101
|
Fan C, Zeng Z, Xiao L, Qu X. GFNet: Automatic segmentation of COVID-19 lung infection regions using CT images based on boundary features. PATTERN RECOGNITION 2022; 132:108963. [PMID: 35966970 PMCID: PMC9359771 DOI: 10.1016/j.patcog.2022.108963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 05/03/2023]
Abstract
In early 2020, the global spread of the COVID-19 has presented the world with a serious health crisis. Due to the large number of infected patients, automatic segmentation of lung infections using computed tomography (CT) images has great potential to enhance traditional medical strategies. However, the segmentation of infected regions in CT slices still faces many challenges. Specially, the most core problem is the high variability of infection characteristics and the low contrast between the infected and the normal regions. This problem leads to fuzzy regions in lung CT segmentation. To address this problem, we have designed a novel global feature network(GFNet) for COVID-19 lung infections: VGG16 as backbone, we design a Edge-guidance module(Eg) that fuses the features of each layer. First, features are extracted by reverse attention module and Eg is combined with it. This series of steps enables each layer to fully extract boundary details that are difficult to be noticed by previous models, thus solving the fuzzy problem of infected regions. The multi-layer output features are fused into the final output to finally achieve automatic and accurate segmentation of infected areas. We compared the traditional medical segmentation networks, UNet, UNet++, the latest model Inf-Net, and methods of few shot learning field. Experiments show that our model is superior to the above models in Dice, Sensitivity, Specificity and other evaluation metrics, and our segmentation results are clear and accurate from the visual effect, which proves the effectiveness of GFNet. In addition, we verify the generalization ability of GFNet on another "never seen" dataset, and the results prove that our model still has better generalization ability than the above model. Our code has been shared at https://github.com/zengzhenhuan/GFNet.
Collapse
Affiliation(s)
- Chaodong Fan
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
- School of Computer Science, Xiangtan University, Xiangtan 411100, China
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Foshan 528000, China
- School of Information Technology and Management, Hunan University of Finance and Economics, Changsha 410205, China
| | - Zhenhuan Zeng
- School of Computer Science, Xiangtan University, Xiangtan 411100, China
| | - Leyi Xiao
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
- School of Information Technology and Management, Hunan University of Finance and Economics, Changsha 410205, China
- AnHui Key Laboratory of Detection Technology and Energy Saving Devices, AnHui Polytechnic University, Wuhu 241000, China
- Fujian Provincial Key Laboratory of Data Intensive Computing, Quanzhou Normal University, Quanzhou 362000 China
- Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Xilong Qu
- School of Information Technology and Management, Hunan University of Finance and Economics, Changsha 410205, China
| |
Collapse
|
102
|
Song D, Li F, Li C, Xiong J, He J, Zhang X, Qiao Y. Asynchronous feature regularization and cross-modal distillation for OCT based glaucoma diagnosis. Comput Biol Med 2022; 151:106283. [PMID: 36442272 DOI: 10.1016/j.compbiomed.2022.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Glaucoma has become a major cause of vision loss. Early-stage diagnosis of glaucoma is critical for treatment planning to avoid irreversible vision damage. Meanwhile, interpreting the rapidly accumulated medical data from ophthalmic exams is cumbersome and resource-intensive. Therefore, automated methods are highly desired to assist ophthalmologists in achieving fast and accurate glaucoma diagnosis. Deep learning has achieved great successes in diagnosing glaucoma by analyzing data from different kinds of tests, such as peripapillary optical coherence tomography (OCT) and visual field (VF) testing. Nevertheless, applying these developed models to clinical practice is still challenging because of various limiting factors. OCT models present worse glaucoma diagnosis performances compared to those achieved by OCT&VF based models, whereas VF is time-consuming and highly variable, which can restrict the wide employment of OCT&VF models. To this end, we develop a novel deep learning framework that leverages the OCT&VF model to enhance the performance of the OCT model. To transfer the complementary knowledge from the structural and functional assessments to the OCT model, a cross-modal knowledge transfer method is designed by integrating a designed distillation loss and a proposed asynchronous feature regularization (AFR) module. We demonstrate the effectiveness of the proposed method for glaucoma diagnosis by utilizing a public OCT&VF dataset and evaluating it on an external OCT dataset. Our final model with only OCT inputs achieves the accuracy of 87.4% (3.1% absolute improvement) and AUC of 92.3%, which are on par with the OCT&VF joint model. Moreover, results on the external dataset sufficiently indicate the effectiveness and generalization capability of our model.
