101
|
Gong R, He S, Tian T, Chen J, Hao Y, Qiao C. FRCNN-AA-CIF: An automatic detection model of colon polyps based on attention awareness and context information fusion. Comput Biol Med 2023; 158:106787. [PMID: 37044051 DOI: 10.1016/j.compbiomed.2023.106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 04/08/2023]
Abstract
It is noted that the foreground and background of the polyp images detected under colonoscopy are not highly differentiated, and the feature map extracted by common deep learning object detection models keep getting smaller as the number of networks increases. Therefore, these models tend to ignore the details in pictures, resulting in a high polyp missed detection rate. To reduce the missed detection rate, this paper proposes an automatic detection model of colon polyps based on attention awareness and context information fusion (FRCNN-AA-CIF) based on a two-stage object detection model Faster Region-Convolutional Neural Network (FR-CNN). First, since the addition of attention awareness can make the feature extraction network pay more attention to polyp features, we propose an attention awareness module based on Squeeze-and-Excitation Network (SENet) and Efficient Channel Attention Module (ECA-Net) and add it after each block of the backbone network. Specifically, we first use the 1*1 convolution of ECA-Net to extract local cross-channel information and then use the two fully connected layers of SENet to reduce and increase the dimension, to filter out the channels that are more useful for feature learning. Further, because of the presence of air bubbles, impurities, inflammation, and accumulation of digestive matter around polyps, we used context information around polyps to enhance the focus on polyp features. In particular, after the network extracts the region of interest, we fuse the region of interest with its context information to improve the detection rate of polyps. The proposed model was tested on the colonoscopy dataset provided by Huashan Hospital. Numerical experiments show that FRCNN-AA-CIF has the highest detection accuracy (mAP of 0.817), the lowest missed detection rate of 4.22%, and the best classification effect (AUC of 95.98%). Its mAP increased by 3.3%, MDR decreased by 1.97%, and AUC increased by 1.8%. Compared with other object detection models, FRCNN-AA-CIF has significantly improved recognition accuracy and reduced missed detection rate.
Collapse
|
102
|
Cherubini A, Dinh NN. A Review of the Technology, Training, and Assessment Methods for the First Real-Time AI-Enhanced Medical Device for Endoscopy. Bioengineering (Basel) 2023; 10:404. [PMID: 37106592 PMCID: PMC10136070 DOI: 10.3390/bioengineering10040404] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/25/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Artificial intelligence (AI) has the potential to assist in endoscopy and improve decision making, particularly in situations where humans may make inconsistent judgments. The performance assessment of the medical devices operating in this context is a complex combination of bench tests, randomized controlled trials, and studies on the interaction between physicians and AI. We review the scientific evidence published about GI Genius, the first AI-powered medical device for colonoscopy to enter the market, and the device that is most widely tested by the scientific community. We provide an overview of its technical architecture, AI training and testing strategies, and regulatory path. In addition, we discuss the strengths and limitations of the current platform and its potential impact on clinical practice. The details of the algorithm architecture and the data that were used to train the AI device have been disclosed to the scientific community in the pursuit of a transparent AI. Overall, the first AI-enabled medical device for real-time video analysis represents a significant advancement in the use of AI for endoscopies and has the potential to improve the accuracy and efficiency of colonoscopy procedures.
Collapse
Affiliation(s)
- Andrea Cherubini
- Cosmo Intelligent Medical Devices, D02KV60 Dublin, Ireland
- Milan Center for Neuroscience, University of Milano–Bicocca, 20126 Milano, Italy
| | - Nhan Ngo Dinh
- Cosmo Intelligent Medical Devices, D02KV60 Dublin, Ireland
| |
Collapse
|
103
|
Liu Q, Han Z, Liu Z, Zhang J. HMA-Net: A deep U-shaped network combined with HarDNet and multi-attention mechanism for medical image segmentation. Med Phys 2023; 50:1635-1646. [PMID: 36303466 DOI: 10.1002/mp.16065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/14/2022] [Accepted: 10/11/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Automatic segmentation of lesion, organ, and tissue from the medical image is an important part of medical image analysis, which are useful for improving the accuracy of disease diagnosis and clinical analysis. For skin melanomas lesions, the contrast ratio between lesions and surrounding skin is low and there are many irregular shapes, uneven distribution, and local and boundary features. Moreover, some hair covering the lesions destroys the local context. Polyp characteristics such as shape, size, and appearance vary at different development stages. Early polyps with small sizes have no distinctive features and could be easily mistaken for other intestinal structures, such as wrinkles and folds. Imaging positions and illumination conditions would alter polyps' appearance and lead to no visible transitions between polyps and surrounding tissue. It remains a challenging task to accurately segment the skin lesions and polyps due to the high variability in the location, shape, size, color, and texture of the target object. Developing a robust and accurate segmentation method for medical images is necessary. PURPOSE To achieve better segmentation performance while dealing with the difficulties above, a U-shape network based on the encoder and decoder structure is proposed to enhance the segmentation performance in target regions. METHODS In this paper, a novel deep network of the encoder-decoder model that combines HarDNet, dual attention (DA), and reverse attention (RA) is proposed. First, HarDNet68 is employed to extract the backbone features while improving the inference speed and computational efficiency. Second, the DA block is adopted to capture the global feature dependency in spatial and channel dimensions, and enrich the contextual information on local features. At last, three RA blocks are exploited to fuse and refine the boundary features to obtain the final segmentation results. RESULTS Extensive experiments are conducted on a skin lesion dataset which consists of ISIC2016, ISIC2017, and ISIC 2018, and a polyp dataset which consists of several public datasets, that is, Kvasir, CVC-ClinicDB, CVC-ColonDB, ETIS, Endosece. The proposed method outperforms some state-of-art segmentation models on the ISIC2018, ISIC2017, and ISIC2016 datasets, with Jaccard's indexes of 0.846, 0.881, and 0.894, mean Dice coefficients of 0.907, 0.929, and 03939, precisions of 0.908, 0.977, and 0.968, and accuracies of 0.953, 0.975, and 0.972. Additionally, the proposed method also performs better than some state-of-art segmentation models on the Kvasir, CVC-ClinicDB, CVC-ColonDB, ETIS, and Endosece datasets, with mean Dice coefficients of 0.907, 0.935, 0.716, 0.667, and 0.887, mean intersection over union coefficients of 0.850, 0.885, 0.644, 0.595, and 0.821, structural similarity measures of 0.918, 0.953, 0.823, 0.807, and 0.933, enhanced alignment measures of 0.952, 0.983, 0.850, 0.817, and 0.957, mean absolute errors of 0.026, 0.007, 0.037, 0.030, and 0.009. CONCLUSIONS The proposed deep network could improve lesion segmentation performance in polyp and skin lesion images. The quantitative and qualitative results show that the proposed method can effectively handle the challenging task of segmentation while revealing the great potential for clinical application.
Collapse
Affiliation(s)
- Qiaohong Liu
- School of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Ziqi Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ziling Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Juan Zhang
- School of Electronic and Electrical Engineering, Control Engineering, Shanghai University of Engineering Science, Shanghai, China
| |
Collapse
|
104
|
Wang K, Liu L, Fu X, Liu L, Peng W. RA-DENet: Reverse Attention and Distractions Elimination Network for polyp segmentation. Comput Biol Med 2023; 155:106704. [PMID: 36848801 DOI: 10.1016/j.compbiomed.2023.106704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/01/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
To address the problems of polyps of different shapes, sizes, and colors, low-contrast polyps, various noise distractions, and blurred edges on colonoscopy, we propose the Reverse Attention and Distraction Elimination Network, which includes Improved Reverse Attention, Distraction Elimination, and Feature Enhancement. First, we input the images in the polyp image set, and use the five levels polyp features and the global polyp feature extracted from the Res2Net-based backbone as the input of the Improved Reverse Attention to obtain augmented representations of salient and non-salient regions to capture the different shapes of polyp and distinguish low-contrast polyps from background. Then, the augmented representations of salient and non-salient areas are fed into the Distraction Elimination to obtain the refined polyp feature without false positive and false negative distractions for eliminating noises. Finally, the extracted low-level polyp feature is used as the input of the Feature Enhancement to obtain the edge feature for supplementing missing edge information of polyp. The polyp segmentation result is output by connecting the edge feature with the refined polyp feature. The proposed method is evaluated on five polyp datasets and compared with the current polyp segmentation models. Our model improves the mDice to 0.760 on the most challenge dataset (ETIS).
Collapse
Affiliation(s)
- Kaiqi Wang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Computer Technology Application Key Lab of Yunnan Province, Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Computer Technology Application Key Lab of Yunnan Province, Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Computer Technology Application Key Lab of Yunnan Province, Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Computer Technology Application Key Lab of Yunnan Province, Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
105
|
DBE-Net: Dual Boundary-Guided Attention Exploration Network for Polyp Segmentation. Diagnostics (Basel) 2023; 13:diagnostics13050896. [PMID: 36900040 PMCID: PMC10001089 DOI: 10.3390/diagnostics13050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Automatic segmentation of polyps during colonoscopy can help doctors accurately find the polyp area and remove abnormal tissues in time to reduce the possibility of polyps transforming into cancer. However, the current polyp segmentation research still has the following problems: blurry polyp boundaries, multi-scale adaptability of polyps, and close resemblances between polyps and nearby normal tissues. To tackle these issues, this paper proposes a dual boundary-guided attention exploration network (DBE-Net) for polyp segmentation. Firstly, we propose a dual boundary-guided attention exploration module to solve the boundary-blurring problem. This module uses a coarse-to-fine strategy to progressively approximate the real polyp boundary. Secondly, a multi-scale context aggregation enhancement module is introduced to accommodate the multi-scale variation of polyps. Finally, we propose a low-level detail enhancement module, which can extract more low-level details and promote the performance of the overall network. Extensive experiments on five polyp segmentation benchmark datasets show that our method achieves superior performance and stronger generalization ability than state-of-the-art methods. Especially for CVC-ColonDB and ETIS, two challenging datasets among the five datasets, our method achieves excellent results of 82.4% and 80.6% in terms of mDice (mean dice similarity coefficient) and improves by 5.1% and 5.9% compared to the state-of-the-art methods.
