 DOI: 10.1038/s41467-018-06557-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/12/2018] [Indexed: 01/25/2023] Open
Abstract
Following the realization that eukaryotic RNA-binding proteomes are substantially larger than anticipated, we must now understand their detailed composition and dynamics. Methods such as RNA interactome capture (RIC) have begun to address this need. However, limitations of RIC have been reported. Here we describe enhanced RNA interactome capture (eRIC), a method based on the use of an LNA-modified capture probe, which yields numerous advantages including greater specificity and increased signal-to-noise ratios compared to existing methods. In Jurkat cells, eRIC reduces the rRNA and DNA contamination by >10-fold compared to RIC and increases the detection of RNA-binding proteins. Due to its low background, eRIC also empowers comparative analyses of changes of RNA-bound proteomes missed by RIC. For example, in cells treated with dimethyloxalylglycine, which inhibits RNA demethylases, eRIC identifies m6A-responsive RNA-binding proteins that escape RIC. eRIC will facilitate the unbiased characterization of RBP dynamics in response to biological and pharmacological cues. RNA interactome capture allows the detailed investigation of RNA-bound proteomes. Here the authors describe enhanced RNA-interactome capture using LNA-modified probes for increased sensitivity and specificity.
Collapse
Affiliation(s)
- Joel I Perez-Perri
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Birgit Rogell
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Thomas Schwarzl
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Yang Zhou
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Annika Brosig
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany. .,Molecular Medicine Partnership Unit (MMPU), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
| |
Collapse
|
104
|
Huang R, Han M, Meng L, Chen X. Capture and Identification of RNA-binding Proteins by Using Click Chemistry-assisted RNA-interactome Capture (CARIC) Strategy. J Vis Exp 2018. [PMID: 30394395 DOI: 10.3791/58580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A comprehensive identification of RNA-binding proteins (RBPs) is key to understanding the posttranscriptional regulatory network in cells. A widely used strategy for RBP capture exploits the polyadenylation [poly(A)] of target RNAs, which mostly occurs on eukaryotic mature mRNAs, leaving most binding proteins of non-poly(A) RNAs unidentified. Here we describe the detailed procedures of a recently reported method termed click chemistry-assisted RNA-interactome capture (CARIC), which enables the transcriptome-wide capture of both poly(A) and non-poly(A) RBPs by combining the metabolic labeling of RNAs, in vivo UV cross-linking, and bioorthogonal tagging.
Collapse
Affiliation(s)
- Rongbing Huang
- College of Chemistry and Molecular Engineering, Peking University; Beijing National Laboratory for Molecular Sciences, Peking University
| | - Mengting Han
- College of Chemistry and Molecular Engineering, Peking University; Beijing National Laboratory for Molecular Sciences, Peking University
| | - Liying Meng
- College of Chemistry and Molecular Engineering, Peking University; Peking-Tsinghua Center for Life Sciences, Peking University
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University; Beijing National Laboratory for Molecular Sciences, Peking University; Peking-Tsinghua Center for Life Sciences, Peking University; Synthetic and Functional Biomolecules Center, Peking University; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University;
| |
Collapse
|
105
|
Steven B, Belnap J, Kuske CR. Chronic Physical Disturbance Substantially Alters the Response of Biological Soil Crusts to a Wetting Pulse, as Characterized by Metatranscriptomic Sequencing. Front Microbiol 2018; 9:2382. [PMID: 30349515 PMCID: PMC6186815 DOI: 10.3389/fmicb.2018.02382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Biological soil crusts (biocrusts) are microbial communities that are a feature of arid surface soils worldwide. In drylands where precipitation is pulsed and ephemeral, the ability of biocrust microbiota to rapidly initiate metabolic activity is critical to their survival. Community gene expression was compared after a short duration (1 h) wetting pulse in both intact and soils disturbed by chronic foot trampling. Across the metatranscriptomes the majority of transcripts were cyanobacterial in origin, suggesting that cyanobacteria accounted for the bulk of the transcriptionally active cells. Chronic trampling substantially altered the functional profile of the metatranscriptomes, specifically resulting in a significant decrease in transcripts for nitrogen fixation. Soil depth (biocrust and below crust) was a relatively small factor in differentiating the metatranscriptomes, suggesting that the metabolically active bacteria were similar between shallow soil horizons. The dry samples were consistently enriched for hydrogenase genes, indicating that molecular hydrogen may serve as an energy source for the desiccated soil communities. The water pulse was associated with a restructuring of the metatranscriptome, particularly for the biocrusts. Biocrusts increased transcripts for photosynthesis and carbon fixation, suggesting a rapid resuscitation upon wetting. In contrast, the trampled surface soils showed a much smaller response to wetting, indicating that trampling altered the metabolic response of the community. Finally, several biogeochemical cycling genes in carbon and nitrogen cycling were assessed for their change in abundance due to wetting in the biocrusts. Different transcripts encoding the same gene product did not show a consensus response, with some more abundant in dry or wet biocrusts, highlighting the challenges in relating transcript abundance to biogeochemical cycling rates. These observations demonstrate that metatranscriptome sequencing was able to distinguish alterations in the function of arid soil microbial communities at two varying temporal scales, a long-term ecosystems disturbance through foot trampling, and a short term wetting pulse. Thus, community metatranscriptomes have the potential to inform studies on the response and resilience of biocrusts to various environmental perturbations.