Collapse
Affiliation(s)
- Diping Song
- Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| | - Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Cheng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jian Xiong
- Ophthalmic Center, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Junjun He
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Yu Qiao
- Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| |
Collapse
|
103
|
Iqbal S, Khan TM, Naveed K, Naqvi SS, Nawaz SJ. Recent trends and advances in fundus image analysis: A review. Comput Biol Med 2022; 151:106277. [PMID: 36370579 DOI: 10.1016/j.compbiomed.2022.106277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Automated retinal image analysis holds prime significance in the accurate diagnosis of various critical eye diseases that include diabetic retinopathy (DR), age-related macular degeneration (AMD), atherosclerosis, and glaucoma. Manual diagnosis of retinal diseases by ophthalmologists takes time, effort, and financial resources, and is prone to error, in comparison to computer-aided diagnosis systems. In this context, robust classification and segmentation of retinal images are primary operations that aid clinicians in the early screening of patients to ensure the prevention and/or treatment of these diseases. This paper conducts an extensive review of the state-of-the-art methods for the detection and segmentation of retinal image features. Existing notable techniques for the detection of retinal features are categorized into essential groups and compared in depth. Additionally, a summary of quantifiable performance measures for various important stages of retinal image analysis, such as image acquisition and preprocessing, is provided. Finally, the widely used in the literature datasets for analyzing retinal images are described and their significance is emphasized.
Collapse
Affiliation(s)
- Shahzaib Iqbal
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Tariq M Khan
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Khuram Naveed
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan; Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | - Syed S Naqvi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Syed Junaid Nawaz
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
104
|
Yi Y, Guo C, Hu Y, Zhou W, Wang W. BCR-UNet: Bi-directional ConvLSTM residual U-Net for retinal blood vessel segmentation. Front Public Health 2022; 10:1056226. [PMID: 36483248 PMCID: PMC9722738 DOI: 10.3389/fpubh.2022.1056226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background High precision segmentation of retinal blood vessels from retinal images is a significant step for doctors to diagnose many diseases such as glaucoma and cardiovascular diseases. However, at the peripheral region of vessels, previous U-Net-based segmentation methods failed to significantly preserve the low-contrast tiny vessels. Methods For solving this challenge, we propose a novel network model called Bi-directional ConvLSTM Residual U-Net (BCR-UNet), which takes full advantage of U-Net, Dropblock, Residual convolution and Bi-directional ConvLSTM (BConvLSTM). In this proposed BCR-UNet model, we propose a novel Structured Dropout Residual Block (SDRB) instead of using the original U-Net convolutional block, to construct our network skeleton for improving the robustness of the network. Furthermore, to improve the discriminative ability of the network and preserve more original semantic information of tiny vessels, we adopt BConvLSTM to integrate the feature maps captured from the first residual block and the last up-convolutional layer in a nonlinear manner. Results and discussion We conduct experiments on four public retinal blood vessel datasets, and the results show that the proposed BCR-UNet can preserve more tiny blood vessels at the low-contrast peripheral regions, even outperforming previous state-of-the-art methods.
Collapse
Affiliation(s)
- Yugen Yi
- School of Software, Jiangxi Normal University, Nanchang, China
| | - Changlu Guo
- Yichun Economic and Technological Development Zone, Yichun, China,*Correspondence: Changlu Guo
| | - Yangtao Hu
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, China,Yangtao Hu
| | - Wei Zhou
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Wenle Wang
- School of Software, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
105
|
SGC-ARANet: scale-wise global contextual axile reverse attention network for automatic brain tumor segmentation. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
106
|
Yuan Y, Li C, Zhang K, Hua Y, Zhang J. HRU-Net: A Transfer Learning Method for Carotid Artery Plaque Segmentation in Ultrasound Images. Diagnostics (Basel) 2022; 12:2852. [PMID: 36428911 PMCID: PMC9689104 DOI: 10.3390/diagnostics12112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Carotid artery stenotic plaque segmentation in ultrasound images is a crucial means for the analysis of plaque components and vulnerability. However, segmentation of severe stenotic plaques remains a challenging task because of the heterogeneities of inter-plaques and intra-plaques, and obscure boundaries of plaques. In this paper, we propose an automated HRU-Net transfer learning method for segmenting carotid plaques, using the limited images. The HRU-Net is based on the U-Net encoder−decoder paradigm, and cross-domain knowledge is transferred for plaque segmentation by fine-tuning the pretrained ResNet-50. Moreover, a cropped-blood-vessel image augmentation is customized for the plaque position constraint during training only. Moreover, hybrid atrous convolutions (HACs) are designed to derive diverse long-range dependences for refined plaque segmentation that are used on high-level semantic layers to exploit the implicit discrimination features. The experiments are performed on 115 images; Firstly, the 10-fold cross-validation, using 40 images with severe stenosis plaques, shows that the proposed method outperforms some of the state-of-the-art CNN-based methods on Dice, IoU, Acc, and modified Hausdorff distance (MHD) metrics; the improvements on metrics of Dice and MHD are statistically significant (p < 0.05). Furthermore, our HRU-Net transfer learning method shows fine generalization performance on 75 new images with varying degrees of plaque stenosis, and it may be used as an alternative for automatic noisy plaque segmentation in carotid ultrasound images clinically.