Collapse
|
106
|
Ali S, Jha D, Ghatwary N, Realdon S, Cannizzaro R, Salem OE, Lamarque D, Daul C, Riegler MA, Anonsen KV, Petlund A, Halvorsen P, Rittscher J, de Lange T, East JE. A multi-centre polyp detection and segmentation dataset for generalisability assessment. Sci Data 2023; 10:75. [PMID: 36746950 PMCID: PMC9902556 DOI: 10.1038/s41597-023-01981-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp's number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main issue is that they are not tested rigorously on a large multicentre purpose-built dataset, one reason being the lack of a comprehensive public dataset. As a result, the developed methods may not generalise to different population datasets. To this extent, we have curated a dataset from six unique centres incorporating more than 300 patients. The dataset includes both single frame and sequence data with 3762 annotated polyp labels with precise delineation of polyp boundaries verified by six senior gastroenterologists. To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset (referred to as PolypGen) curated by a team of computational scientists and expert gastroenterologists. The paper provides insight into data construction and annotation strategies, quality assurance, and technical validation.
Collapse
Affiliation(s)
- Sharib Ali
- School of Computing, University of Leeds, LS2 9JT, Leeds, United Kingdom.
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, Oxford, United Kingdom.
- Oxford National Institute for Health Research Biomedical Research centre, OX4 2PG, Oxford, United Kingdom.
| | - Debesh Jha
- SimulaMet, Pilestredet 52, 0167, Oslo, Norway
- Department of Computer Science, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway
- Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA
| | - Noha Ghatwary
- Computer Engineering Department, Arab Academy for Science and Technology,Smart Village, Giza, Egypt
| | - Stefano Realdon
- Oncological Gastroenterology - Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 2, 33081, Aviano, PN, Italy
| | - Renato Cannizzaro
- Oncological Gastroenterology - Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 2, 33081, Aviano, PN, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy
| | - Osama E Salem
- Faculty of Medicine, University of Alexandria, 21131, Alexandria, Egypt
| | - Dominique Lamarque
- Université de Versailles St-Quentin en Yvelines, Hôpital Ambroise Paré, 9 Av. Charles de Gaulle, 92100, Boulogne-Billancourt, France
| | - Christian Daul
- CRAN UMR 7039, Université de Lorraine and CNRS, F-54010, Vandœuvre-Lès-Nancy, France
| | - Michael A Riegler
- SimulaMet, Pilestredet 52, 0167, Oslo, Norway
- Department of Computer Science, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway
| | - Kim V Anonsen
- Oslo University Hospital Ullevål, Kirkeveien 166, 0450, Oslo, Norway
| | | | - Pål Halvorsen
- SimulaMet, Pilestredet 52, 0167, Oslo, Norway
- Oslo Metropolitan University, Pilestredet 46, 0167, Oslo, Norway
| | - Jens Rittscher
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, Oxford, United Kingdom
- Oxford National Institute for Health Research Biomedical Research centre, OX4 2PG, Oxford, United Kingdom
| | - Thomas de Lange
- Augere Medical, Nedre Vaskegang 6, 0186, Oslo, Norway
- Medical Department, Sahlgrenska University Hospital-Mölndal, Blå stråket 5, 413 45, Göteborg, Sweden
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, 41345, Göteborg, Sweden
| | - James E East
- Oxford National Institute for Health Research Biomedical Research centre, OX4 2PG, Oxford, United Kingdom
- Translational Gastroenterology Unit, Experimental Medicine Div., John Radcliffe Hospital, University of Oxford, OX3 9DU, Oxford, United Kingdom
| |
Collapse
|
107
|
Zheng J, Liu H, Feng Y, Xu J, Zhao L. CASF-Net: Cross-attention and cross-scale fusion network for medical image segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 229:107307. [PMID: 36571889 DOI: 10.1016/j.cmpb.2022.107307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Automatic segmentation of medical images has progressed greatly owing to the development of convolutional neural networks (CNNs). However, there are two uncertainties with current approaches based on convolutional operations: (1) how to eliminate the general limitations that CNNs lack the ability of modeling long-range dependencies and global contextual interactions, and (2) how to efficiently discover and integrate global and local features that are implied in the image. Notably, these two problems are interconnected, yet previous approaches mainly focus on the first problem and ignore the importance of information integration. METHODS In this paper, we propose a novel cross-attention and cross-scale fusion network (CASF-Net), which aims to explicitly tap the potential of dual-branch networks and fully integrate the coarse and fine-grained feature representations. Specifically, the well-designed dual-branch encoder hammers at modeling non-local dependencies and multi-scale contexts, significantly improving the quality of semantic segmentation. Moreover, the proposed cross-attention and cross-scale module efficiently perform multi-scale information fusion, being capable of further exploring the long-range contextual information. RESULTS Extensive experiments conducted on three different types of medical image segmentation tasks demonstrate the state-of-the-art performance of our proposed method both visually and numerically. CONCLUSIONS This paper assembles the feature representation capabilities of CNN and transformer and proposes cross-attention and cross-scale fusion algorithms. The promising results show new possibilities of using cross-fusion mechanisms in more downstream medical image tasks.
Collapse
Affiliation(s)
- Jianwei Zheng
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hao Liu
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuchao Feng
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinshan Xu
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liang Zhao
- Stomatological Hospital of Xiamen Medical College and the Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361000, China.
| |
Collapse
|
108
|
Meng Y, Zhang H, Zhao Y, Gao D, Hamill B, Patri G, Peto T, Madhusudhan S, Zheng Y. Dual Consistency Enabled Weakly and Semi-Supervised Optic Disc and Cup Segmentation With Dual Adaptive Graph Convolutional Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:416-429. [PMID: 36044486 DOI: 10.1109/tmi.2022.3203318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glaucoma is a progressive eye disease that results in permanent vision loss, and the vertical cup to disc ratio (vCDR) in colour fundus images is essential in glaucoma screening and assessment. Previous fully supervised convolution neural networks segment the optic disc (OD) and optic cup (OC) from color fundus images and then calculate the vCDR offline. However, they rely on a large set of labeled masks for training, which is expensive and time-consuming to acquire. To address this, we propose a weakly and semi-supervised graph-based network that investigates geometric associations and domain knowledge between segmentation probability maps (PM), modified signed distance function representations (mSDF), and boundary region of interest characteristics (B-ROI) in three aspects. Firstly, we propose a novel Dual Adaptive Graph Convolutional Network (DAGCN) to reason the long-range features of the PM and the mSDF w.r.t. the regional uniformity. Secondly, we propose a dual consistency regularization-based semi-supervised learning paradigm. The regional consistency between the PM and the mSDF, and the marginal consistency between the derived B-ROI from each of them boost the proposed model's performance due to the inherent geometric associations. Thirdly, we exploit the task-specific domain knowledge via the oval shapes of OD & OC, where a differentiable vCDR estimating layer is proposed. Furthermore, without additional annotations, the supervision on vCDR serves as weakly-supervisions for segmentation tasks. Experiments on six large-scale datasets demonstrate our model's superior performance on OD & OC segmentation and vCDR estimation. The implementation code has been made available.https://github.com/smallmax00/Dual_Adaptive_Graph_Reasoning.
Collapse
|
109
|
Houwen BBSL, Nass KJ, Vleugels JLA, Fockens P, Hazewinkel Y, Dekker E. Comprehensive review of publicly available colonoscopic imaging databases for artificial intelligence research: availability, accessibility, and usability. Gastrointest Endosc 2023; 97:184-199.e16. [PMID: 36084720 DOI: 10.1016/j.gie.2022.08.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Publicly available databases containing colonoscopic imaging data are valuable resources for artificial intelligence (AI) research. Currently, little is known regarding the available number and content of these databases. This review aimed to describe the availability, accessibility, and usability of publicly available colonoscopic imaging databases, focusing on polyp detection, polyp characterization, and quality of colonoscopy. METHODS A systematic literature search was performed in MEDLINE and Embase to identify AI studies describing publicly available colonoscopic imaging databases published after 2010. Second, a targeted search using Google's Dataset Search, Google Search, GitHub, and Figshare was done to identify databases directly. Databases were included if they contained data about polyp detection, polyp characterization, or quality of colonoscopy. To assess accessibility of databases, the following categories were defined: open access, open access with barriers, and regulated access. To assess the potential usability of the included databases, essential details of each database were extracted using a checklist derived from the Checklist for Artificial Intelligence in Medical Imaging. RESULTS We identified 22 databases with open access, 3 databases with open access with barriers, and 15 databases with regulated access. The 22 open access databases contained 19,463 images and 952 videos. Nineteen of these databases focused on polyp detection, localization, and/or segmentation; 6 on polyp characterization, and 3 on quality of colonoscopy. Only half of these databases have been used by other researcher to develop, train, or benchmark their AI system. Although technical details were in general well reported, important details such as polyp and patient demographics and the annotation process were under-reported in almost all databases. CONCLUSIONS This review provides greater insight on public availability of colonoscopic imaging databases for AI research. Incomplete reporting of important details limits the ability of researchers to assess the usability of current databases.
Collapse
Affiliation(s)
- Britt B S L Houwen
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centres, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karlijn J Nass
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centres, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jasper L A Vleugels
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centres, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Fockens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centres, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Yark Hazewinkel
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Radboud University of Nijmegen, Nijmegen, the Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centres, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
110
|
Big Data in Gastroenterology Research. Int J Mol Sci 2023; 24:ijms24032458. [PMID: 36768780 PMCID: PMC9916510 DOI: 10.3390/ijms24032458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Studying individual data types in isolation provides only limited and incomplete answers to complex biological questions and particularly falls short in revealing sufficient mechanistic and kinetic details. In contrast, multi-omics approaches to studying health and disease permit the generation and integration of multiple data types on a much larger scale, offering a comprehensive picture of biological and disease processes. Gastroenterology and hepatobiliary research are particularly well-suited to such analyses, given the unique position of the luminal gastrointestinal (GI) tract at the nexus between the gut (mucosa and luminal contents), brain, immune and endocrine systems, and GI microbiome. The generation of 'big data' from multi-omic, multi-site studies can enhance investigations into the connections between these organ systems and organisms and more broadly and accurately appraise the effects of dietary, pharmacological, and other therapeutic interventions. In this review, we describe a variety of useful omics approaches and how they can be integrated to provide a holistic depiction of the human and microbial genetic and proteomic changes underlying physiological and pathophysiological phenomena. We highlight the potential pitfalls and alternatives to help avoid the common errors in study design, execution, and analysis. We focus on the application, integration, and analysis of big data in gastroenterology and hepatobiliary research.