Collapse
Affiliation(s)
- Blaire Steven
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Jayne Belnap
- Southwest Biological Science Center, United States Geological Survey, Moab, UT, United States
| | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
106
|
Chicois C, Scheer H, Garcia S, Zuber H, Mutterer J, Chicher J, Hammann P, Gagliardi D, Garcia D. The UPF1 interactome reveals interaction networks between RNA degradation and translation repression factors in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:119-132. [PMID: 29983000 DOI: 10.1111/tpj.14022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The RNA helicase UP-FRAMESHIFT (UPF1) is a key factor of nonsense-mediated decay (NMD), a mRNA decay pathway involved in RNA quality control and in the fine-tuning of gene expression. UPF1 recruits UPF2 and UPF3 to constitute the NMD core complex, which is conserved across eukaryotes. No other components of UPF1-containing ribonucleoproteins (RNPs) are known in plants, despite its key role in regulating gene expression. Here, we report the identification of a large set of proteins that co-purify with the Arabidopsis UPF1, either in an RNA-dependent or RNA-independent manner. We found that like UPF1, several of its co-purifying proteins have a dual localization in the cytosol and in P-bodies, which are dynamic structures formed by the condensation of translationally repressed mRNPs. Interestingly, more than half of the proteins of the UPF1 interactome also co-purify with DCP5, a conserved translation repressor also involved in P-body formation. We identified a terminal nucleotidyltransferase, ribonucleases and several RNA helicases among the most significantly enriched proteins co-purifying with both UPF1 and DCP5. Among these, RNA helicases are the homologs of DDX6/Dhh1, known as translation repressors in humans and yeast, respectively. Overall, this study reports a large set of proteins associated with the Arabidopsis UPF1 and DCP5, two components of P-bodies, and reveals an extensive interaction network between RNA degradation and translation repression factors. Using this resource, we identified five hitherto unknown components of P-bodies in plants, pointing out the value of this dataset for the identification of proteins potentially involved in translation repression and/or RNA degradation.
Collapse
Affiliation(s)
- Clara Chicois
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Hélène Scheer
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Shahïnez Garcia
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Jérôme Mutterer
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Damien Garcia
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
107
|
Patrick RM, Lee JCH, Teetsel JRJ, Yang SH, Choy GS, Browning KS. Discovery and characterization of conserved binding of eIF4E 1 (CBE1), a eukaryotic translation initiation factor 4E-binding plant protein. J Biol Chem 2018; 293:17240-17247. [PMID: 30213859 DOI: 10.1074/jbc.ra118.003945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/08/2018] [Indexed: 12/23/2022] Open
Abstract
In many eukaryotes, translation initiation is regulated by proteins that bind to the mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E). These proteins commonly prevent association of eIF4E with eIF4G or form repressive messenger ribonucleoproteins that exclude the translation machinery. Such gene-regulatory mechanisms in plants, and even the presence of eIF4E-interacting proteins other than eIF4G (and the plant-specific isoform eIFiso4G, which binds eIFiso4E), are unknown. Here, we report the discovery of a plant-specific protein, conserved binding of eIF4E 1 (CBE1). We found that CBE1 has an evolutionarily conserved eIF4E-binding motif in its N-terminal domain and binds eIF4E or eIFiso4E in vitro CBE1 thereby forms cap-binding complexes and is an eIF4E-dependent constituent of these complexes in vivo Of note, plant mutants lacking CBE1 exhibited dysregulation of cell cycle-related transcripts and accumulated higher levels of mRNAs encoding proteins involved in mitosis than did WT plants. Our findings indicate that CBE1 is a plant protein that can form mRNA cap-binding complexes having the potential for regulating gene expression. Because mammalian translation factors are known regulators of cell cycle progression, we propose that CBE1 may represent such first translation factor-associated plant-specific cell cycle regulator.
Collapse
Affiliation(s)
- Ryan M Patrick
- From the Department of Molecular Biosciences and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Jessica C H Lee
- From the Department of Molecular Biosciences and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Jade R J Teetsel
- From the Department of Molecular Biosciences and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Soo-Hyun Yang
- From the Department of Molecular Biosciences and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Grace S Choy
- From the Department of Molecular Biosciences and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Karen S Browning
- From the Department of Molecular Biosciences and Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
108
|
Gilmer D, Ratti C, Michel F. Long-distance movement of helical multipartite phytoviruses: keep connected or die? Curr Opin Virol 2018; 33:120-128. [PMID: 30199788 DOI: 10.1016/j.coviro.2018.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 12/28/2022]
Abstract
All living organisms have to preserve genome integrity to ensure the survival of progeny generations. Viruses, though often regarded as 'non living', protect their nucleic acids from biotic and abiotic stresses, ranging from nuclease action to radiation-induced adducts. When the viral genome is split into multiple segments, preservation of at least one copy of each segment is required. While segmented and monopartite viruses use an all-in-one strategy, multipartite viruses have to address in the cell at least one of each viral particle in which the split positive stranded RNA genome is individually packaged. Here, we review and discuss the biology of multipartite helical RNA phytoviruses to outline our current hypothesis on a coordinated genomic RNA network RNP complex that preserves an all-in-one strategy and genome integrity.
Collapse
Affiliation(s)
- David Gilmer
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000 Strasbourg, France
| | - Claudio Ratti
- Università di Bologna, Dipartimento di Scienze e Tecnologie Agroambientali, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Fabrice Michel
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000 Strasbourg, France.
| |
Collapse
|
109
|
Iadevaia V, Matia-González AM, Gerber AP. An Oligonucleotide-based Tandem RNA Isolation Procedure to Recover Eukaryotic mRNA-Protein Complexes. J Vis Exp 2018. [PMID: 30176020 PMCID: PMC6128116 DOI: 10.3791/58223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RNA-binding proteins (RBPs) play key roles in the post-transcriptional control of gene expression. Therefore, biochemical characterization of mRNA-protein complexes is essential to understanding mRNA regulation inferred by interacting proteins or non-coding RNAs. Herein, we describe a tandem RNA isolation procedure (TRIP) that enables the purification of endogenously formed mRNA-protein complexes from cellular extracts. The two-step protocol involves the isolation of polyadenylated mRNAs with antisense oligo(dT) beads and subsequent capture of an mRNA of interest with 3'-biotinylated 2'-O-methylated antisense RNA oligonucleotides, which can then be isolated with streptavidin beads. TRIP was used to recover in vivo crosslinked mRNA-ribonucleoprotein (mRNP) complexes from yeast, nematodes and human cells for further RNA and protein analysis. Thus, TRIP is a versatile approach that can be adapted to all types of polyadenylated RNAs across organisms to study the dynamic re-arrangement of mRNPs imposed by intracellular or environmental cues.
