101
|
Ahn S, Cheng L, Shanbhag DD, Qian H, Kaushik SS, Jansen FP, Wiesinger F. Joint estimation of activity and attenuation for PET using pragmatic MR-based prior: application to clinical TOF PET/MR whole-body data for FDG and non-FDG tracers. Phys Med Biol 2018; 63:045006. [PMID: 29345242 DOI: 10.1088/1361-6560/aaa8a6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accurate and robust attenuation correction remains challenging in hybrid PET/MR particularly for torsos because it is difficult to segment bones, lungs and internal air in MR images. Additionally, MR suffers from susceptibility artifacts when a metallic implant is present. Recently, joint estimation (JE) of activity and attenuation based on PET data, also known as maximum likelihood reconstruction of activity and attenuation, has gained considerable interest because of (1) its promise to address the challenges in MR-based attenuation correction (MRAC), and (2) recent advances in time-of-flight (TOF) technology, which is known to be the key to the success of JE. In this paper, we implement a JE algorithm using an MR-based prior and evaluate the algorithm using whole-body PET/MR patient data, for both FDG and non-FDG tracers, acquired from GE SIGNA PET/MR scanners with TOF capability. The weight of the MR-based prior is spatially modulated, based on MR signal strength, to control the balance between MRAC and JE. Large prior weights are used in strong MR signal regions such as soft tissue and fat (i.e. MR tissue classification with a high degree of certainty) and small weights are used in low MR signal regions (i.e. MR tissue classification with a low degree of certainty). The MR-based prior is pragmatic in the sense that it is convex and does not require training or population statistics while exploiting synergies between MRAC and JE. We demonstrate the JE algorithm has the potential to improve the robustness and accuracy of MRAC by recovering the attenuation of metallic implants, internal air and some bones and by better delineating lung boundaries, not only for FDG but also for more specific non-FDG tracers such as 68Ga-DOTATOC and 18F-Fluoride.
Collapse
Affiliation(s)
- Sangtae Ahn
- GE Global Research, Niskayuna, NY, United States of America
- Author to whom any correspondence should be addressed
| | - Lishui Cheng
- GE Global Research, Niskayuna, NY, United States of America
| | | | - Hua Qian
- GE Global Research, Niskayuna, NY, United States of America
| | | | | | | |
Collapse
|
102
|
Lerche CW, Kaltsas T, Caldeira L, Scheins J, Rota Kops E, Tellmann L, Pietrzyk U, Herzog H, Shah NJ. PET attenuation correction for rigid MR Tx/Rx coils from 176Lu background activity. Phys Med Biol 2018; 63:035039. [PMID: 29328049 DOI: 10.1088/1361-6560/aaa72a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One challenge for PET-MR hybrid imaging is the correction for attenuation of the 511 keV annihilation radiation by the required RF transmit and/or RF receive coils. Although there are strategies for building PET transparent Tx/Rx coils, such optimised coils still cause significant attenuation of the annihilation radiation leading to artefacts and biases in the reconstructed activity concentrations. We present a straightforward method to measure the attenuation of Tx/Rx coils in simultaneous MR-PET imaging based on the natural 176Lu background contained in the scintillator of the PET detector without the requirement of an external CT scanner or PET scanner with transmission source. The method was evaluated on a prototype 3T MR-BrainPET produced by Siemens Healthcare GmbH, both with phantom studies and with true emission images from patient/volunteer examinations. Furthermore, the count rate stability of the PET scanner and the x-ray properties of the Tx/Rx head coil were investigated. Even without energy extrapolation from the two dominant γ energies of 176Lu to 511 keV, the presented method for attenuation correction, based on the measurement of 176Lu background attenuation, shows slightly better performance than the coil attenuation correction currently used. The coil attenuation correction currently used is based on an external transmission scan with rotating 68Ge sources acquired on a Siemens ECAT HR + PET scanner. However, the main advantage of the presented approach is its straightforwardness and ready availability without the need for additional accessories.