Collapse
|
111
|
Nachmani R, Nidal I, Robinson D, Yassin M, Abookasis D. Segmentation of polyps based on pyramid vision transformers and residual block for real-time endoscopy imaging. J Pathol Inform 2023; 14:100197. [PMID: 36844703 PMCID: PMC9945716 DOI: 10.1016/j.jpi.2023.100197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Polyp segmentation is an important task in early identification of colon polyps for prevention of colorectal cancer. Numerous methods of machine learning have been utilized in an attempt to solve this task with varying levels of success. A successful polyp segmentation method which is both accurate and fast could make a huge impact on colonoscopy exams, aiding in real-time detection, as well as enabling faster and cheaper offline analysis. Thus, recent studies have worked to produce networks that are more accurate and faster than the previous generation of networks (e.g., NanoNet). Here, we propose ResPVT architecture for polyp segmentation. This platform uses transformers as a backbone and far surpasses all previous networks not only in accuracy but also with a much higher frame rate which may drastically reduce costs in both real time and offline analysis and enable the widespread application of this technology.
Collapse
Affiliation(s)
- Roi Nachmani
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 407000, Israel
| | - Issa Nidal
- Department of Surgery, Hasharon Hospital, Rabin Medical Center, affiliated with Tel Aviv, University School of Medicine, Petah Tikva, Israel
| | - Dror Robinson
- Department of Orthopedics, Hasharon Hospital, Rabin Medical Center, affiliated with Tel Aviv, University School of Medicine, Petah Tikva, Israel
| | - Mustafa Yassin
- Department of Orthopedics, Hasharon Hospital, Rabin Medical Center, affiliated with Tel Aviv, University School of Medicine, Petah Tikva, Israel
| | - David Abookasis
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 407000, Israel
- Ariel Photonics Center, Ariel University, Ariel 407000, Israel
- Corresponding author.
| |
Collapse
|
112
|
Krenzer A, Banck M, Makowski K, Hekalo A, Fitting D, Troya J, Sudarevic B, Zoller WG, Hann A, Puppe F. A Real-Time Polyp-Detection System with Clinical Application in Colonoscopy Using Deep Convolutional Neural Networks. J Imaging 2023; 9:jimaging9020026. [PMID: 36826945 PMCID: PMC9967208 DOI: 10.3390/jimaging9020026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is with a colonoscopy. During this procedure, the gastroenterologist searches for polyps. However, there is a potential risk of polyps being missed by the gastroenterologist. Automated detection of polyps helps to assist the gastroenterologist during a colonoscopy. There are already publications examining the problem of polyp detection in the literature. Nevertheless, most of these systems are only used in the research context and are not implemented for clinical application. Therefore, we introduce the first fully open-source automated polyp-detection system scoring best on current benchmark data and implementing it ready for clinical application. To create the polyp-detection system (ENDOMIND-Advanced), we combined our own collected data from different hospitals and practices in Germany with open-source datasets to create a dataset with over 500,000 annotated images. ENDOMIND-Advanced leverages a post-processing technique based on video detection to work in real-time with a stream of images. It is integrated into a prototype ready for application in clinical interventions. We achieve better performance compared to the best system in the literature and score a F1-score of 90.24% on the open-source CVC-VideoClinicDB benchmark.
Collapse
Affiliation(s)
- Adrian Krenzer
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Michael Banck
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Kevin Makowski
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
| | - Amar Hekalo
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
| | - Daniel Fitting
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Joel Troya
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Boban Sudarevic
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- Department of Internal Medicine and Gastroenterology, Katharinenhospital, Kriegsbergstrasse 60, 70174 Stuttgart, Germany
| | - Wolfgang G Zoller
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
- Department of Internal Medicine and Gastroenterology, Katharinenhospital, Kriegsbergstrasse 60, 70174 Stuttgart, Germany
| | - Alexander Hann
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Frank Puppe
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
| |
Collapse
|
113
|
Lewis J, Cha YJ, Kim J. Dual encoder-decoder-based deep polyp segmentation network for colonoscopy images. Sci Rep 2023; 13:1183. [PMID: 36681776 PMCID: PMC9867760 DOI: 10.1038/s41598-023-28530-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an opportunity to improve upon the prognosis of potential patients suffering with colorectal cancer has appeared with automated detection and segmentation of polyps. Polyp segmentation is subject to a number of problems such as model overfitting and generalization, poor definition of boundary pixels, as well as the model's ability to capture the practical range in textures, sizes, and colors. In an effort to address these challenges, we propose a dual encoder-decoder solution named Polyp Segmentation Network (PSNet). Both the dual encoder and decoder were developed by the comprehensive combination of a variety of deep learning modules, including the PS encoder, transformer encoder, PS decoder, enhanced dilated transformer decoder, partial decoder, and merge module. PSNet outperforms state-of-the-art results through an extensive comparative study against 5 existing polyp datasets with respect to both mDice and mIoU at 0.863 and 0.797, respectively. With our new modified polyp dataset we obtain an mDice and mIoU of 0.941 and 0.897 respectively.
Collapse
Affiliation(s)
- John Lewis
- Department of Civil Engineering, University of Manitoba, Winnipeg, R3M 0N2, Canada
| | - Young-Jin Cha
- Department of Civil Engineering, University of Manitoba, Winnipeg, R3M 0N2, Canada.
| | - Jongho Kim
- Department of Radiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, R3A 1R9, Canada
| |
Collapse
|
114
|
ELKarazle K, Raman V, Then P, Chua C. Detection of Colorectal Polyps from Colonoscopy Using Machine Learning: A Survey on Modern Techniques. SENSORS (BASEL, SWITZERLAND) 2023; 23:1225. [PMID: 36772263 PMCID: PMC9953705 DOI: 10.3390/s23031225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Given the increased interest in utilizing artificial intelligence as an assistive tool in the medical sector, colorectal polyp detection and classification using deep learning techniques has been an active area of research in recent years. The motivation for researching this topic is that physicians miss polyps from time to time due to fatigue and lack of experience carrying out the procedure. Unidentified polyps can cause further complications and ultimately lead to colorectal cancer (CRC), one of the leading causes of cancer mortality. Although various techniques have been presented recently, several key issues, such as the lack of enough training data, white light reflection, and blur affect the performance of such methods. This paper presents a survey on recently proposed methods for detecting polyps from colonoscopy. The survey covers benchmark dataset analysis, evaluation metrics, common challenges, standard methods of building polyp detectors and a review of the latest work in the literature. We conclude this paper by providing a precise analysis of the gaps and trends discovered in the reviewed literature for future work.
Collapse
Affiliation(s)
- Khaled ELKarazle
- School of Information and Communication Technologies, Swinburne University of Technology, Sarawak Campus, Kuching 93350, Malaysia
| | - Valliappan Raman
- Department of Artificial Intelligence and Data Science, Coimbatore Institute of Technology, Coimbatore 641014, India
| | - Patrick Then
- School of Information and Communication Technologies, Swinburne University of Technology, Sarawak Campus, Kuching 93350, Malaysia
| | - Caslon Chua
- Department of Computer Science and Software Engineering, Swinburne University of Technology, Melbourne 3122, Australia
| |
Collapse
|
115
|
Shen T, Li X. Automatic polyp image segmentation and cancer prediction based on deep learning. Front Oncol 2023; 12:1087438. [PMID: 36713495 PMCID: PMC9878560 DOI: 10.3389/fonc.2022.1087438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
The similar shape and texture of colonic polyps and normal mucosal tissues lead to low accuracy of medical image segmentation algorithms. To solve these problems, we proposed a polyp image segmentation algorithm based on deep learning technology, which combines a HarDNet module, attention module, and multi-scale coding module with the U-Net network as the basic framework, including two stages of coding and decoding. In the encoder stage, HarDNet68 is used as the main backbone network to extract features using four null space convolutional pooling pyramids while improving the inference speed and computational efficiency; the attention mechanism module is added to the encoding and decoding network; then the model can learn the global and local feature information of the polyp image, thus having the ability to process information in both spatial and channel dimensions, to solve the problem of information loss in the encoding stage of the network and improving the performance of the segmentation network. Through comparative analysis with other algorithms, we can find that the network of this paper has a certain degree of improvement in segmentation accuracy and operation speed, which can effectively assist physicians in removing abnormal colorectal tissues and thus reduce the probability of polyp cancer, and improve the survival rate and quality of life of patients. Also, it has good generalization ability, which can provide technical support and prevention for colon cancer.
Collapse
Affiliation(s)
- Tongping Shen
- School of Information Engineering, Anhui University of Chinese Medicine, Hefei, China,Graduate School, Angeles University Foundation, Angeles, Philippines,*Correspondence: Tongping Shen,
| | - Xueguang Li
- School of Computer Science and Technology, Henan Institute of Technology, Xinxiang, China
| |
Collapse
|
116
|
He X. A multi-resolution unet algorithm based on data augmentation and multi-center training for polyp automatic segmentation. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-223340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In clinical practice, segmenting polyps from colonoscopy images plays an important role in the diagnosis and treatment of colorectal cancer since it provides valuable information. However, accurate polyp segmentation is full of changes due to the following reasons: (1) the small training datasets with a limited number of samples and the lack of data variability; (2) the same type of polyps with a variation in texture, size, and color; (3) the weak boundary between a polyp and its surrounding mucosa. To address these challenges, we propose a novel robust deep neural network based on data augmentation, called Robust Multi-center Multi-resolution Unet (RMMSUNet), for the polyp segmentation task. Data augmentation and Multi-center training are both utilized to increase the amount and diversity of training dataset. The new multi-resolution blocks make up for the lack of fine-grained information in U-Net, and ensures the generation of more accurate pixel-level segmentation prediction graphs. Region-based refinement is added as the post-processing for the network output, to correct some wrongly predicted pixels and further refine the segmentation results. Quantitative and qualitative evaluations on the challenging polyp dataset show that our RMMSUNet improves the segmentation accuracy significantly, when comparing to other SOTA algorithms.