Collapse
Affiliation(s)
- Valentina Iadevaia
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey
| | - Ana M Matia-González
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey
| | - André P Gerber
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey;
| |
Collapse
|
110
|
The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock. PLoS Genet 2018; 14:e1007563. [PMID: 30059503 PMCID: PMC6085073 DOI: 10.1371/journal.pgen.1007563] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/09/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022] Open
Abstract
RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5’ end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered. When confronted with external physical or chemical stress, cells respond by increasing the mRNA output of a small number of genes required for stress survival, while shutting down the majority of other genes. Moreover, each mRNA is regulated under stress to either enhance or diminish its translation into proteins. The overall purpose is for the cell to optimize gene expression for survival and recovery during rapidly changing conditions. Much of this regulation is mediated by RNA-binding proteins. We have isolated proteins binding to specific mRNAs induced by stress, to investigate how they affect the stress response. We found members of one protein complex to be bound to stress-induced mRNAs. When mutants lacking these proteins were exposed to stress, ribosomes were more engaged with translating mRNAs than in the wild-type. In the mutants, it was also possible to trigger expression of stress proteins with only minimal stress levels. Tracing the passage of ribosomes over mRNAs, we saw that ribosomes accumulated around the start codon in the mutants. These findings indicate that the protein complex is required to moderate the stress response and prevent it from overreacting, which would be harmful for the cell.
Collapse
|
111
|
Van Ruyskensvelde V, Van Breusegem F, Van Der Kelen K. Post-transcriptional regulation of the oxidative stress response in plants. Free Radic Biol Med 2018; 122:181-192. [PMID: 29496616 DOI: 10.1016/j.freeradbiomed.2018.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Abstract
Due to their sessile lifestyle, plants can be exposed to several kinds of stresses that will increase the production of reactive oxygen species (ROS), such as hydrogen peroxide, singlet oxygen, and hydroxyl radicals, in the plant cells and activate several signaling pathways that cause alterations in the cellular metabolism. Nevertheless, when ROS production outreaches a certain level, oxidative damage to nucleic acids, lipids, metabolites, and proteins will occur, finally leading to cell death. Until now, the most comprehensive and detailed readout of oxidative stress responses is undoubtedly obtained at the transcriptome level. However, transcript levels often do not correlate with the corresponding protein levels. Indeed, together with transcriptional regulations, post-transcriptional, translational, and/or post-translational regulations will shape the active proteome. Here, we review the current knowledge on the post-transcriptional gene regulation during the oxidative stress responses in planta.
Collapse
Affiliation(s)
- Valerie Van Ruyskensvelde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
112
|
Calixto CPG, Guo W, James AB, Tzioutziou NA, Entizne JC, Panter PE, Knight H, Nimmo HG, Zhang R, Brown JWS. Rapid and Dynamic Alternative Splicing Impacts the Arabidopsis Cold Response Transcriptome. THE PLANT CELL 2018; 30:1424-1444. [PMID: 29764987 PMCID: PMC6096597 DOI: 10.1105/tpc.18.00177] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/20/2018] [Accepted: 05/10/2018] [Indexed: 05/18/2023]
Abstract
Plants have adapted to tolerate and survive constantly changing environmental conditions by reprogramming gene expression The dynamics of the contribution of alternative splicing (AS) to stress responses are unknown. RNA-sequencing of a time-series of Arabidopsis thaliana plants exposed to cold determines the timing of significant AS changes. This shows a massive and rapid AS response with coincident waves of transcriptional and AS activity occurring in the first few hours of temperature reduction and further AS throughout the cold. In particular, hundreds of genes showed changes in expression due to rapidly occurring AS in response to cold ("early AS" genes); these included numerous novel cold-responsive transcription factors and splicing factors/RNA binding proteins regulated only by AS. The speed and sensitivity to small temperature changes of AS of some of these genes suggest that fine-tuning expression via AS pathways contributes to the thermo-plasticity of expression. Four early AS splicing regulatory genes have been shown previously to be required for freezing tolerance and acclimation; we provide evidence of a fifth gene, U2B"-LIKE Such factors likely drive cascades of AS of downstream genes that, alongside transcription, modulate transcriptome reprogramming that together govern the physiological and survival responses of plants to low temperature.
Collapse
Affiliation(s)
- Cristiane P G Calixto
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
| | - Wenbin Guo
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Information and Computational Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Allan B James
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Nikoleta A Tzioutziou
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
| | - Juan Carlos Entizne
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Paige E Panter
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Heather Knight
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Hugh G Nimmo
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - John W S Brown
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
113
|
Calixto CPG, Guo W, James AB, Tzioutziou NA, Entizne JC, Panter PE, Knight H, Nimmo HG, Zhang R, Brown JWS. Rapid and Dynamic Alternative Splicing Impacts the Arabidopsis Cold Response Transcriptome. THE PLANT CELL 2018; 30:1424-1444. [PMID: 29764987 DOI: 10.1101/251876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/20/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
Plants have adapted to tolerate and survive constantly changing environmental conditions by reprogramming gene expression The dynamics of the contribution of alternative splicing (AS) to stress responses are unknown. RNA-sequencing of a time-series of Arabidopsis thaliana plants exposed to cold determines the timing of significant AS changes. This shows a massive and rapid AS response with coincident waves of transcriptional and AS activity occurring in the first few hours of temperature reduction and further AS throughout the cold. In particular, hundreds of genes showed changes in expression due to rapidly occurring AS in response to cold ("early AS" genes); these included numerous novel cold-responsive transcription factors and splicing factors/RNA binding proteins regulated only by AS. The speed and sensitivity to small temperature changes of AS of some of these genes suggest that fine-tuning expression via AS pathways contributes to the thermo-plasticity of expression. Four early AS splicing regulatory genes have been shown previously to be required for freezing tolerance and acclimation; we provide evidence of a fifth gene, U2B"-LIKE Such factors likely drive cascades of AS of downstream genes that, alongside transcription, modulate transcriptome reprogramming that together govern the physiological and survival responses of plants to low temperature.