Collapse
Affiliation(s)
- Christoph W Lerche
- Medical Imaging Physics Department, Institute for Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Cabello J, Ziegler SI. Advances in PET/MR instrumentation and image reconstruction. Br J Radiol 2018; 91:20160363. [PMID: 27376170 PMCID: PMC5966194 DOI: 10.1259/bjr.20160363] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
The combination of positron emission tomography (PET) and MRI has attracted the attention of researchers in the past approximately 20 years in small-animal imaging and more recently in clinical research. The combination of PET/MRI allows researchers to explore clinical and research questions in a wide number of fields, some of which are briefly mentioned here. An important number of groups have developed different concepts to tackle the problems that PET instrumentation poses to the exposition of electromagnetic fields. We have described most of these research developments in preclinical and clinical experiments, including the few commercial scanners available. From the software perspective, an important number of algorithms have been developed to address the attenuation correction issue and to exploit the possibility that MRI provides for motion correction and quantitative image reconstruction, especially parametric modelling of radiopharmaceutical kinetics. In this work, we give an overview of some exemplar applications of simultaneous PET/MRI, together with technological hardware and software developments.
Collapse
Affiliation(s)
- Jorge Cabello
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sibylle I Ziegler
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
104
|
Abstract
Combined PET/MR imaging scanners capable of acquiring simultaneously the complementary information provided by the 2 imaging modalities are now available for human use. After addressing the hardware challenges for integrating the 2 imaging modalities, most of the efforts in the field have focused on developing MR-based attenuation correction methods for neurologic and whole-body applications, implementing approaches for improving one modality by using the data provided by the other and exploring research and clinical applications that could benefit from the synergistic use of the multimodal data.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Room 2.301, Charlestown, MA 02129, USA.
| |
Collapse
|
105
|
Ehman EC, Johnson GB, Villanueva-Meyer JE, Cha S, Leynes AP, Larson PEZ, Hope TA. PET/MRI: Where might it replace PET/CT? J Magn Reson Imaging 2017; 46:1247-1262. [PMID: 28370695 PMCID: PMC5623147 DOI: 10.1002/jmri.25711] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/13/2022] Open
Abstract
Simultaneous positron emission tomography and MRI (PET/MRI) is a technology that combines the anatomic and quantitative strengths of MR imaging with physiologic information obtained from PET. PET and computed tomography (PET/CT) performed in a single scanning session is an established technology already in widespread and accepted use worldwide. Given the higher cost and complexity of operating and interpreting the studies obtained on a PET/MRI system, there has been question as to which patients would benefit most from imaging with PET/MRI versus PET/CT. In this article, we compare PET/MRI with PET/CT, detail the applications for which PET/MRI has shown promise and discuss impediments to future adoption. It is our hope that future work will prove the benefit of PET/MRI to specific groups of patients, initially those in which PET/CT and MRI are already performed, leveraging simultaneity and allowing for greater degrees of multiparametric evaluation. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:1247-1262.
Collapse
Affiliation(s)
- Eric C. Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Andrew Palmera Leynes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Peder Eric Zufall Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Thomas A. Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
106
|
Leynes AP, Yang J, Wiesinger F, Kaushik SS, Shanbhag DD, Seo Y, Hope TA, Larson PEZ. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI. J Nucl Med 2017; 59:852-858. [PMID: 29084824 DOI: 10.2967/jnumed.117.198051] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023] Open
Abstract
Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUVmax was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods.
Collapse
Affiliation(s)
- Andrew P Leynes
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California .,UC Berkeley-UCSF Graduate Program in Bioengineering, UC Berkeley, Berkeley, California, and UCSF, San Francisco, California
| | - Jaewon Yang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | | | | | | | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley-UCSF Graduate Program in Bioengineering, UC Berkeley, Berkeley, California, and UCSF, San Francisco, California
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,Department of Radiology, San Francisco VA Medical Center, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley-UCSF Graduate Program in Bioengineering, UC Berkeley, Berkeley, California, and UCSF, San Francisco, California
| |
Collapse
|
107
|
Wagatsuma K, Miwa K, Sakata M, Oda K, Ono H, Kameyama M, Toyohara J, Ishii K. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med 2017; 42:203-210. [PMID: 29173917 DOI: 10.1016/j.ejmp.2017.09.124] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/19/2017] [Accepted: 09/13/2017] [Indexed: 01/16/2023] Open
Abstract
PURPOSE This study aimed to determine whether the SiPM-PET/CT, Discovery MI (DMI) performs better than the PMT-PET/CT system, Discovery 710 (D710). METHODS The physical performance of both systems was evaluated using NEMA NU 2 standards. Contrast (%), uniformity and image noise (%) are criteria proposed by the Japanese Society of Nuclear Medicine (JSNM) for phantom tests and were determined in images acquired from Hoffman and uniform phantoms using the DMI and D710. Brain and whole-body [18F]FDG images were also acquired from a healthy male using the DMI and D710. RESULTS The spatial resolution at 1.0cm off-center in the DMI and D710 was 3.91 and 4.52mm, respectively. The sensitivity of the DMI and D710 was 12.62 and 7.50cps/kBq, respectively. The observed peak noise-equivalent count rates were 185.6kcps at 22.5kBq/mL and 137.0kcps at 29.0kBq/mL, and the scatter fractions were 42.1% and 37.9% in the DMI and D710, respectively. The D710 had better contrast recovery and lower background variability. Contrast, uniformity and image noise in the DMI were 61.0%, 0.0225, and 7.85%, respectively. These outcomes were better than those derived from the D710 and satisfied the JSNM criteria. Brain images acquired by the DMI had better grey-to-white matter contrast and lower image noise at the edge of axial field of view. CONCLUSIONS The DMI offers better sensitivity, performance under conditions of high count rates and image quality than the conventional PMT-PET/CT system, D710.