Collapse
Affiliation(s)
- Xiaoxu He
- School of Guangdong & Taiwan Artificial Intelligence, Foshan University, Foshan, China
| |
Collapse
|
117
|
APT-Net: Adaptive encoding and parallel decoding transformer for medical image segmentation. Comput Biol Med 2022; 151:106292. [PMID: 36399856 DOI: 10.1016/j.compbiomed.2022.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
There are limitations in the study of transformer-based medical image segmentation networks for token position encoding and decoding of images. The position encoding module cannot encode the position information adequately, and the serial decoder cannot utilize the contextual information efficiently. In this paper, we propose a new CNN-transformer hybrid structure for the medical image segmentation network APT-Net based on the encoder-decoder architecture. The network introduces an adaptive position encoding module for the fusion of position information of a multi-receptive field to provide more adequate position information for the token sequences in the transformer. In addition, the dual-path parallel decoder's basic and guide information paths simultaneously process multiscale feature maps to efficiently utilize contextual information. We conducted extensive experiments and reported a number of important metrics from multiple perspectives on seven datasets containing skin lesions, polyps, and glands. The IoU reached 0.783 and 0.851 on the ISIC2017 and Glas datasets, respectively. To the best of our knowledge, APT-Net achieves state-of-the-art performance on the Glas dataset and polyp segmentation tasks. Ablation experiments validate the effectiveness of the proposed adaptive position encoding module and the dual-path parallel decoder. Comparative experiments with state-of-the-art methods demonstrate the high accuracy and portability of APT-Net.
Collapse
|
118
|
Wu C, Long C, Li S, Yang J, Jiang F, Zhou R. MSRAformer: Multiscale spatial reverse attention network for polyp segmentation. Comput Biol Med 2022; 151:106274. [PMID: 36375412 DOI: 10.1016/j.compbiomed.2022.106274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Colon polyp is an important reference basis in the diagnosis of colorectal cancer(CRC). In routine diagnosis, the polyp area is segmented from the colorectal enteroscopy image, and the obtained pathological information is used to assist in the diagnosis of the disease and surgery. It is always a challenging task for accurate segmentation of polyps in colonoscopy images. There are great differences in shape, size, color and texture of the same type of polyps, and it is difficult to distinguish the polyp region from the mucosal boundary. In recent years, convolutional neural network(CNN) has achieved some results in the task of medical image segmentation. However, CNNs focus on the extraction of local features and be short of the extracting ability of global feature information. This paper presents a Multiscale Spatial Reverse Attention Network called MSRAformer with high performance in medical segmentation, which adopts the Swin Transformer encoder with pyramid structure to extract the features of four different stages, and extracts the multi-scale feature information through the multi-scale channel attention module, which enhances the global feature extraction ability and generalization of the network, and preliminarily aggregates a pre-segmentation result. This paper proposes a spatial reverse attention mechanism module to gradually supplement the edge structure and detail information of the polyp region. Extensive experiments on MSRAformer proved that the segmentation effect on the colonoscopy polyp dataset is better than most state-of-the-art(SOTA) medical image segmentation methods, with better generalization performance. Reference implementation of MSRAformer is available at https://github.com/ChengLong1222/MSRAformer-main.
Collapse
Affiliation(s)
- Cong Wu
- School of computer science, Hubei University of Technology, Wuhan, China.
| | - Cheng Long
- School of computer science, Hubei University of Technology, Wuhan, China.
| | - Shijun Li
- School of computer science, Hubei University of Technology, Wuhan, China
| | - Junjie Yang
- Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Fagang Jiang
- Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Ran Zhou
- School of computer science, Hubei University of Technology, Wuhan, China
| |
Collapse
|
119
|
Sun Q, Dai M, Lan Z, Cai F, Wei L, Yang C, Chen R. UCR-Net: U-shaped context residual network for medical image segmentation. Comput Biol Med 2022; 151:106203. [PMID: 36306581 DOI: 10.1016/j.compbiomed.2022.106203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/04/2022] [Accepted: 10/09/2022] [Indexed: 12/27/2022]
Abstract
Medical image segmentation prerequisite for numerous clinical needs is a critical step in biomedical image analysis. The U-Net framework is one of the most popular deep networks in this field. However, U-Net's successive pooling and downsampling operations result in some loss of spatial information. In this paper, we propose a U-shaped context residual network, called UCR-Net, to capture more context and high-level information for medical image segmentation. The proposed UCR-Net is an encoder-decoder framework comprising a feature encoder module and a feature decoder module. The feature decoder module contains four newly proposed context attention exploration(CAE) modules, a newly proposed global and spatial attention (GSA) module, and four decoder blocks. We use the proposed CAE module to capture more multi-scale context features from the encoder. The proposed GSA module further explores global context features and semantically enhanced deep-level features. The proposed UCR-Net can recover more high-level semantic features and fuse context attention information from CAE and global and spatial attention information from GSA module. Experiments on the retinal vessel, femoropopliteal artery stent, and polyp datasets demonstrate that the proposed UCR-Net performs favorably against the original U-Net and other advanced methods.
Collapse
Affiliation(s)
- Qi Sun
- Digital Fujian Research Institute of Big Data for Agriculture and Forestry, College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Mengyun Dai
- Digital Fujian Research Institute of Big Data for Agriculture and Forestry, College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ziyang Lan
- Digital Fujian Research Institute of Big Data for Agriculture and Forestry, College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fanggang Cai
- Department of vascular surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350108, China.
| | - Lifang Wei
- Digital Fujian Research Institute of Big Data for Agriculture and Forestry, College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Changcai Yang
- Digital Fujian Research Institute of Big Data for Agriculture and Forestry, College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Riqing Chen
- Digital Fujian Research Institute of Big Data for Agriculture and Forestry, College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
120
|
Zhou T, Zhou Y, Gong C, Yang J, Zhang Y. Feature Aggregation and Propagation Network for Camouflaged Object Detection. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:7036-7047. [PMID: 36331642 DOI: 10.1109/tip.2022.3217695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Camouflaged object detection (COD) aims to detect/segment camouflaged objects embedded in the environment, which has attracted increasing attention over the past decades. Although several COD methods have been developed, they still suffer from unsatisfactory performance due to the intrinsic similarities between the foreground objects and background surroundings. In this paper, we propose a novel Feature Aggregation and Propagation Network (FAP-Net) for camouflaged object detection. Specifically, we propose a Boundary Guidance Module (BGM) to explicitly model the boundary characteristic, which can provide boundary-enhanced features to boost the COD performance. To capture the scale variations of the camouflaged objects, we propose a Multi-scale Feature Aggregation Module (MFAM) to characterize the multi-scale information from each layer and obtain the aggregated feature representations. Furthermore, we propose a Cross-level Fusion and Propagation Module (CFPM). In the CFPM, the feature fusion part can effectively integrate the features from adjacent layers to exploit the cross-level correlations, and the feature propagation part can transmit valuable context information from the encoder to the decoder network via a gate unit. Finally, we formulate a unified and end-to-end trainable framework where cross-level features can be effectively fused and propagated for capturing rich context information. Extensive experiments on three benchmark camouflaged datasets demonstrate that our FAP-Net outperforms other state-of-the-art COD models. Moreover, our model can be extended to the polyp segmentation task, and the comparison results further validate the effectiveness of the proposed model in segmenting polyps. The source code and results will be released at https://github.com/taozh2017/FAPNet.
Collapse
|
121
|
Parkash O, Siddiqui ATS, Jiwani U, Rind F, Padhani ZA, Rizvi A, Hoodbhoy Z, Das JK. Diagnostic accuracy of artificial intelligence for detecting gastrointestinal luminal pathologies: A systematic review and meta-analysis. Front Med (Lausanne) 2022; 9:1018937. [PMID: 36405592 PMCID: PMC9672666 DOI: 10.3389/fmed.2022.1018937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Background Artificial Intelligence (AI) holds considerable promise for diagnostics in the field of gastroenterology. This systematic review and meta-analysis aims to assess the diagnostic accuracy of AI models compared with the gold standard of experts and histopathology for the diagnosis of various gastrointestinal (GI) luminal pathologies including polyps, neoplasms, and inflammatory bowel disease. Methods We searched PubMed, CINAHL, Wiley Cochrane Library, and Web of Science electronic databases to identify studies assessing the diagnostic performance of AI models for GI luminal pathologies. We extracted binary diagnostic accuracy data and constructed contingency tables to derive the outcomes of interest: sensitivity and specificity. We performed a meta-analysis and hierarchical summary receiver operating characteristic curves (HSROC). The risk of bias was assessed using Quality Assessment for Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Subgroup analyses were conducted based on the type of GI luminal disease, AI model, reference standard, and type of data used for analysis. This study is registered with PROSPERO (CRD42021288360). Findings We included 73 studies, of which 31 were externally validated and provided sufficient information for inclusion in the meta-analysis. The overall sensitivity of AI for detecting GI luminal pathologies was 91.9% (95% CI: 89.0–94.1) and specificity was 91.7% (95% CI: 87.4–94.7). Deep learning models (sensitivity: 89.8%, specificity: 91.9%) and ensemble methods (sensitivity: 95.4%, specificity: 90.9%) were the most commonly used models in the included studies. Majority of studies (n = 56, 76.7%) had a high risk of selection bias while 74% (n = 54) studies were low risk on reference standard and 67% (n = 49) were low risk for flow and timing bias. Interpretation The review suggests high sensitivity and specificity of AI models for the detection of GI luminal pathologies. There is a need for large, multi-center trials in both high income countries and low- and middle- income countries to assess the performance of these AI models in real clinical settings and its impact on diagnosis and prognosis. Systematic review registration [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=288360], identifier [CRD42021288360].