Collapse
Affiliation(s)
- Cristiane P G Calixto
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
| | - Wenbin Guo
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Information and Computational Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Allan B James
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Nikoleta A Tzioutziou
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
| | - Juan Carlos Entizne
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Paige E Panter
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Heather Knight
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Hugh G Nimmo
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - John W S Brown
- Plant Sciences Division, School of Life Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
114
|
Albihlal WS, Gerber AP. Unconventional
RNA
‐binding proteins: an uncharted zone in
RNA
biology. FEBS Lett 2018; 592:2917-2931. [DOI: 10.1002/1873-3468.13161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Waleed S. Albihlal
- Department of Microbial Sciences School of Biosciences and Medicine Faculty of Health and Medical Sciences University of Surrey Guildford UK
| | - André P. Gerber
- Department of Microbial Sciences School of Biosciences and Medicine Faculty of Health and Medical Sciences University of Surrey Guildford UK
| |
Collapse
|
115
|
Systematic Detection of Poly(A) + RNA-Interacting Proteins and Their Differential Binding. Methods Mol Biol 2018; 1649:405-417. [PMID: 29130213 DOI: 10.1007/978-1-4939-7213-5_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RNA-binding proteins are dynamic posttranscriptional regulators of gene expression. Identification of mRNA-binding proteins in a given experimental setting is thus of great importance. We describe a procedure to enrich for direct poly(A)+ RNA protein binders by 4-thiouridine-enhanced UV cross-linking and oligo(dT) purification. Subsequent nuclease-mediated release of RNA-binding proteins (RBPs) from mRNA allows for detection of eluted proteins by mass spectrometry. In addition, we provide a comparative approach to detect differences in RBP binding activity upon a biological stimulus.
Collapse
|
116
|
Morris RJ. On the selectivity, specificity and signalling potential of the long-distance movement of messenger RNA. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:1-7. [PMID: 29220690 DOI: 10.1016/j.pbi.2017.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 05/23/2023]
Abstract
Messenger RNA (mRNA) can move through the vascular system in plants. Until recently the transport of mRNA had been demonstrated only for a few well-documented cases, leading to the suggestion that transport was selective and specific. The extent of this long-distance transport has now been shown to be on the genomic scale with thousands of transcripts covering broad regions of gene ontological space. In light of this recent data, I revisit proposed mechanisms of transport of mRNA and critically assess their potential role in signalling.
Collapse
Affiliation(s)
- Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom.
| |
Collapse
|
117
|
Arribas-Hernández L, Bressendorff S, Hansen MH, Poulsen C, Erdmann S, Brodersen P. An m 6A-YTH Module Controls Developmental Timing and Morphogenesis in Arabidopsis. THE PLANT CELL 2018; 30:952-967. [PMID: 29643069 PMCID: PMC6002192 DOI: 10.1105/tpc.17.00833] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/09/2018] [Accepted: 04/10/2018] [Indexed: 05/18/2023]
Abstract
Methylation of N6-adenosine (m6A) in mRNA is an important posttranscriptional gene regulatory mechanism in eukaryotes. m6A provides a binding site for effector proteins ("readers") that influence pre-mRNA splicing, mRNA degradation, or translational efficiency. YT521-B homology (YTH) domain proteins are important m6A readers with established functions in animals. Plants contain more YTH domain proteins than other eukaryotes, but their biological importance remains unknown. Here, we show that the cytoplasmic Arabidopsis thaliana YTH domain proteins EVOLUTIONARILY CONSERVED C-TERMINAL REGION2/3 (ECT2/3) are required for the correct timing of leaf formation and for normal leaf morphology. These functions depend fully on intact m6A binding sites of ECT2 and ECT3, indicating that they function as m6A readers. Mutation of the close ECT2 homolog, ECT4, enhances the delayed leaf emergence and leaf morphology defects of ect2/ect3 mutants, and all three ECT proteins are expressed at leaf formation sites in the shoot apex of young seedlings and in the division zone of developing leaves. ECT2 and ECT3 are also highly expressed at early stages of trichome development and are required for trichome morphology, as previously reported for m6A itself. Overall, our study establishes the relevance of a cytoplasmic m6A-YTH regulatory module in the timing and execution of plant organogenesis.