Collapse
Affiliation(s)
- Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenta Miwa
- School of Health Science, International University of Health and Welfare, Ohtawara, Japan.
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Keiichi Oda
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan; Faculty of Health Science, Hokkaido University of Science, Sapporo, Japan
| | - Haruka Ono
- School of Health Science, International University of Health and Welfare, Ohtawara, Japan
| | - Masashi Kameyama
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
108
|
Mehranian A, Zaidi H, Reader AJ. MR-guided joint reconstruction of activity and attenuation in brain PET-MR. Neuroimage 2017; 162:276-288. [PMID: 28918316 DOI: 10.1016/j.neuroimage.2017.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 11/16/2022] Open
Abstract
With the advent of time-of-flight (TOF) PET scanners, joint maximum-likelihood reconstruction of activity and attenuation (MLAA) maps has recently regained attention for the estimation of PET attenuation maps from emission data. However, the estimated attenuation and activity maps are scaled by unknown scaling factors. We recently demonstrated that in hybrid PET-MR, the scaling issue of this algorithm can be effectively addressed by imposing MR spatial constraints on the estimation of attenuation maps using a penalized MLAA (P-MLAA+) algorithm. With the advent of simultaneous PET-MR systems, MRI-guided PET image reconstruction has also gained attention for improving the quantitative accuracy of PET images, usually degraded by noise and partial volume effects. The aim of this study is therefore to increase the benefits of MRI information for improving the quantitative accuracy of PET images by exploiting MRI-based anatomical penalty functions to guide the reconstruction of both activity and attenuation maps during their joint estimation. We employed an anato-functional joint entropy penalty function for the reconstruction of activity and an anatomical quadratic penalty function for the reconstruction of attenuation. The resulting algorithm was referred to as P-MLAA++ since it exploits both activity and attenuation penalty functions. The performance of the P-MLAA algorithms were compared with MLAA and the widely used activity reconstruction algorithms such as maximum likelihood expectation maximization (MLEM) and penalized MLEM (P-MLEM) both corrected for attenuation using a conventional MRI segmentation-based attenuation correction (MRAC) method. The studied methods were evaluated using simulations and clinical studies taking the PET image reconstructed using reference CT-based attenuation maps as a reference. The simulation results showed that the proposed method can notably improve the visual quality of the PET images by reducing noise while preserving structural boundaries and at the same time improving the quantitative accuracy of the PET images. Our clinical reconstruction results showed that the MLEM-MRAC, P-MLEM-MRAC, MLAA, P-MLAA+ and P-MLAA++ algorithms result in, on average, quantification errors of -13.5 ± 3.1%, -13.4 ± 3.1%, -2.0 ± 6.5%, -3.0 ± 3.5% and -4.2 ± 3.6%, respectively, in different regions of the brain. In conclusion, whilst the P-MLAA+ algorithm showed the best overall quantification performance, the proposed P-MLAA++ algorithm provided simultaneous partial volume and attenuation corrections with only a minor compromise of PET quantification.
Collapse
Affiliation(s)
- Abolfazl Mehranian
- Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical Engineering, King's College London, St. Thomas' Hospital, London, UK.