Collapse
Affiliation(s)
- Om Parkash
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Uswa Jiwani
- Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - Fahad Rind
- Head and Neck Oncology, The Ohio State University, Columbus, OH, United States
| | - Zahra Ali Padhani
- Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan
| | - Arjumand Rizvi
- Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - Zahra Hoodbhoy
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Jai K. Das
- Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
- *Correspondence: Jai K. Das,
| |
Collapse
|
122
|
González-Bueno Puyal J, Brandao P, Ahmad OF, Bhatia KK, Toth D, Kader R, Lovat L, Mountney P, Stoyanov D. Polyp detection on video colonoscopy using a hybrid 2D/3D CNN. Med Image Anal 2022; 82:102625. [PMID: 36209637 DOI: 10.1016/j.media.2022.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
Colonoscopy is the gold standard for early diagnosis and pre-emptive treatment of colorectal cancer by detecting and removing colonic polyps. Deep learning approaches to polyp detection have shown potential for enhancing polyp detection rates. However, the majority of these systems are developed and evaluated on static images from colonoscopies, whilst in clinical practice the treatment is performed on a real-time video feed. Non-curated video data remains a challenge, as it contains low-quality frames when compared to still, selected images often obtained from diagnostic records. Nevertheless, it also embeds temporal information that can be exploited to increase predictions stability. A hybrid 2D/3D convolutional neural network architecture for polyp segmentation is presented in this paper. The network is used to improve polyp detection by encompassing spatial and temporal correlation of the predictions while preserving real-time detections. Extensive experiments show that the hybrid method outperforms a 2D baseline. The proposed architecture is validated on videos from 46 patients and on the publicly available SUN polyp database. A higher performance and increased generalisability indicate that real-world clinical implementations of automated polyp detection can benefit from the hybrid algorithm and the inclusion of temporal information.
Collapse
Affiliation(s)
- Juana González-Bueno Puyal
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, W1W 7TY, UK; Odin Vision, London, W1W 7TY, UK.
| | | | - Omer F Ahmad
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, W1W 7TY, UK
| | | | | | - Rawen Kader
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, W1W 7TY, UK
| | - Laurence Lovat
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, W1W 7TY, UK
| | | | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, W1W 7TY, UK
| |
Collapse
|
123
|
Zhang W, Fu C, Zheng Y, Zhang F, Zhao Y, Sham CW. HSNet: A hybrid semantic network for polyp segmentation. Comput Biol Med 2022; 150:106173. [PMID: 36257278 DOI: 10.1016/j.compbiomed.2022.106173] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/29/2022]
Abstract
Automatic polyp segmentation can help physicians to effectively locate polyps (a.k.a. region of interests) in clinical practice, in the way of screening colonoscopy images assisted by neural networks (NN). However, two significant bottlenecks hinder its effectiveness, disappointing physicians' expectations. (1) Changeable polyps in different scaling, orientation, and illumination, bring difficulty in accurate segmentation. (2) Current works building on a dominant decoder-encoder network tend to overlook appearance details (e.g., textures) for a tiny polyp, degrading the accuracy to differentiate polyps. For alleviating the bottlenecks, we investigate a hybrid semantic network (HSNet) that adopts both advantages of Transformer and convolutional neural networks (CNN), aiming at improving polyp segmentation. Our HSNet contains a cross-semantic attention module (CSA), a hybrid semantic complementary module (HSC), and a multi-scale prediction module (MSP). Unlike previous works on segmenting polyps, we newly insert the CSA module, which can fill the gap between low-level and high-level features via an interactive mechanism that exchanges two types of semantics from different NN attentions. By a dual-branch structure of Transformer and CNN, we newly design an HSC module, for capturing both long-range dependencies and local details of appearance. Besides, the MSP module can learn weights for fusing stage-level prediction masks of a decoder. Experimentally, we compared our work with 10 state-of-the-art works, including both recent and classical works, showing improved accuracy (via 7 evaluative metrics) over 5 benchmark datasets, e.g., it achieves 0.926/0.877 mDic/mIoU on Kvasir-SEG, 0.948/0.905 mDic/mIoU on ClinicDB, 0.810/0.735 mDic/mIoU on ColonDB, 0.808/0.74 mDic/mIoU on ETIS, and 0.903/0.839 mDic/mIoU on Endoscene. The proposed model is available at (https://github.com/baiboat/HSNet).
Collapse
Affiliation(s)
- Wenchao Zhang
- School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Chong Fu
- School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China; Engineering Research Center of Security Technology of Complex Network System, Ministry of Education, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110819, China.
| | - Yu Zheng
- Department of Information Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region.
| | - Fangyuan Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanli Zhao
- School of Electrical Information Engineering, Ningxia Institute of Science and Technology, Shizuishan, 753000, China.
| | - Chiu-Wing Sham
- School of Computer Science, The University of Auckland, New Zealand.
| |
Collapse
|
124
|
Cui R, Yang R, Liu F, Cai C. N-Net: Lesion region segmentations using the generalized hybrid dilated convolutions for polyps in colonoscopy images. Front Bioeng Biotechnol 2022; 10:963590. [DOI: 10.3389/fbioe.2022.963590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer is the cancer with the second highest and the third highest incidence rates for the female and the male, respectively. Colorectal polyps are potential prognostic indicators of colorectal cancer, and colonoscopy is the gold standard for the biopsy and the removal of colorectal polyps. In this scenario, one of the main concerns is to ensure the accuracy of lesion region identifications. However, the missing rate of polyps through manual observations in colonoscopy can reach 14%–30%. In this paper, we focus on the identifications of polyps in clinical colonoscopy images and propose a new N-shaped deep neural network (N-Net) structure to conduct the lesion region segmentations. The encoder-decoder framework is adopted in the N-Net structure and the DenseNet modules are implemented in the encoding path of the network. Moreover, we innovatively propose the strategy to design the generalized hybrid dilated convolution (GHDC), which enables flexible dilated rates and convolutional kernel sizes, to facilitate the transmission of the multi-scale information with the respective fields expanded. Based on the strategy of GHDC designing, we design four GHDC blocks to connect the encoding and the decoding paths. Through the experiments on two publicly available datasets on polyp segmentations of colonoscopy images: the Kvasir-SEG dataset and the CVC-ClinicDB dataset, the rationality and superiority of the proposed GHDC blocks and the proposed N-Net are verified. Through the comparative studies with the state-of-the-art methods, such as TransU-Net, DeepLabV3+ and CA-Net, we show that even with a small amount of network parameters, the N-Net outperforms with the Dice of 94.45%, the average symmetric surface distance (ASSD) of 0.38 pix and the mean intersection-over-union (mIoU) of 89.80% on the Kvasir-SEG dataset, and with the Dice of 97.03%, the ASSD of 0.16 pix and the mIoU of 94.35% on the CVC-ClinicDB dataset.
Collapse
|
125
|
MHA-Net: A Multibranch Hybrid Attention Network for Medical Image Segmentation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8375981. [PMID: 36245836 PMCID: PMC9560845 DOI: 10.1155/2022/8375981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022]
Abstract
The robust segmentation of organs from the medical image is the key technique in medical image analysis for disease diagnosis. U-Net is a robust structure for medical image segmentation. However, U-Net adopts consecutive downsampling encoders to capture multiscale features, resulting in the loss of contextual information and insufficient recovery of high-level semantic features. In this paper, we present a new multibranch hybrid attention network (MHA-Net) to capture more contextual information and high-level semantic features. The main idea of our proposed MHA-Net is to use the multibranch hybrid attention feature decoder to recover more high-level semantic features. The lightweight pyramid split attention (PSA) module is used to connect the encoder and decoder subnetwork to obtain a richer multiscale feature map. We compare the proposed MHA-Net to state-of-art approaches on the DRIVE dataset, the fluoroscopic roentgenographic stereophotogrammetric analysis X-ray dataset, and the polyp dataset. The experimental results on different modal images reveal that our proposed MHA-Net provides better segmentation results than other segmentation approaches.
Collapse
|
126
|
Yang H, Chen Q, Fu K, Zhu L, Jin L, Qiu B, Ren Q, Du H, Lu Y. Boosting medical image segmentation via conditional-synergistic convolution and lesion decoupling. Comput Med Imaging Graph 2022; 101:102110. [PMID: 36057184 DOI: 10.1016/j.compmedimag.2022.102110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/09/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023]
Abstract
Medical image segmentation is a critical step in pathology assessment and monitoring. Extensive methods tend to utilize a deep convolutional neural network for various medical segmentation tasks, such as polyp segmentation, skin lesion segmentation, etc. However, due to the inherent difficulty of medical images and tremendous data variations, they usually perform poorly in some intractable cases. In this paper, we propose an input-specific network called conditional-synergistic convolution and lesion decoupling network (CCLDNet) to solve these issues. First, in contrast to existing CNN-based methods with stationary convolutions, we propose the conditional synergistic convolution (CSConv) that aims to generate a specialist convolution kernel for each lesion. CSConv has the ability of dynamic modeling and could be leveraged as a basic block to construct other networks in a broad range of vision tasks. Second, we devise a lesion decoupling strategy (LDS) to decouple the original lesion segmentation map into two soft labels, i.e., lesion center label and lesion boundary label, for reducing the segmentation difficulty. Besides, we use a transformer network as the backbone, further erasing the fixed structure of the standard CNN and empowering dynamic modeling capability of the whole framework. Our CCLDNet outperforms state-of-the-art approaches by a large margin on a variety of benchmarks, including polyp segmentation (89.22% dice score on EndoScene) and skin lesion segmentation (91.15% dice score on ISIC2018). Our code is available at https://github.com/QianChen98/CCLD-Net.