Collapse
Affiliation(s)
- Laura Arribas-Hernández
- University of Copenhagen, Department of Biology, DK-2200 Copenhagen N, Denmark
- Copenhagen Plant Science Center, 1870 Frederiksberg, Denmark
| | - Simon Bressendorff
- University of Copenhagen, Department of Biology, DK-2200 Copenhagen N, Denmark
- Copenhagen Plant Science Center, 1870 Frederiksberg, Denmark
| | - Mathias Henning Hansen
- University of Copenhagen, Department of Biology, DK-2200 Copenhagen N, Denmark
- Copenhagen Plant Science Center, 1870 Frederiksberg, Denmark
| | - Christian Poulsen
- University of Copenhagen, Department of Biology, DK-2200 Copenhagen N, Denmark
- Copenhagen Plant Science Center, 1870 Frederiksberg, Denmark
| | - Susanne Erdmann
- University of Copenhagen, Department of Biology, DK-2200 Copenhagen N, Denmark
| | - Peter Brodersen
- University of Copenhagen, Department of Biology, DK-2200 Copenhagen N, Denmark
- Copenhagen Plant Science Center, 1870 Frederiksberg, Denmark
| |
Collapse
|
118
|
Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc Natl Acad Sci U S A 2018; 115:E3879-E3887. [PMID: 29636419 DOI: 10.1073/pnas.1718406115] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transcriptome-wide identification of RNA-binding proteins (RBPs) is a prerequisite for understanding the posttranscriptional gene regulation networks. However, proteomic profiling of RBPs has been mostly limited to polyadenylated mRNA-binding proteins, leaving RBPs on nonpoly(A) RNAs, including most noncoding RNAs (ncRNAs) and pre-mRNAs, largely undiscovered. Here we present a click chemistry-assisted RNA interactome capture (CARIC) strategy, which enables unbiased identification of RBPs, independent of the polyadenylation state of RNAs. CARIC combines metabolic labeling of RNAs with an alkynyl uridine analog and in vivo RNA-protein photocross-linking, followed by click reaction with azide-biotin, affinity enrichment, and proteomic analysis. Applying CARIC, we identified 597 RBPs in HeLa cells, including 130 previously unknown RBPs. These newly discovered RBPs can likely bind ncRNAs, thus uncovering potential involvement of ncRNAs in processes previously unknown to be ncRNA-related, such as proteasome function and intermediary metabolism. The CARIC strategy should be broadly applicable across various organisms to complete the census of RBPs.
Collapse
|
119
|
Köster T, Meyer K. Plant Ribonomics: Proteins in Search of RNA Partners. TRENDS IN PLANT SCIENCE 2018; 23:352-365. [PMID: 29429586 DOI: 10.1016/j.tplants.2018.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
Research into the regulation of gene expression underwent a shift from focusing on DNA-binding proteins as key transcriptional regulators to RNA-binding proteins (RBPs) that come into play once transcription has been initiated. RBPs orchestrate all RNA-processing steps in the cell. To obtain a global view of in vivo targets, the RNA complement associated with particular RBPs is determined via immunoprecipitation of the RBP and subsequent identification of bound RNAs via RNA-seq. Here, we describe technical advances in identifying RBP in vivo targets and their binding motifs. We provide an up-to-date view of targets of nucleocytoplasmic RBPs collected in arabidopsis. We also discuss current experimental limitations and provide an outlook on how the approaches may advance our understanding of post-transcriptional networks.
Collapse
Affiliation(s)
- Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany.
| | - Katja Meyer
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
120
|
Kehr J, Kragler F. Long distance RNA movement. THE NEW PHYTOLOGIST 2018; 218:29-40. [PMID: 29418002 DOI: 10.1111/nph.15025] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/28/2017] [Indexed: 05/06/2023]
Abstract
Contents Summary 29 I. Introduction 29 II. Phloem as a conduit for macromolecules 30 III. Classes of phloem transported RNAs and their function 32 IV. Mode of RNA transport 35 V. Conclusions 37 Acknowledgements 37 References 37 SUMMARY: In higher plants, small noncoding RNAs and large messenger RNA (mRNA) molecules are transported between cells and over long distances via the phloem. These large macromolecules are thought to get access to the sugar-conducting phloem vessels via specialized plasmodesmata (PD). Analyses of the phloem exudate suggest that all classes of RNA molecules, including silencing-induced RNAs (siRNAs), micro RNAs (miRNAs), transfer RNAs (tRNAs), ribosomal RNA (rRNAs) and mRNAs, are transported via the vasculature to distant tissues. Although the functions of mobile siRNAs and miRNAs as signalling molecules are well established, we lack a profound understanding of mobile mRNA function(s) in recipient cells and tissues, and how they are selected for transport. A surprisingly high number of up to thousands of mRNAs were described in diverse plant species such as cucumber, pumpkin, Arabidopsis and grapevine to move long distances over graft junctions to distinct body parts. In this review, we present an overview of the classes of mobile RNAs, the potential mechanisms facilitating RNA long-distance transport, and the roles of mobile RNAs in regulating transcription and translation. Furthermore, we address potential function(s) of mobile protein-encoding mRNAs with respect to their characteristics and evolutionary constraints.
Collapse
Affiliation(s)
- Julia Kehr
- Biocenter Klein Flottbek, Molekulare Pflanzengenetik, University Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Friedrich Kragler
- Department II, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
121
|
Wang M, Ogé L, Perez-Garcia MD, Hamama L, Sakr S. The PUF Protein Family: Overview on PUF RNA Targets, Biological Functions, and Post Transcriptional Regulation. Int J Mol Sci 2018; 19:ijms19020410. [PMID: 29385744 PMCID: PMC5855632 DOI: 10.3390/ijms19020410] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional regulation of gene expression plays a crucial role in many processes. In cells, it is mediated by diverse RNA-binding proteins. These proteins can influence mRNA stability, translation, and localization. The PUF protein family (Pumilio and FBF) is composed of RNA-binding proteins highly conserved among most eukaryotic organisms. Previous investigations indicated that they could be involved in many processes by binding corresponding motifs in the 3′UTR or by interacting with other proteins. To date, most of the investigations on PUF proteins have been focused on Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae, while only a few have been conducted on Arabidopsis thaliana. The present article provides an overview of the PUF protein family. It addresses their RNA-binding motifs, biological functions, and post-transcriptional control mechanisms in Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae, and Arabidopsis thaliana. These items of knowledge open onto new investigations into the relevance of PUF proteins in specific plant developmental processes.
Collapse
Affiliation(s)
- Ming Wang
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | | | - Latifa Hamama
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Soulaiman Sakr
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| |
Collapse
|
122
|
Abstract
RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.