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland; Geneva Neuroscience Center, Geneva University, 1205, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, 500, Odense, Denmark
| | - Andrew J Reader
- Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical Engineering, King's College London, St. Thomas' Hospital, London, UK
| |
Collapse
|
109
|
Son JW, Kim KY, Yoon HS, Won JY, Ko GB, Lee MS, Lee JS. Proof-of-concept prototype time-of-flight PET system based on high-quantum-efficiency multianode PMTs. Med Phys 2017; 44:5314-5324. [DOI: 10.1002/mp.12440] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jeong-Whan Son
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul 03080 Korea
- Department of Nuclear Medicine; Seoul National University College of Medicine; Seoul 03080 Korea
| | - Kyeong Yun Kim
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul 03080 Korea
- Department of Nuclear Medicine; Seoul National University College of Medicine; Seoul 03080 Korea
| | - Hyun Suk Yoon
- Department of Nuclear Medicine; Seoul National University College of Medicine; Seoul 03080 Korea
| | - Jun Yeon Won
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul 03080 Korea
- Department of Nuclear Medicine; Seoul National University College of Medicine; Seoul 03080 Korea
| | - Guen Bae Ko
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul 03080 Korea
- Department of Nuclear Medicine; Seoul National University College of Medicine; Seoul 03080 Korea
| | - Min Sun Lee
- Department of Nuclear Medicine; Seoul National University College of Medicine; Seoul 03080 Korea
- Interdisciplinary Program in Radiation Applied Life Science; Seoul National University; Seoul 03080 Korea
| | - Jae Sung Lee
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul 03080 Korea
- Department of Nuclear Medicine; Seoul National University College of Medicine; Seoul 03080 Korea
- Interdisciplinary Program in Radiation Applied Life Science; Seoul National University; Seoul 03080 Korea
- Institute of Radiation Medicine; Medical Research Center; Seoul National University College of Medicine; Seoul 03080 Korea
| |
Collapse
|
110
|
Semiquantitative Assessment of 18F-FDG Uptake in the Normal Skeleton: Comparison Between PET/CT and Time-of-Flight Simultaneous PET/MRI. AJR Am J Roentgenol 2017; 209:1136-1142. [PMID: 28777652 DOI: 10.2214/ajr.17.18044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Differences in the attenuation correction methods used in PET/CT scanners versus the newly introduced whole-body simultaneous PET/MRI reportedly result in differences in standardized uptake values (SUVs) in the normal skeleton. The aim of the study was to compare the semiquantitative FDG uptake in the normal skeleton using time-of-flight (TOF) PET/MRI versus PET/CT with and without TOF. SUBJECTS AND METHODS Participants received a single FDG injection and underwent non-TOF and TOF PET/CT (n = 23) or non-TOF PET/CT and TOF PET/MRI (n = 50). Mean SUV (SUVmean) and maximum SUV (SUVmax) were measured from all PET scans for nine normal regions of the skeleton. Pearson correlation coefficients (r) were used to evaluate the SUVmax and SUVmean of normal skeleton between non-TOF and TOF PET/CT, as well as between non-TOF PET/CT and TOF PET/MRI. In addition, percentage differences in SUVmax and SUVmean of the normal skeleton between non-TOF and TOF PET/CT and between non-TOF PET/CT and TOF PET/MRI were evaluated. RESULTS The SUVmax and SUVmean in the normal skeleton significantly increased between non-TOF and TOF PET/CT, but they significantly decreased between non-TOF PET/CT and TOF PET/MRI. The SUVmax and SUVmean in normal skeleton showed good correlation between non-TOF PET/CT and TOF PET/MRI (SUVmax, r = 0.88; SUVmean, r = 0.91) and showed a similar trend between non-TOF and TOF PET/CT (SUVmax, r = 0.88; SUVmean, r = 0.94). CONCLUSION In the normal skeleton, SUVmax and SUVmean showed high correlations between PET/MRI and PET/CT. The MRI attenuation correction used in TOF PET/MRI provides reliable semiquantitative measurements in the normal skeleton.