Collapse
Affiliation(s)
- Yanchao Yuan
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- National Engineering Research Center of Telemedicine and Telehealth, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Hefei Innovation Research Institute, Beihang University, Hefei 230012, China
| | - Cancheng Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Hefei Innovation Research Institute, Beihang University, Hefei 230012, China
| | - Ke Zhang
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yang Hua
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Diagnostic Center of Vascular Ultrasound, Beijing 100053, China
- Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Jicong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Hefei Innovation Research Institute, Beihang University, Hefei 230012, China
| |
Collapse
|
107
|
Zhang F, Li S, Deng J. Unsupervised Domain Adaptation with Shape Constraint and Triple Attention for Joint Optic Disc and Cup Segmentation. SENSORS (BASEL, SWITZERLAND) 2022; 22:8748. [PMID: 36433345 PMCID: PMC9695107 DOI: 10.3390/s22228748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Currently, glaucoma has become an important cause of blindness. At present, although glaucoma cannot be cured, early treatment can prevent it from getting worse. A reliable way to detect glaucoma is to segment the optic disc and cup and then measure the cup-to-disc ratio (CDR). Many deep neural network models have been developed to autonomously segment the optic disc and the optic cup to help in diagnosis. However, their performance degrades when subjected to domain shift. While many domain-adaptation methods have been exploited to address this problem, they are apt to produce malformed segmentation results. In this study, it is suggested that the segmentation network be adjusted using a constrained formulation that embeds prior knowledge about the shape of the segmentation areas that is domain-invariant. Based on IOSUDA (i.e., Input and Output Space Unsupervised Domain Adaptation), a novel unsupervised joint optic cup-to-disc segmentation framework with shape constraints is proposed, called SCUDA (short for Shape-Constrained Unsupervised Domain Adaptation). A shape constrained loss function is novelly proposed in this paper which utilizes domain-invariant prior knowledge concerning the segmentation region of the joint optic cup-optical disc of fundus images to constrain the segmentation result during network training. In addition, a convolutional triple attention module is designed to improve the segmentation network, which captures cross-dimensional interactions and provides a rich feature representation to improve the segmentation accuracy. Experiments on the RIM-ONE_r3 and Drishti-GS datasets demonstrate that the algorithm outperforms existing approaches for segmenting optic discs and cups.
Collapse
|
108
|
An CH, Lee JS, Jang JS, Choi HC. Part Affinity Fields and CoordConv for Detecting Landmarks of Lumbar Vertebrae and Sacrum in X-ray Images. SENSORS (BASEL, SWITZERLAND) 2022; 22:8628. [PMID: 36433225 PMCID: PMC9696411 DOI: 10.3390/s22228628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
With the prevalence of degenerative diseases due to the increase in the aging population, we have encountered many spine-related disorders. Since the spine is a crucial part of the body, fast and accurate diagnosis is critically important. Generally, clinicians use X-ray images to diagnose the spine, but X-ray images are commonly occluded by the shadows of some bones, making it hard to identify the whole spine. Therefore, recently, various deep-learning-based spinal X-ray image analysis approaches have been proposed to help diagnose the spine. However, these approaches did not consider the characteristics of frequent occlusion in the X-ray image and the properties of the vertebra shape. Therefore, based on the X-ray image properties and vertebra shape, we present a novel landmark detection network specialized in lumbar X-ray images. The proposed network consists of two stages: The first step detects the centers of the lumbar vertebrae and the upper end plate of the first sacral vertebra (S1), and the second step detects the four corner points of each lumbar vertebra and two corner points of S1 from the image obtained in the first step. We used random spine cutout augmentation in the first step to robustify the network against the commonly obscured X-ray images. Furthermore, in the second step, we used CoordConv to make the network recognize the location distribution of landmarks and part affinity fields to understand the morphological features of the vertebrae, resulting in more accurate landmark detection. The proposed network was evaluated using 304 X-ray images, and it achieved 98.02% accuracy in center detection and 8.34% relative distance error in corner detection. This indicates that our network can detect spinal landmarks reliably enough to support radiologists in analyzing the lumbar X-ray images.