Collapse
|
123
|
Systems Approaches to Map In Vivo RNA–Protein Interactions in Arabidopsis thaliana. RNA TECHNOLOGIES 2018. [PMCID: PMC7122672 DOI: 10.1007/978-3-319-92967-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Proteins that specifically interact with mRNAs orchestrate mRNA processing steps all the way from transcription to decay. Thus, these RNA-binding proteins represent an important control mechanism to double check which proportion of nascent pre-mRNAs is ultimately available for translation into distinct proteins. Here, we discuss recent progress to obtain a systems-level understanding of in vivo RNA–protein interactions in the reference plant Arabidopsis thaliana using protein-centric and RNA-centric methods as well as combined protein binding site and structure probing.
Collapse
|
124
|
Abstract
The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to the emergence of entirely new research fields, and to dramatic progress in our understanding of gene expression regulation.
Collapse
Affiliation(s)
- Caroline Medioni
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
125
|
Abstract
This article comments on: Capovilla G, Symeonidi E, Wu R, Schmid M. 2017. Contribution of major FLM isoforms to temperature-dependent mediated flowering in Arabidopsis thaliana. Journal of Experimental Botany 68, 5117–5127.
Collapse
Affiliation(s)
- Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
126
|
Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a system-wide scale with RBDmap. Nat Protoc 2017; 12:2447-2464. [PMID: 29095441 DOI: 10.1038/nprot.2017.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This protocol is an extension to: Nat. Protoc. 8, 491-500 (2013); doi:10.1038/nprot.2013.020; published online 14 February 2013RBDmap is a method for identifying, in a proteome-wide manner, the regions of RNA-binding proteins (RBPs) engaged in native interactions with RNA. In brief, cells are irradiated with UV light to induce protein-RNA cross-links. Following stringent denaturing washes, the resulting covalently linked protein-RNA complexes are purified with oligo(dT) magnetic beads. After elution, RBPs are subjected to partial proteolysis, in which the protein regions still bound to the RNA and those released to the supernatant are separated by a second oligo(dT) selection. After sample preparation and mass-spectrometric analysis, peptide intensity ratios between the RNA-bound and released fractions are used to determine the RNA-binding regions. As a Protocol Extension, this article describes an adaptation of an existing Protocol and offers additional applications. The earlier protocol (for the RNA interactome capture method) describes how to identify the active RBPs in cultured cells, whereas this Protocol Extension also enables the identification of the RNA-binding domains of RBPs. The experimental workflow takes 1 week plus 2 additional weeks for proteomics and data analysis. Notably, RBDmap presents numerous advantages over classic methods for determining RNA-binding domains: it produces proteome-wide, high-resolution maps of the protein regions contacting the RNA in a physiological context and can be adapted to different biological systems and conditions. Because RBDmap relies on the isolation of polyadenylated RNA via oligo(dT), it will not provide RNA-binding information on proteins interacting exclusively with nonpolyadenylated transcripts. Applied to HeLa cells, RBDmap uncovered 1,174 RNA-binding sites in 529 proteins, many of which were previously unknown.
Collapse
|
127
|
Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D. Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biol 2017; 18:204. [PMID: 29084609 PMCID: PMC5663106 DOI: 10.1186/s13059-017-1332-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Background Functions for RNA-binding proteins in orchestrating plant development and environmental responses are well established. However, the lack of a genome-wide view of their in vivo binding targets and binding landscapes represents a gap in understanding the mode of action of plant RNA-binding proteins. Here, we adapt individual nucleotide resolution crosslinking and immunoprecipitation (iCLIP) genome-wide to determine the binding repertoire of the circadian clock-regulated Arabidopsis thaliana glycine-rich RNA-binding protein AtGRP7. Results iCLIP identifies 858 transcripts with significantly enriched crosslink sites in plants expressing AtGRP7-GFP that are absent in plants expressing an RNA-binding-dead AtGRP7 variant or GFP alone. To independently validate the targets, we performed RNA immunoprecipitation (RIP)-sequencing of AtGRP7-GFP plants subjected to formaldehyde fixation. Of the iCLIP targets, 452 were also identified by RIP-seq and represent a set of high-confidence binders. AtGRP7 can bind to all transcript regions, with a preference for 3′ untranslated regions. In the vicinity of crosslink sites, U/C-rich motifs are overrepresented. Cross-referencing the targets against transcriptome changes in AtGRP7 loss-of-function mutants or AtGRP7-overexpressing plants reveals a predominantly negative effect of AtGRP7 on its targets. In particular, elevated AtGRP7 levels lead to damping of circadian oscillations of transcripts, including DORMANCY/AUXIN ASSOCIATED FAMILY PROTEIN2 and CCR-LIKE. Furthermore, several targets show changes in alternative splicing or polyadenylation in response to altered AtGRP7 levels. Conclusions We have established iCLIP for plants to identify target transcripts of the RNA-binding protein AtGRP7. This paves the way to investigate the dynamics of posttranscriptional networks in response to exogenous and endogenous cues. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1332-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katja Meyer
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Christine Nolte
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Claus Weinholdt
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
128
|
Rogell B, Fischer B, Rettel M, Krijgsveld J, Castello A, Hentze MW. Specific RNP capture with antisense LNA/DNA mixmers. RNA (NEW YORK, N.Y.) 2017; 23:1290-1302. [PMID: 28476952 PMCID: PMC5513073 DOI: 10.1261/rna.060798.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/25/2017] [Indexed: 05/07/2023]
Abstract
RNA-binding proteins (RBPs) play essential roles in RNA biology, responding to cellular and environmental stimuli to regulate gene expression. Important advances have helped to determine the (near) complete repertoires of cellular RBPs. However, identification of RBPs associated with specific transcripts remains a challenge. Here, we describe "specific ribonucleoprotein (RNP) capture," a versatile method for the determination of the proteins bound to specific transcripts in vitro and in cellular systems. Specific RNP capture uses UV irradiation to covalently stabilize protein-RNA interactions taking place at "zero distance." Proteins bound to the target RNA are captured by hybridization with antisense locked nucleic acid (LNA)/DNA oligonucleotides covalently coupled to a magnetic resin. After stringent washing, interacting proteins are identified by quantitative mass spectrometry. Applied to in vitro extracts, specific RNP capture identifies the RBPs bound to a reporter mRNA containing the Sex-lethal (Sxl) binding motifs, revealing that the Sxl homolog sister of Sex lethal (Ssx) displays similar binding preferences. This method also revealed the repertoire of RBPs binding to 18S or 28S rRNAs in HeLa cells, including previously unknown rRNA-binding proteins.