Collapse
|
111
|
Deller TW, Khalighi MM, Jansen FP, Glover GH. PET Imaging Stability Measurements During Simultaneous Pulsing of Aggressive MR Sequences on the SIGNA PET/MR System. J Nucl Med 2017; 59:167-172. [PMID: 28747522 DOI: 10.2967/jnumed.117.194928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/05/2017] [Indexed: 11/16/2022] Open
Abstract
The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count rate was 224 kcps at an effective activity concentration of 18.6 kBq/mL, and the count rate curves and scatter fraction curve were consistent for the alternating MR pulsing states. A final test demonstrated quantitative stability during a spiral functional MRI sequence. Conclusion: PET stability metrics demonstrated that PET quantitation was not affected during simultaneous aggressive MRI. This stability enables demanding applications such as kinetic modeling.
Collapse
Affiliation(s)
| | | | | | - Gary H Glover
- Radiology Department, Stanford University, Stanford, California
| |
Collapse
|
112
|
Yang J, Jian Y, Jenkins N, Behr SC, Hope TA, Larson PEZ, Vigneron D, Seo Y. Quantitative Evaluation of Atlas-based Attenuation Correction for Brain PET in an Integrated Time-of-Flight PET/MR Imaging System. Radiology 2017; 284:169-179. [DOI: 10.1148/radiol.2017161603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jaewon Yang
- From the Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94143-0946 (J.Y., N.J., S.C.B., T.A.H., P.E.Z.L., D.V., Y.S.); GE Healthcare, Waukesha, Wis (Y.J.); and Department of Radiology, San Francisco VA Medical Center, San Francisco, Calif (T.A.H.)
| | - Yiqiang Jian
- From the Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94143-0946 (J.Y., N.J., S.C.B., T.A.H., P.E.Z.L., D.V., Y.S.); GE Healthcare, Waukesha, Wis (Y.J.); and Department of Radiology, San Francisco VA Medical Center, San Francisco, Calif (T.A.H.)
| | - Nathaniel Jenkins
- From the Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94143-0946 (J.Y., N.J., S.C.B., T.A.H., P.E.Z.L., D.V., Y.S.); GE Healthcare, Waukesha, Wis (Y.J.); and Department of Radiology, San Francisco VA Medical Center, San Francisco, Calif (T.A.H.)
| | - Spencer C. Behr
- From the Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94143-0946 (J.Y., N.J., S.C.B., T.A.H., P.E.Z.L., D.V., Y.S.); GE Healthcare, Waukesha, Wis (Y.J.); and Department of Radiology, San Francisco VA Medical Center, San Francisco, Calif (T.A.H.)
| | - Thomas A. Hope
- From the Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94143-0946 (J.Y., N.J., S.C.B., T.A.H., P.E.Z.L., D.V., Y.S.); GE Healthcare, Waukesha, Wis (Y.J.); and Department of Radiology, San Francisco VA Medical Center, San Francisco, Calif (T.A.H.)
| | - Peder E. Z. Larson
- From the Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94143-0946 (J.Y., N.J., S.C.B., T.A.H., P.E.Z.L., D.V., Y.S.); GE Healthcare, Waukesha, Wis (Y.J.); and Department of Radiology, San Francisco VA Medical Center, San Francisco, Calif (T.A.H.)
| | - Daniel Vigneron
- From the Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94143-0946 (J.Y., N.J., S.C.B., T.A.H., P.E.Z.L., D.V., Y.S.); GE Healthcare, Waukesha, Wis (Y.J.); and Department of Radiology, San Francisco VA Medical Center, San Francisco, Calif (T.A.H.)
| | - Youngho Seo
- From the Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94143-0946 (J.Y., N.J., S.C.B., T.A.H., P.E.Z.L., D.V., Y.S.); GE Healthcare, Waukesha, Wis (Y.J.); and Department of Radiology, San Francisco VA Medical Center, San Francisco, Calif (T.A.H.)