Collapse
Affiliation(s)
- Huakun Yang
- College of Information Science and Technology, University of Science and Technology of China, Hefei 230041, China
| | - Qian Chen
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China; Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Keren Fu
- College of Computer Science, National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065, China
| | - Lei Zhu
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China; Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Lujia Jin
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China; Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Bensheng Qiu
- College of Information Science and Technology, University of Science and Technology of China, Hefei 230041, China
| | - Qiushi Ren
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China; Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Hongwei Du
- College of Information Science and Technology, University of Science and Technology of China, Hefei 230041, China.
| | - Yanye Lu
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100191, China.
| |
Collapse
|
127
|
Su Y, Cheng J, Yi M, Liu H. FAPN: Feature Augmented Pyramid Network for polyp segmentation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
128
|
Yue G, Han W, Li S, Zhou T, Lv J, Wang T. Automated polyp segmentation in colonoscopy images via deep network with lesion-aware feature selection and refinement. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
129
|
Kavitha MS, Gangadaran P, Jackson A, Venmathi Maran BA, Kurita T, Ahn BC. Deep Neural Network Models for Colon Cancer Screening. Cancers (Basel) 2022; 14:3707. [PMID: 35954370 PMCID: PMC9367621 DOI: 10.3390/cancers14153707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Early detection of colorectal cancer can significantly facilitate clinicians' decision-making and reduce their workload. This can be achieved using automatic systems with endoscopic and histological images. Recently, the success of deep learning has motivated the development of image- and video-based polyp identification and segmentation. Currently, most diagnostic colonoscopy rooms utilize artificial intelligence methods that are considered to perform well in predicting invasive cancer. Convolutional neural network-based architectures, together with image patches and preprocesses are often widely used. Furthermore, learning transfer and end-to-end learning techniques have been adopted for detection and localization tasks, which improve accuracy and reduce user dependence with limited datasets. However, explainable deep networks that provide transparency, interpretability, reliability, and fairness in clinical diagnostics are preferred. In this review, we summarize the latest advances in such models, with or without transparency, for the prediction of colorectal cancer and also address the knowledge gap in the upcoming technology.
Collapse
Affiliation(s)
- Muthu Subash Kavitha
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan;
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Aurelia Jackson
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (A.J.); (B.A.V.M.)
| | - Balu Alagar Venmathi Maran
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (A.J.); (B.A.V.M.)
| | - Takio Kurita
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8521, Japan;
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| |
Collapse
|
130
|
Shi L, Wang Y, Li Z, Qiumiao W. FRCNet: Feature Refining and Context-Guided Network for Efficient Polyp Segmentation. Front Bioeng Biotechnol 2022; 10:799541. [PMID: 35845422 PMCID: PMC9277544 DOI: 10.3389/fbioe.2022.799541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/16/2022] [Indexed: 01/08/2023] Open
Abstract
Colorectal cancer, also known as rectal cancer, is one of the most common forms of cancer, and it can be completely cured with early diagnosis. The most effective and objective method of screening and diagnosis is colonoscopy. Polyp segmentation plays a crucial role in the diagnosis and treatment of diseases related to the digestive system, providing doctors with detailed auxiliary boundary information during clinical analysis. To this end, we propose a novel light-weight feature refining and context-guided network (FRCNet) for real-time polyp segmentation. In this method, we first employed the enhanced context-calibrated module to extract the most discriminative features by developing long-range spatial dependence through a context-calibrated operation. This operation is helpful to alleviate the interference of background noise and effectively distinguish the target polyps from the background. Furthermore, we designed the progressive context-aware fusion module to dynamically capture multi-scale polyps by collecting multi-range context information. Finally, the multi-scale pyramid aggregation module was used to learn more representative features, and these features were fused to refine the segmented results. Extensive experiments on the Kvasir, ClinicDB, ColonDB, ETIS, and Endoscene datasets demonstrated the effectiveness of the proposed model. Specifically, FRCNet achieves an mIoU of 84.9% and mDice score of 91.5% on the Kvasir dataset with a model size of only 0.78 M parameters, outperforming state-of-the-art methods. Models and codes are available at the footnote.1
Collapse
Affiliation(s)
- Liantao Shi
- School of Automobile and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, China.,School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Yufeng Wang
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Zhengguo Li
- School of Automobile and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Wen Qiumiao
- Department of Mathematics, School of Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
131
|
Liu X, Yuan Y. A Source-Free Domain Adaptive Polyp Detection Framework With Style Diversification Flow. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1897-1908. [PMID: 35139013 DOI: 10.1109/tmi.2022.3150435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The automatic detection of polyps across colonoscopy and Wireless Capsule Endoscopy (WCE) datasets is crucial for early diagnosis and curation of colorectal cancer. Existing deep learning approaches either require mass training data collected from multiple sites or use unsupervised domain adaptation (UDA) technique with labeled source data. However, these methods are not applicable when the data is not accessible due to privacy concerns or data storage limitations. Aiming to achieve source-free domain adaptive polyp detection, we propose a consistency based model that utilizes Source Model as Proxy Teacher (SMPT) with only a transferable pretrained model and unlabeled target data. SMPT first transfers the stored domain-invariant knowledge in the pretrained source model to the target model via Source Knowledge Distillation (SKD), then uses Proxy Teacher Rectification (PTR) to rectify the source model with temporal ensemble of the target model. Moreover, to alleviate the biased knowledge caused by domain gaps, we propose Uncertainty-Guided Online Bootstrapping (UGOB) to adaptively assign weights for each target image regarding their uncertainty. In addition, we design Source Style Diversification Flow (SSDF) that gradually generates diverse style images and relaxes style-sensitive channels based on source and target information to enhance the robustness of the model towards style variation. The capacities of SMPT and SSDF are further boosted with iterative optimization, constructing a stronger framework SMPT++ for cross-domain polyp detection. Extensive experiments are conducted on five distinct polyp datasets under two types of cross-domain settings. Our proposed method shows the state-of-the-art performance and even outperforms previous UDA approaches that require the source data by a large margin. The source code is available at github.com/CityU-AIM-Group/SFPolypDA.
Collapse
|
132
|
Ruiz L, Martinez F. Weakly Supervised Polyp Segmentation from an Attention Receptive Field Mechanism. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3745-3748. [PMID: 36085632 DOI: 10.1109/embc48229.2022.9871158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Colorectal cancer is the third most incidence cancer world-around. Colonoscopies are the most effective resource to detect and segment abnormal polyp masses, considered as the main biomarker of this cancer. Nonetheless, some recent clinical studies have revealed a polyp miss rate up to 26% during the clinical routine. Also, the expert bias introduced during polyp shape characterization may induce to false-negative diagnosis. Current computational approaches have supported polyp segmentation but over controlled scenarios, where polyp frames have been labeled by an expert. These supervised representations are fully dependent of well-segmented polyps, in crop sequences that always report these masses. This work introduces an attention receptive field mechanism, that robustly recover the polyp shape, by learning non-local pixel relationship. Besides this deep representation is learning from a weakly supervised scheme that includes unlabeled background frames, to discriminate polyps from near structures like intestinal folds. The achieved results outperform state-of-the-art approaches achieving a 95.1% precision in the public CVC-Colon DB, with also competitive performance on other datasets. Clinical relevance-The work address a novel strategy to support segmentation tools in a clinical routine with redundant background over colonoscopy sequences.
Collapse
|
133
|
MIA-Net: Multi-information aggregation network combining transformers and convolutional feature learning for polyp segmentation. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.108824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
134
|
Rao BH, Trieu JA, Nair P, Gressel G, Venu M, Venu RP. Artificial intelligence in endoscopy: More than what meets the eye in screening colonoscopy and endosonographic evaluation of pancreatic lesions. Artif Intell Gastrointest Endosc 2022; 3:16-30. [DOI: 10.37126/aige.v3.i3.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/07/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
|
135
|
Ay B, Turker C, Emre E, Ay K, Aydin G. Automated classification of nasal polyps in endoscopy video-frames using handcrafted and CNN features. Comput Biol Med 2022; 147:105725. [PMID: 35716434 DOI: 10.1016/j.compbiomed.2022.105725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Nasal polyps are edematous polypoid masses covered by smooth, gray, shiny, soft and gelatinous mucosa. They often pose a threat for the patients to result in allergic rhinitis, sinus infections and asthma. The aim of this paper is to design a reliable rhinology assistance system for recognizing the nasal polyps in endoscopic videos. We introduce NP-80, a novel dataset that contains high-quality endoscopy video-frames of 80 participants with and without nasal polyps (NP). We benchmark vanilla machine learning and deep learning-based classifiers on the proposed dataset with respect to robustness and accuracy. We conduct a series of classification experiments and an exhaustive empirical comparison on handcrafted features (texture features -Local Binary Patterns (LBP) and shape features- Histogram of Oriented Gradients (HOG) and Convolutional Neural Network (CNN) features for recognizing nasal polyps automatically. The classification experiments are carried out by K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Random Forest (RF), Decision Tree (DT) and CNN classifiers. The best obtained precision, recall, and accuracy rates are 99%, 98%, and 98.3%, respectively. The classifier methods built with handcrafted features have shown poor recognition performance (best accuracy of %96.3) from the proposed CNN classifier (best accuracy of %98.3). The empirical results of the proposed learning techniques on NP-80 dataset are promising to support clinical decision systems. We make our dataset publicly available to encourage further research on rhinology experiments. The major research objective accomplished in this study is the creation of a high-accuracy deep learning based nasal polyps classification model using easily obtainable portable rhino fiberoscope images to be integrated into an otolaryngologist decision support system. We conclude from the research that using appropriate image processing techniques along with suitable deep learning networks allow researchers to obtain high accuracy recommendations in identifying nasal polyps. Furthermore, the results from the study encourages us to develop deep learning models for various other medical conditions.
Collapse
Affiliation(s)
- Betul Ay
- Department of Computer Engineering, Firat University Faculty of Engineering, Elazig, Turkey.
| | - Cihan Turker
- Department of Otorhinolaryngology, Mus State Hospital, Mus, Turkey.
| | - Elif Emre
- Department of Anatomy, Firat University Faculty of Medicine, Elazig, Turkey.
| | - Kevser Ay
- Department of Internal Medical Sciences, Firat University Faculty of Medicine, Elazig, Turkey.
| | - Galip Aydin
- Department of Computer Engineering, Firat University Faculty of Engineering, Elazig, Turkey.
| |
Collapse
|
136
|
MinimalGAN: diverse medical image synthesis for data augmentation using minimal training data. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03609-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
137
|
Colorectal polyp region extraction using saliency detection network with neutrosophic enhancement. Comput Biol Med 2022; 147:105760. [DOI: 10.1016/j.compbiomed.2022.105760] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/02/2022] [Accepted: 06/18/2022] [Indexed: 11/19/2022]
|
138
|
Yue G, Han W, Jiang B, Zhou T, Cong R, Wang T. Boundary Constraint Network with Cross Layer Feature Integration for Polyp Segmentation. IEEE J Biomed Health Inform 2022; 26:4090-4099. [PMID: 35536816 DOI: 10.1109/jbhi.2022.3173948] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clinically, proper polyp localization in endoscopy images plays a vital role in the follow-up treatment (e.g., surgical planning). Deep convolutional neural networks (CNNs) provide a favoured prospect for automatic polyp segmentation and evade the limitations of visual inspection, e.g., subjectivity and overwork. However, most existing CNNs-based methods often provide unsatisfactory segmentation performance. In this paper, we propose a novel boundary constraint network, namely BCNet, for accurate polyp segmentation. The success of BCNet benefits from integrating cross-level context information and leveraging edge information. Specifically, to avoid the drawbacks caused by simple feature addition or concentration, BCNet applies a cross-layer feature integration strategy (CFIS) in fusing the features of the top-three highest layers, yielding a better performance. CFIS consists of three attention-driven cross-layer feature interaction modules (ACFIMs) and two global feature integration modules (GFIMs). ACFIM adaptively fuses the context information of the top-three highest layers via the self-attention mechanism instead of direct addition or concentration. GFIM integrates the fused information across layers with the guidance from global attention. To obtain accurate boundaries, BCNet introduces a bilateral boundary extraction module that explores the polyp and non-polyp information of the shallow layer collaboratively based on the high-level location information and boundary supervision. Through joint supervision of the polyp area and boundary, BCNet is able to get more accurate polyp masks. Experimental results on three public datasets show that the proposed BCNet outperforms seven state-of-the-art competing methods in terms of both effectiveness and generalization.