Collapse
Affiliation(s)
- Birgit Rogell
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Bernd Fischer
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alfredo Castello
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| |
Collapse
|
129
|
Kastelic N, Landthaler M. mRNA interactome capture in mammalian cells. Methods 2017; 126:38-43. [DOI: 10.1016/j.ymeth.2017.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/22/2017] [Accepted: 07/08/2017] [Indexed: 01/14/2023] Open
|
130
|
Crisp PA, Ganguly DR, Smith AB, Murray KD, Estavillo GM, Searle I, Ford E, Bogdanović O, Lister R, Borevitz JO, Eichten SR, Pogson BJ. Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in Arabidopsis. THE PLANT CELL 2017; 29:1836-1863. [PMID: 28705956 PMCID: PMC5590493 DOI: 10.1105/tpc.16.00828] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 05/19/2023]
Abstract
Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants (k) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5'-3' RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory.
Collapse
Affiliation(s)
- Peter A Crisp
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Diep R Ganguly
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Aaron B Smith
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Kevin D Murray
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Gonzalo M Estavillo
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
- CSIRO Agriculture and Food, Black Mountain, Canberra ACT 2601, Australia
| | - Iain Searle
- School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Ethan Ford
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
| | - Ozren Bogdanović
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth WA 6009, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth WA 6009, Australia
| | - Justin O Borevitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Steven R Eichten
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| |
Collapse
|
131
|
Zhang Z, Boonen K, Li M, Geuten K. mRNA Interactome Capture from Plant Protoplasts. J Vis Exp 2017. [PMID: 28784956 DOI: 10.3791/56011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA-binding proteins (RBPs) determine the fates of RNAs. They participate in all RNA biogenesis pathways and especially contribute to post-transcriptional gene regulation (PTGR) of messenger RNAs (mRNAs). In the past few years, a number of mRNA-bound proteomes from yeast and mammalian cell lines have been successfully isolated through the use of a novel method called "mRNA interactome capture," which allows for the identification of mRNA-binding proteins (mRBPs) directly from a physiological environment. The method is composed of in vivo ultraviolet (UV) crosslinking, pull-down and purification of messenger ribonucleoprotein complexes (mRNPs) by oligo(dT) beads, and the subsequent identification of the crosslinked proteins by mass spectrometry (MS). Very recently, by applying the same method, several plant mRNA-bound proteomes have been reported simultaneously from different Arabidopsis tissue sources: etiolated seedlings, leaf tissue, leaf mesophyll protoplasts, and cultured root cells. Here, we present the optimized mRNA interactome capture method for Arabidopsis thaliana leaf mesophyll protoplasts, a cell type that serves as a versatile tool for experiments that include various cellular assays. The conditions for optimal protein yield include the amount of starting tissue and the duration of UV irradiation. In the mRNA-bound proteome obtained from a medium-scale experiment (107 cells), RBPs noted to have RNA-binding capacity were found to be overrepresented, and many novel RBPs were identified. The experiment can be scaled up (109 cells), and the optimized method can be applied to other plant cell types and species to broadly isolate, catalog, and compare mRNA-bound proteomes in plants.
Collapse
|
132
|
Bach-Pages M, Castello A, Preston GM. Plant RNA Interactome Capture: Revealing the Plant RBPome. TRENDS IN PLANT SCIENCE 2017; 22:449-451. [PMID: 28478905 DOI: 10.1016/j.tplants.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
The application of RNA interactome capture to plants has enabled comprehensive determination of the plant RNA-binding proteome and the identification of novel families of RNA-binding proteins (RBPs). The technique is providing insight into the evolution of the eukaryotic repertoire of RBPs and will enhance prospects for engineering RBPs to improve crop traits.
Collapse
Affiliation(s)
- Marcel Bach-Pages
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
133
|
Köster T, Marondedze C, Meyer K, Staiger D. RNA-Binding Proteins Revisited - The Emerging Arabidopsis mRNA Interactome. TRENDS IN PLANT SCIENCE 2017; 22:512-526. [PMID: 28412036 DOI: 10.1016/j.tplants.2017.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
RNA-protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture - where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.
Collapse
Affiliation(s)
- Tino Köster
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Cambridge, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katja Meyer
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
134
|
Merchante C, Stepanova AN, Alonso JM. Translation regulation in plants: an interesting past, an exciting present and a promising future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:628-653. [PMID: 28244193 DOI: 10.1111/tpj.13520] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 05/19/2023]
Abstract
Changes in gene expression are at the core of most biological processes, from cell differentiation to organ development, including the adaptation of the whole organism to the ever-changing environment. Although the central role of transcriptional regulation is solidly established and the general mechanisms involved in this type of regulation are relatively well understood, it is clear that regulation at a translational level also plays an essential role in modulating gene expression. Despite the large number of examples illustrating the critical role played by translational regulation in determining the expression levels of a gene, our understanding of the molecular mechanisms behind such types of regulation has been slow to emerge. With the recent development of high-throughput approaches to map and quantify different critical parameters affecting translation, such as RNA structure, protein-RNA interactions and ribosome occupancy at the genome level, a renewed enthusiasm toward studying translation regulation is warranted. The use of these new powerful technologies in well-established and uncharacterized translation-dependent processes holds the promise to decipher the likely complex and diverse, but also fascinating, mechanisms behind the regulation of translation.