| |
Collapse
|
113
|
Lee BJ, Watkins RD, Chang CM, Levin CS. Low eddy current RF shielding enclosure designs for 3T MR applications. Magn Reson Med 2017; 79:1745-1752. [PMID: 28585334 DOI: 10.1002/mrm.26766] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/14/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE Magnetic resonance-compatible medical devices operate within the MR environment while benefitting from the superior anatomic information of MRI. Avoiding electromagnetic interference between such instrumentation and the MR system is crucial. In this work, various shielding configurations for positron emission tomography (PET) detectors were studied and analyzed regarding radiofrequency (RF) shielding effectiveness and gradient-induced eddy current performances. However, the results of this work apply to shielding considerations for any MR-compatible devices. METHODS Six shielding enclosure configurations with various thicknesses, patterns, and materials were designed: solid and segmented copper, phosphor bronze mesh (PBM), and carbon fiber composite (CFC). A series of tests was performed on RF shielding effectiveness and the gradient-induced eddy current. RESULTS For the shielding effectiveness, the solid copper with various thickness and PBM configurations yield significantly better shielding effectiveness (>15 dB) compared with CFC and segmented configurations. For the gradient-induced eddy current performance, the solid copper shielding configurations with different thicknesses showed significantly worse results, up to a factor of 3.89 dB, compared with the segmented copper, PBM, and the CFC configurations. CONCLUSIONS We evaluated the RF shielding effectiveness and the gradient-induced eddy current artifacts of several shielding designs, and only the PBM showed positive outcomes for both aspects. Magn Reson Med 79:1745-1752, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Brian J Lee
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Ronald D Watkins
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Chen-Ming Chang
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Applied Physics, Stanford University, Stanford, California, USA
| | - Craig S Levin
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Physics, Stanford University, Stanford, California, USA
| |
Collapse
|
114
|
Hsu DFC, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS. Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System. J Nucl Med 2017; 58:1511-1518. [PMID: 28450566 DOI: 10.2967/jnumed.117.189514] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/14/2017] [Indexed: 12/21/2022] Open
Abstract
This article presents system performance studies for the Discovery MI PET/CT system, a new time-of-flight system based on silicon photomultipliers. System performance and clinical imaging were compared between this next-generation system and other commercially available PET/CT and PET/MR systems, as well as between different reconstruction algorithms. Methods: Spatial resolution, sensitivity, noise-equivalent counting rate, scatter fraction, counting rate accuracy, and image quality were characterized with the National Electrical Manufacturers Association NU-2 2012 standards. Energy resolution and coincidence time resolution were measured. Tests were conducted independently on two Discovery MI scanners installed at Stanford University and Uppsala University, and the results were averaged. Back-to-back patient scans were also performed between the Discovery MI, Discovery 690 PET/CT, and SIGNA PET/MR systems. Clinical images were reconstructed using both ordered-subset expectation maximization and Q.Clear (block-sequential regularized expectation maximization with point-spread function modeling) and were examined qualitatively. Results: The averaged full widths at half maximum (FWHMs) of the radial/tangential/axial spatial resolution reconstructed with filtered backprojection at 1, 10, and 20 cm from the system center were, respectively, 4.10/4.19/4.48 mm, 5.47/4.49/6.01 mm, and 7.53/4.90/6.10 mm. The averaged sensitivity was 13.7 cps/kBq at the center of the field of view. The averaged peak noise-equivalent counting rate was 193.4 kcps at 21.9 kBq/mL, with a scatter fraction of 40.6%. The averaged contrast recovery coefficients for the image-quality phantom were 53.7, 64.0, 73.1, 82.7, 86.8, and 90.7 for the 10-, 13-, 17-, 22-, 28-, and 37-mm-diameter spheres, respectively. The average photopeak energy resolution was 9.40% FWHM, and the average coincidence time resolution was 375.4 ps FWHM. Clinical image comparisons between the PET/CT systems demonstrated the high quality of the Discovery MI. Comparisons between the Discovery MI and SIGNA showed a similar spatial resolution and overall imaging performance. Lastly, the results indicated significantly enhanced image quality and contrast-to-noise performance for Q.Clear, compared with ordered-subset expectation maximization. Conclusion: Excellent performance was achieved with the Discovery MI, including 375 ps FWHM coincidence time resolution and sensitivity of 14 cps/kBq. Comparisons between reconstruction algorithms and other multimodal silicon photomultiplier and non-silicon photomultiplier PET detector system designs indicated that performance can be substantially enhanced with this next-generation system.