Collapse
|
139
|
Thambawita V, Salehi P, Sheshkal SA, Hicks SA, Hammer HL, Parasa S, de Lange T, Halvorsen P, Riegler MA. SinGAN-Seg: Synthetic training data generation for medical image segmentation. PLoS One 2022; 17:e0267976. [PMID: 35500005 PMCID: PMC9060378 DOI: 10.1371/journal.pone.0267976] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Analyzing medical data to find abnormalities is a time-consuming and costly task, particularly for rare abnormalities, requiring tremendous efforts from medical experts. Therefore, artificial intelligence has become a popular tool for the automatic processing of medical data, acting as a supportive tool for doctors. However, the machine learning models used to build these tools are highly dependent on the data used to train them. Large amounts of data can be difficult to obtain in medicine due to privacy reasons, expensive and time-consuming annotations, and a general lack of data samples for infrequent lesions. In this study, we present a novel synthetic data generation pipeline, called SinGAN-Seg, to produce synthetic medical images with corresponding masks using a single training image. Our method is different from the traditional generative adversarial networks (GANs) because our model needs only a single image and the corresponding ground truth to train. We also show that the synthetic data generation pipeline can be used to produce alternative artificial segmentation datasets with corresponding ground truth masks when real datasets are not allowed to share. The pipeline is evaluated using qualitative and quantitative comparisons between real data and synthetic data to show that the style transfer technique used in our pipeline significantly improves the quality of the generated data and our method is better than other state-of-the-art GANs to prepare synthetic images when the size of training datasets are limited. By training UNet++ using both real data and the synthetic data generated from the SinGAN-Seg pipeline, we show that the models trained on synthetic data have very close performances to those trained on real data when both datasets have a considerable amount of training data. In contrast, we show that synthetic data generated from the SinGAN-Seg pipeline improves the performance of segmentation models when training datasets do not have a considerable amount of data. All experiments were performed using an open dataset and the code is publicly available on GitHub.
Collapse
Affiliation(s)
| | | | | | | | - Hugo L. Hammer
- SimulaMet, Oslo, Norway
- Oslo Metropolitan University, Oslo, Norway
| | - Sravanthi Parasa
- Department of Gastroenterology, Swedish Medical Group, Seattle, WA, United States of America
| | - Thomas de Lange
- Medical Department, Sahlgrenska University Hospital-Möndal, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Augere Medical, Oslo, Norway
| | - Pål Halvorsen
- SimulaMet, Oslo, Norway
- Oslo Metropolitan University, Oslo, Norway
| | | |
Collapse
|
140
|
Nogueira-Rodríguez A, Reboiro-Jato M, Glez-Peña D, López-Fernández H. Performance of Convolutional Neural Networks for Polyp Localization on Public Colonoscopy Image Datasets. Diagnostics (Basel) 2022; 12:898. [PMID: 35453946 PMCID: PMC9027927 DOI: 10.3390/diagnostics12040898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer is one of the most frequent malignancies. Colonoscopy is the de facto standard for precancerous lesion detection in the colon, i.e., polyps, during screening studies or after facultative recommendation. In recent years, artificial intelligence, and especially deep learning techniques such as convolutional neural networks, have been applied to polyp detection and localization in order to develop real-time CADe systems. However, the performance of machine learning models is very sensitive to changes in the nature of the testing instances, especially when trying to reproduce results for totally different datasets to those used for model development, i.e., inter-dataset testing. Here, we report the results of testing of our previously published polyp detection model using ten public colonoscopy image datasets and analyze them in the context of the results of other 20 state-of-the-art publications using the same datasets. The F1-score of our recently published model was 0.88 when evaluated on a private test partition, i.e., intra-dataset testing, but it decayed, on average, by 13.65% when tested on ten public datasets. In the published research, the average intra-dataset F1-score is 0.91, and we observed that it also decays in the inter-dataset setting to an average F1-score of 0.83.
Collapse
Affiliation(s)
- Alba Nogueira-Rodríguez
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (A.N.-R.); (M.R.-J.); (D.G.-P.)
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Miguel Reboiro-Jato
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (A.N.-R.); (M.R.-J.); (D.G.-P.)
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Daniel Glez-Peña
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (A.N.-R.); (M.R.-J.); (D.G.-P.)
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Hugo López-Fernández
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (A.N.-R.); (M.R.-J.); (D.G.-P.)
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| |
Collapse
|
141
|
Hasan MM, Islam N, Rahman MM. Gastrointestinal polyp detection through a fusion of contourlet transform and Neural features. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2022. [DOI: 10.1016/j.jksuci.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
142
|
Meng Y, Zhang H, Zhao Y, Yang X, Qiao Y, MacCormick IJC, Huang X, Zheng Y. Graph-Based Region and Boundary Aggregation for Biomedical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:690-701. [PMID: 34714742 DOI: 10.1109/tmi.2021.3123567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Segmentation is a fundamental task in biomedical image analysis. Unlike the existing region-based dense pixel classification methods or boundary-based polygon regression methods, we build a novel graph neural network (GNN) based deep learning framework with multiple graph reasoning modules to explicitly leverage both region and boundary features in an end-to-end manner. The mechanism extracts discriminative region and boundary features, referred to as initialized region and boundary node embeddings, using a proposed Attention Enhancement Module (AEM). The weighted links between cross-domain nodes (region and boundary feature domains) in each graph are defined in a data-dependent way, which retains both global and local cross-node relationships. The iterative message aggregation and node update mechanism can enhance the interaction between each graph reasoning module's global semantic information and local spatial characteristics. Our model, in particular, is capable of concurrently addressing region and boundary feature reasoning and aggregation at several different feature levels due to the proposed multi-level feature node embeddings in different parallel graph reasoning modules. Experiments on two types of challenging datasets demonstrate that our method outperforms state-of-the-art approaches for segmentation of polyps in colonoscopy images and of the optic disc and optic cup in colour fundus images. The trained models will be made available at: https://github.com/smallmax00/Graph_Region_Boudnary.
Collapse
|
143
|
COMMA: Propagating Complementary Multi-Level Aggregation Network for Polyp Segmentation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Colonoscopy is an effective method for detecting polyps to prevent colon cancer. Existing studies have achieved satisfactory polyp detection performance by aggregating low-level boundary and high-level region information in convolutional neural networks (CNNs) for precise polyp segmentation in colonoscopy images. However, multi-level aggregation provides limited polyp segmentation owing to the distribution discrepancy that occurs when integrating different layer representations. To address this problem, previous studies have employed complementary low- and high- level representations. In contrast to existing methods, we focus on propagating complementary information such that the complementary low-level explicit boundary with abstracted high-level representations diminishes the discrepancy. This study proposes COMMA, which propagates complementary multi-level aggregation to reduce distribution discrepancies. COMMA comprises a complementary masking module (CMM) and a boundary propagation module (BPM) as a multi-decoder. The CMM masks the low-level boundary noises through the abstracted high-level representation and leverages the masked information at both levels. Similarly, the BPM incorporates the lowest- and highest-level representations to obtain explicit boundary information and propagates the boundary to the CMMs to improve polyp detection. CMMs can discriminate polyps more elaborately than prior CMMs based on boundary and complementary representations. Moreover, we propose a hybrid loss function to mitigate class imbalance and noisy annotations in polyp segmentation. To evaluate the COMMA performance, we conducted experiments on five benchmark datasets using five metrics. The results proved that the proposed network outperforms state-of-the-art methods in terms of all datasets. Specifically, COMMA improved mIoU performance by 0.043 on average for all datasets compared to the existing state-of-the-art methods.
Collapse
|
144
|
Nisha JS, Gopi VP, Palanisamy P. AUTOMATED POLYP DETECTION IN COLONOSCOPY VIDEOS USING IMAGE ENHANCEMENT AND SALIENCY DETECTION ALGORITHM. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2022; 34. [DOI: 10.4015/s1016237222500016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Colonoscopy has proven to be an active diagnostic tool that examines the lower half of the digestive system’s anomalies. This paper confers a Computer-Aided Detection (CAD) method for polyps from colonoscopy images that helps to diagnose the early stage of Colorectal Cancer (CRC). The proposed method consists primarily of image enhancement, followed by the creation of a saliency map, feature extraction using the Histogram of Oriented-Gradients (HOG) feature extractor, and classification using the Support Vector Machine (SVM). We present an efficient image enhancement algorithm for highlighting clinically significant features in colonoscopy images. The proposed enhancement approach can improve the overall contrast and brightness by minimizing the effects of inconsistent illumination conditions. Detailed experiments have been conducted using the publicly available colonoscopy databases CVC ClinicDB, CVC ColonDB and the ETIS Larib. The performance measures are found to be in terms of precision (91.69%), recall (81.53%), F1-score (86.31%) and F2-score (89.45%) for the CVC ColonDB database and precision (90.29%), recall (61.73%), F1-score (73.32%) and F2-score (82.64%) for the ETIS Larib database. Comparison with the futuristic method shows that the proposed approach surpasses the existing one in terms of precision, F1-score, and F2-score. The proposed enhancement with saliency-based selection significantly reduced the number of search windows, resulting in an efficient polyp detection algorithm.