Collapse
Affiliation(s)
- Catharina Merchante
- Departamento de Biologia Molecular y Bioquimica, Universidad de Malaga-Instituto de Hortofruticultura Subtropical y Mediterranea, IHSM-UMA-CSIC, Malaga, Andalucía, Spain
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
135
|
Nandan D, Thomas SA, Nguyen A, Moon KM, Foster LJ, Reiner NE. Comprehensive Identification of mRNA-Binding Proteins of Leishmania donovani by Interactome Capture. PLoS One 2017; 12:e0170068. [PMID: 28135300 PMCID: PMC5279761 DOI: 10.1371/journal.pone.0170068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Leishmania are unicellular eukaryotes responsible for leishmaniasis in humans. Like other trypanosomatids, leishmania regulate protein coding gene expression almost exclusively at the post-transcriptional level with the help of RNA binding proteins (RBPs). Due to the presence of polycystronic transcription units, leishmania do not regulate RNA polymerase II-dependent transcription initiation. Recent evidence suggests that the main control points in gene expression are mRNA degradation and translation. Protein-RNA interactions are involved in every aspect of RNA biology, such as mRNA splicing, polyadenylation, localization, degradation, and translation. A detailed picture of these interactions would likely prove to be highly informative in understanding leishmania biology and virulence. We developed a strategy involving covalent UV cross-linking of RBPs to mRNA in vivo, followed by interactome capture using oligo(dT) magnetic beads to define comprehensively the mRNA interactome of growing L. donovani amastigotes. The protein mass spectrometry analysis of captured proteins identified 79 mRNA interacting proteins which withstood very stringent washing conditions. Strikingly, we found that 49 of these mRNA interacting proteins had no orthologs or homologs in the human genome. Consequently, these may represent high quality candidates for selective drug targeting leading to novel therapeutics. These results show that this unbiased, systematic strategy has the promise to be applicable to study the mRNA interactome during various biological settings such as metabolic changes, stress (low pH environment, oxidative stress and nutrient deprivation) or drug treatment.
Collapse
Affiliation(s)
- Devki Nandan
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sneha A. Thomas
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anne Nguyen
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kyung-Mee Moon
- University of British Columbia, Centre for High-Throughput Biology and Department of Biochemistry & Molecular Biology, Vancouver, BC, Canada
| | - Leonard J. Foster
- University of British Columbia, Centre for High-Throughput Biology and Department of Biochemistry & Molecular Biology, Vancouver, BC, Canada
| | - Neil E. Reiner
- Departments of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
136
|
Kumar S, Verma S, Trivedi PK. Involvement of Small RNAs in Phosphorus and Sulfur Sensing, Signaling and Stress: Current Update. FRONTIERS IN PLANT SCIENCE 2017; 8:285. [PMID: 28344582 PMCID: PMC5344913 DOI: 10.3389/fpls.2017.00285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/16/2017] [Indexed: 05/14/2023]
Abstract
Plants require several essential mineral nutrients for their growth and development. These nutrients are required to maintain physiological processes and structural integrity in plants. The root architecture has evolved to absorb nutrients from soil and transport them to other parts of the plant. Nutrient deficiency affects several physiological and biological processes in plants and leads to reduction in crop productivity and yield. To compensate this adversity, plants have developed adaptive mechanisms to enhance the acquisition, conservation, and mobilization of these nutrients under deficient or adverse conditions. In addition, plants have evolved an intricate nexus of complex signaling cascades, which help in nutrient sensing and uptake as well as to maintain nutrient homeostasis. In recent years, small non-coding RNAs such as micro RNAs (miRNAs) and endogenous small interfering RNAs have emerged as important component in regulating plant stress responses. A set of these small RNAs (sRNAs) have been implicated in regulating various processes involved in nutrient uptake, assimilation, and deficiency. In response to phosphorus (P) and sulphur (S) deficiencies, role of sRNAs, miR395 and miR399, have been identified to be instrumental; however, many more miRNAs might be involved in regulating the plant response to these nutrient stresses. These sRNAs modulate expression of target genes in response to P and S deficiencies and regulate their uptake and utilization for proper growth and development of the plant. This review summarizes the current understanding of uptake, sensing, and signaling of P and S and highlights the regulatory role of sRNAs in adaptive responses to these nutrient stresses in plants.
Collapse
Affiliation(s)
- Smita Kumar
- Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- Centre of Bio-Medical ResearchSanjay Gandhi Post-Graduate Institute of Medical Sciences Lucknow, India
- *Correspondence: Prabodh K. Trivedi, ; Smita Kumar,
| | - Saurabh Verma
- Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| | - Prabodh K. Trivedi
- Council of Scientific and Industrial Research – National Botanical Research InstituteLucknow, India
- *Correspondence: Prabodh K. Trivedi, ; Smita Kumar,
| |
Collapse
|
137
|
Beckmann BM. RNA interactome capture in yeast. Methods 2016; 118-119:82-92. [PMID: 27993706 PMCID: PMC5421583 DOI: 10.1016/j.ymeth.2016.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) are key players in post-transcriptional regulation of gene expression in eukaryotic cells. To be able to unbiasedly identify RBPs in Saccharomyces cerevisiae, we developed a yeast RNA interactome capture protocol which employs RNA labeling, covalent UV crosslinking of RNA and proteins at 365 nm wavelength (photoactivatable-ribonucleoside-enhanced crosslinking, PAR-CL) and finally purification of the protein-bound mRNA. The method can be easily implemented in common workflows and takes about 3 days to complete. Next to a comprehensive explanation of the method, we focus on our findings about the choice of crosslinking in yeast and discuss the rationale of individual steps in the protocol.
Collapse
Affiliation(s)
- Benedikt M Beckmann
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; IRI for Life Sciences & Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany.
| |
Collapse
|