Collapse
Affiliation(s)
- David F C Hsu
- Electrical Engineering, Stanford University, Stanford, California.,Radiology, Stanford University, Stanford, California
| | - Ezgi Ilan
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | | | | | - Mark Lubberink
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Craig S Levin
- Electrical Engineering, Stanford University, Stanford, California .,Radiology, Stanford University, Stanford, California.,Physics, Stanford University, Stanford, California; and.,Bioengineering, Stanford University, Stanford, California
| |
Collapse
|
115
|
Systems, Physics, and Instrumentation of PET/MRI for Cardiovascular Studies. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9414-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
116
|
Rausch I, Quick HH, Cal-Gonzalez J, Sattler B, Boellaard R, Beyer T. Technical and instrumentational foundations of PET/MRI. Eur J Radiol 2017; 94:A3-A13. [PMID: 28431784 DOI: 10.1016/j.ejrad.2017.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022]
Abstract
This paper highlights the origins of combined positron emission tomography (PET) and magnetic resonance imaging (MRI) whole-body systems that were first introduced for applications in humans in 2010. This text first covers basic aspects of each imaging modality before describing the technical and methodological challenges of combining PET and MRI within a single system. After several years of development, combined and even fully-integrated PET/MRI systems have become available and made their way into the clinic. This multi-modality imaging system lends itself to the advanced exploration of diseases to support personalized medicine in a long run. To that extent, this paper provides an introduction to PET/MRI methodology and important technical solutions.
Collapse
Affiliation(s)
- Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria.
| | - Harald H Quick
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany; Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Jacobo Cal-Gonzalez
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, Academisch Ziekenhuis Groningen, Groningen, The Netherlands
| | - Thomas Beyer
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| |
Collapse
|
117
|
Leynes AP, Yang J, Shanbhag DD, Kaushik SS, Seo Y, Hope TA, Wiesinger F, Larson PEZ. Hybrid ZTE/Dixon MR-based attenuation correction for quantitative uptake estimation of pelvic lesions in PET/MRI. Med Phys 2017; 44:902-913. [PMID: 28112410 DOI: 10.1002/mp.12122] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/26/2016] [Accepted: 01/18/2017] [Indexed: 01/08/2023] Open
Abstract
PURPOSE This study introduces a new hybrid ZTE/Dixon MR-based attenuation correction (MRAC) method including bone density estimation for PET/MRI and quantifies the effects of bone attenuation on metastatic lesion uptake in the pelvis. METHODS Six patients with pelvic lesions were scanned using fluorodeoxyglucose (18F-FDG) in an integrated time-of-flight (TOF) PET/MRI system. For PET attenuation correction, MR imaging consisted of two-point Dixon and zero echo-time (ZTE) pulse sequences. A continuous-value fat and water pseudoCT was generated from a two-point Dixon MRI. Bone was segmented from the ZTE images and converted to Hounsfield units (HU) using a continuous two-segment piecewise linear model based on ZTE MRI intensity. The HU values were converted to linear attenuation coefficients (LAC) using a bilinear model. The bone voxels of the Dixon-based pseudoCT were replaced by the ZTE-derived bone to produce the hybrid ZTE/Dixon pseudoCT. The three different AC maps (Dixon, hybrid ZTE/Dixon, CTAC) were used to reconstruct PET images using a TOF-ordered subset expectation maximization algorithm with a point-spread function model. Metastatic lesions were separated into two classes, bone lesions and soft tissue lesions, and analyzed. The MRAC methods were compared using a root-mean-squared error (RMSE), where the registered CTAC was taken as ground truth. RESULTS The RMSE of the maximum standardized uptake values (SUVmax ) is 11.02% and 7.79% for bone (N = 6) and soft tissue lesions (N = 8), respectively, using Dixon MRAC. The RMSE of SUVmax for these lesions is significantly reduced to 3.28% and 3.94% when using the new hybrid ZTE/Dixon MRAC. Additionally, the RMSE for PET SUVs across the entire pelvis and all patients are 8.76% and 4.18%, for the Dixon and hybrid ZTE/Dixon MRAC methods, respectively. CONCLUSION A hybrid ZTE/Dixon MRAC method was developed and applied to pelvic regions in an integrated TOF PET/MRI, demonstrating improved MRAC. This new method included bone density estimation, through which PET quantification is improved.