Collapse
Affiliation(s)
- J. S. Nisha
- Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, 620015, Tamil Nadu, India
| | - V. P. Gopi
- Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, 620015, Tamil Nadu, India
| | - P. Palanisamy
- Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, 620015, Tamil Nadu, India
| |
Collapse
|
145
|
Wang D, Chen S, Sun X, Chen Q, Cao Y, Liu B, Liu X. AFP-Mask: Anchor-free Polyp Instance Segmentation in Colonoscopy. IEEE J Biomed Health Inform 2022; 26:2995-3006. [PMID: 35104234 DOI: 10.1109/jbhi.2022.3147686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Colorectal cancer (CRC) is a common and lethal disease. Globally, CRC is the third most commonly diagnosed cancer in males and the second in females. The most effective way to prevent CRC is through using colonoscopy to identify and remove precancerous growths at an early stage. During colonoscopy, a tiny camera at the tip of the endoscope captures a video of the intestinal mucosa of the colon, while a specialized physician examines the lining of the entire colon and checks for any precancerous growths (polyps) through the live feed. The detection and removal of colorectal polyps have been found to be associated with a reduction in mortality from colorectal cancer. However, the false negative rate of polyp detection during colonoscopy is often high even for experienced physicians, due to the high variance in polyp shape, size, texture, color, and illumination, which make them difficult to detect. With recent advances in deep learning based object detection techniques, automated polyp detection shows great potential in helping physicians reduce false positive rate during colonoscopy. In this paper, we propose a novel anchor-free instance segmentation framework that can localize polyps and produce the corresponding instance level masks without using predefined anchor boxes. Our framework consists of two branches: (a) an object detection branch that performs classification and localization, (b) a mask generation branch that produces instance level masks. Instead of predicting a two-dimensional mask directly, we encode it into a compact representation vector, which allows us to incorporate instance segmentation with one-stage bounding-box detectors in a simple yet effective way. Moreover, our proposed encoding method can be trained jointly with object detector. Our experiment results show that our framework achieves a precision of 99.36% and a recall of 96.44% on public datasets, outperforming existing anchor-free instance segmentation methods by at least 2.8% in mIoU on our private dataset.
Collapse
|
146
|
Pan H, Cai M, Liao Q, Jiang Y, Liu Y, Zhuang X, Yu Y. Artificial Intelligence-Aid Colonoscopy Vs. Conventional Colonoscopy for Polyp and Adenoma Detection: A Systematic Review of 7 Discordant Meta-Analyses. Front Med (Lausanne) 2022; 8:775604. [PMID: 35096870 PMCID: PMC8792899 DOI: 10.3389/fmed.2021.775604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Objectives: Multiple meta-analyses which investigated the comparative efficacy and safety of artificial intelligence (AI)-aid colonoscopy (AIC) vs. conventional colonoscopy (CC) in the detection of polyp and adenoma have been published. However, a definitive conclusion has not yet been generated. This systematic review selected from discordant meta-analyses to draw a definitive conclusion about whether AIC is better than CC for the detection of polyp and adenoma. Methods: We comprehensively searched potentially eligible literature in PubMed, Embase, Cochrane library, and China National Knowledgement Infrastructure (CNKI) databases from their inceptions until to April 2021. Assessment of Multiple Systematic Reviews (AMSTAR) instrument was used to assess the methodological quality. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist was used to assess the reporting quality. Two investigators independently used the Jadad decision algorithm to select high-quality meta-analyses which summarized the best available evidence. Results: Seven meta-analyses met our selection criteria finally. AMSTAR score ranged from 8 to 10, and PRISMA score ranged from 23 to 26. According to the Jadad decision algorithm, two high-quality meta-analyses were selected. These two meta-analyses suggested that AIC was superior to CC for colonoscopy outcomes, especially for polyp detection rate (PDR) and adenoma detection rate (ADR). Conclusion: Based on the best available evidence, we conclude that AIC should be preferentially selected for the route screening of colorectal lesions because it has potential value of increasing the polyp and adenoma detection. However, the continued improvement of AIC in differentiating the shape and pathology of colorectal lesions is needed.
Collapse
Affiliation(s)
- Hui Pan
- Department of Endoscopy, Shanghai Jiangong Hospital, Shanghai, China
| | - Mingyan Cai
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Liao
- Department of Gastroenterology, Shanghai Jiangong Hospital, Shanghai, China
| | - Yong Jiang
- Department of Surgery, Shanghai Jiangong Hospital, Shanghai, China
| | - Yige Liu
- Department of Endoscopy, Shanghai Jiangong Hospital, Shanghai, China
| | - Xiaolong Zhuang
- Department of Endoscopy, Shanghai Jiangong Hospital, Shanghai, China
| | - Ying Yu
- Department of Endoscopy, Shanghai Jiangong Hospital, Shanghai, China
| |
Collapse
|
147
|
Yoon D, Kong HJ, Kim BS, Cho WS, Lee JC, Cho M, Lim MH, Yang SY, Lim SH, Lee J, Song JH, Chung GE, Choi JM, Kang HY, Bae JH, Kim S. Colonoscopic image synthesis with generative adversarial network for enhanced detection of sessile serrated lesions using convolutional neural network. Sci Rep 2022; 12:261. [PMID: 34997124 PMCID: PMC8741803 DOI: 10.1038/s41598-021-04247-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022] Open
Abstract
Computer-aided detection (CADe) systems have been actively researched for polyp detection in colonoscopy. To be an effective system, it is important to detect additional polyps that may be easily missed by endoscopists. Sessile serrated lesions (SSLs) are a precursor to colorectal cancer with a relatively higher miss rate, owing to their flat and subtle morphology. Colonoscopy CADe systems could help endoscopists; however, the current systems exhibit a very low performance for detecting SSLs. We propose a polyp detection system that reflects the morphological characteristics of SSLs to detect unrecognized or easily missed polyps. To develop a well-trained system with imbalanced polyp data, a generative adversarial network (GAN) was used to synthesize high-resolution whole endoscopic images, including SSL. Quantitative and qualitative evaluations on GAN-synthesized images ensure that synthetic images are realistic and include SSL endoscopic features. Moreover, traditional augmentation methods were used to compare the efficacy of the GAN augmentation method. The CADe system augmented with GAN synthesized images showed a 17.5% improvement in sensitivity on SSLs. Consequently, we verified the potential of the GAN to synthesize high-resolution images with endoscopic features and the proposed system was found to be effective in detecting easily missed polyps during a colonoscopy.
Collapse
Affiliation(s)
- Dan Yoon
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 08826, South Korea
| | - Hyoun-Joong Kong
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, South Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Medical Big Data Research Center, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Artificial Intelligence Institute, Seoul National University, Seoul, 08826, South Korea
| | - Byeong Soo Kim
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 08826, South Korea
| | - Woo Sang Cho
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 08826, South Korea
| | - Jung Chan Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, South Korea.,Institute of Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Minwoo Cho
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, South Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Min Hyuk Lim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Sun Young Yang
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, South Korea
| | - Seon Hee Lim
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, South Korea
| | - Jooyoung Lee
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, South Korea
| | - Ji Hyun Song
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, South Korea
| | - Goh Eun Chung
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, South Korea
| | - Ji Min Choi
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, South Korea
| | - Hae Yeon Kang
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, South Korea
| | - Jung Ho Bae
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, 06236, South Korea.
| | - Sungwan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Artificial Intelligence Institute, Seoul National University, Seoul, 08826, South Korea. .,Institute of Bioengineering, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
148
|
Artificial Intelligence in Gastroenterology. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-58080-3_163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
149
|
Ashkani Chenarlogh V, Ghelich Oghli M, Shabanzadeh A, Sirjani N, Akhavan A, Shiri I, Arabi H, Sanei Taheri M, Tarzamni MK. Fast and Accurate U-Net Model for Fetal Ultrasound Image Segmentation. ULTRASONIC IMAGING 2022; 44:25-38. [PMID: 34986724 DOI: 10.1177/01617346211069882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
U-Net based algorithms, due to their complex computations, include limitations when they are used in clinical devices. In this paper, we addressed this problem through a novel U-Net based architecture that called fast and accurate U-Net for medical image segmentation task. The proposed fast and accurate U-Net model contains four tuned 2D-convolutional, 2D-transposed convolutional, and batch normalization layers as its main layers. There are four blocks in the encoder-decoder path. The results of our proposed architecture were evaluated using a prepared dataset for head circumference and abdominal circumference segmentation tasks, and a public dataset (HC18-Grand challenge dataset) for fetal head circumference measurement. The proposed fast network significantly improved the processing time in comparison with U-Net, dilated U-Net, R2U-Net, attention U-Net, and MFP U-Net. It took 0.47 seconds for segmenting a fetal abdominal image. In addition, over the prepared dataset using the proposed accurate model, Dice and Jaccard coefficients were 97.62% and 95.43% for fetal head segmentation, 95.07%, and 91.99% for fetal abdominal segmentation. Moreover, we have obtained the Dice and Jaccard coefficients of 97.45% and 95.00% using the public HC18-Grand challenge dataset. Based on the obtained results, we have concluded that a fine-tuned and a simple well-structured model used in clinical devices can outperform complex models.
Collapse
Affiliation(s)
| | - Mostafa Ghelich Oghli
- Research and Development Department, Med Fanavarn Plus Co., Karaj, Iran
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Ali Shabanzadeh
- Research and Development Department, Med Fanavarn Plus Co., Karaj, Iran
| | - Nasim Sirjani
- Research and Development Department, Med Fanavarn Plus Co., Karaj, Iran
| | - Ardavan Akhavan
- Research and Development Department, Med Fanavarn Plus Co., Karaj, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Morteza Sanei Taheri
- Department of Radiology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazem Tarzamni
- Department of Radiology, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
150
|
Sánchez-Peralta LF, Pagador JB, Sánchez-Margallo FM. Artificial Intelligence for Colorectal Polyps in Colonoscopy. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|