Collapse
Affiliation(s)
- Andrew P Leynes
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th St, San Francisco, CA 94158, USA
| | - Jaewon Yang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th St, San Francisco, CA 94158, USA
| | - Dattesh D Shanbhag
- GE Global Research, Plot #122, Export Promotion Industrial Park, Phase 2, Hoodi Village, Whitefield Road, Bangalore, 560066, India
| | - Sandeep S Kaushik
- GE Global Research, Plot #122, Export Promotion Industrial Park, Phase 2, Hoodi Village, Whitefield Road, Bangalore, 560066, India
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th St, San Francisco, CA 94158, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94158, USA.,University of California, 1700 4th St, San Francisco, CA 94158, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th St, San Francisco, CA 94158, USA
| | - Florian Wiesinger
- GE Global Research, Freisinger Landstrasse 50, 85748 Garching bei München, Germany
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th St, San Francisco, CA 94158, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94158, USA.,University of California, 1700 4th St, San Francisco, CA 94158, USA
| |
Collapse
|
118
|
Ko GB, Lee JS. Single transmission-line readout method for silicon photomultiplier based time-of-flight and depth-of-interaction PET. Phys Med Biol 2017; 62:2194-2207. [DOI: 10.1088/1361-6560/aa5a44] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
119
|
Grant AM, Deller TW, Khalighi MM, Maramraju SH, Delso G, Levin CS. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Med Phys 2017; 43:2334. [PMID: 27147345 DOI: 10.1118/1.4945416] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation. METHODS The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed. RESULTS The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement. CONCLUSIONS Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.
Collapse
Affiliation(s)
- Alexander M Grant
- Department of Bioengineering, Stanford University, Stanford, California 94305-5128 and Department of Radiology, Stanford University, Stanford, California 94305-5128
| | | | | | | | - Gaspar Delso
- GE Healthcare and University Hospital of Zurich, Zurich 8006, Switzerland
| | - Craig S Levin
- Department of Bioengineering, Stanford University, Stanford, California 94305-5128; Department of Radiology, Stanford University, Stanford, California 94305-5128; Department of Electrical Engineering, Stanford University, Stanford, California 94305-5128; and Department of Physics, Stanford University, Stanford, California 94305-5128
| |
Collapse
|
120
|
Masuda A, Takeishi Y. Current Status and Future Direction of PET/MR in Cardiology. ACTA ACUST UNITED AC 2017. [DOI: 10.17996/anc.17-00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Atsuro Masuda
- Department of Cardiovascular Medicine, Fukushima Medical University
| | | |
Collapse
|
121
|
Walrand S, Hesse M, Jamar F. Update on novel trends in PET/CT technology and its clinical applications. Br J Radiol 2016; 91:20160534. [PMID: 27730823 DOI: 10.1259/bjr.20160534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
After a brief history of the major evolutions of positron emission tomography since its introduction in 1972, this article reviews the recent improvements and novel trends in positron emission tomography with a special focus on the time of flight that is currently the major research topic. Novel emerging acquisition modalities, such as dual tracer acquisition, inline hadron therapy dose imaging and yttrium-90 imaging are reviewed.
Collapse
Affiliation(s)
- Stephan Walrand
- Nuclear Medicine, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Michel Hesse
- Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - François Jamar
- Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
122
|
Bowen SL, Fuin N, Levine MA, Catana C. Transmission imaging for integrated PET-MR systems. Phys Med Biol 2016; 61:5547-68. [PMID: 27384608 DOI: 10.1088/0031-9155/61/15/5547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method's performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was ⩽4% for soft tissue and ⩽11% for bone ROIs. An implementation of the single torus source was filled with (18)F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm(-1) was recorded for an experimental uniform cylinder phantom scan, while a bias of <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly less artifacts and improved dynamic range, and differed greatly for highly attenuating materials in the case of the patient table, compared to CT results. Use of a fixed torus geometry, in combination with translation of the patient table to perform complete tomographic sampling, generated highly quantitative measured μ-maps and is expected to produce images with significantly higher SNR than competing fixed geometries at matched total acquisition time.
Collapse
Affiliation(s)
- Spencer L Bowen
- Athinoula A. Martinos Center for Biomedical Imaging, Bldg. 149, Rm. 2301, 13th St., Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
123
|
Abstract
Hybrid PET/MR imaging is a complex imaging modality that has raised high expectations not only for oncological and neurologic imaging applications, but also for cardiac imaging applications. Initially, physicians and physicists had to become accustomed to technical challenges including attenuation correction, gating, and more complex workflow and more elaborate image analysis as compared with PET/CT or standalone MR imaging. PET/MR imaging seems to be particularly valuable to assess inflammatory myocardial diseases (such as sarcoidosis), to cross-validate PET versus MR imaging data (eg, myocardial perfusion imaging), and to help validate novel biomarkers of various disease states (eg, postinfarction inflammation).
Collapse
|