Collapse
Affiliation(s)
- Chang-Hyeon An
- Intelligent Computer Vision Software Laboratory (ICVSLab), Department of Electronic Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea
| | - Jeong-Sik Lee
- Intelligent Computer Vision Software Laboratory (ICVSLab), Department of Electronic Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea
| | - Jun-Su Jang
- Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, South Chungcheong, Korea
| | - Hyun-Chul Choi
- Intelligent Computer Vision Software Laboratory (ICVSLab), Department of Electronic Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea
| |
Collapse
|
109
|
Yu M, Pei K, Li X, Wei X, Wang C, Gao J. FBCU-Net: A fine-grained context modeling network using boundary semantic features for medical image segmentation. Comput Biol Med 2022; 150:106161. [PMID: 36240598 DOI: 10.1016/j.compbiomed.2022.106161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/05/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
The performance of deep learning-based medical image segmentation methods largely depends on the segmentation accuracy of tissue boundaries. However, since the boundary region is at the junction of areas of different categories, the pixels located at the boundary inevitably carry features belonging to other classes and difficult to distinguish. This paper proposes a fine-grained contextual modeling network for medical image segmentation based on boundary semantic features, FBCU-Net, which uses the semantic features of boundary regions to reduce the influence of irrelevant features on boundary pixels. First, based on the discovery that indistinguishable pixels are usually boundary pixels in medical images, we introduce new supervision information to find and classify boundary pixels. Second, based on the existing relational context modeling schemes, we generate the boundary region representations representing the semantic features of boundary regions. Last, we use boundary region representations to reduce the influence of irrelevant features on boundary pixels and generate highly discriminative pixel representations. Furthermore, to enhance the attention of the network to the boundary region, we also propose the boundary enhancement strategy. We evaluate the proposed model on five datasets, TUI (Thyroid Tumor), ISIC-2018 (Dermoscopy), 2018 Data Science Bowl (Cell Nuclei), Glas (Colon Cancer), and BUSI (Breast Cancer). The results show that FBCU-Net has better boundary segmentation performance and overall performance for different medical images than other state-of-the-art (SOTA) methods, and has great potential for clinical application.
Collapse
Affiliation(s)
- Mei Yu
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China; Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, 300350, China; Tianjin Key Laboratory of Advanced Networking, Tianjin, 300350, China
| | - Kaijie Pei
- Tianjin International Engineering Institute, Tianjin University, Tianjin, 300350, China
| | - Xuewei Li
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China; Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, 300350, China; Tianjin Key Laboratory of Advanced Networking, Tianjin, 300350, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Chenhan Wang
- OpenBayes (Tianjin) IT Co., Tianjin, 300456, China
| | - Jie Gao
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China; Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, 300350, China; Tianjin Key Laboratory of Advanced Networking, Tianjin, 300350, China.
| |
Collapse
|
110
|
Zhao T, Zhang Y, Miao D, Pedrycz W. Selective label enhancement for multi-label classification based on three-way decisions. Int J Approx Reason 2022. [DOI: 10.1016/j.ijar.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
111
|
Yuan Y, Li C, Xu L, Zhu S, Hua Y, Zhang J. CSM-Net: Automatic joint segmentation of intima-media complex and lumen in carotid artery ultrasound images. Comput Biol Med 2022; 150:106119. [PMID: 37859275 DOI: 10.1016/j.compbiomed.2022.106119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/25/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
The intima-media thickness (IMT) is an effective biomarker for atherosclerosis, which is commonly measured by ultrasound technique. However, the intima-media complex (IMC) segmentation for the IMT is challenging due to confused IMC boundaries and various noises. In this paper, we propose a flexible method CSM-Net for the joint segmentation of IMC and Lumen in carotid ultrasound images. Firstly, the cascaded dilated convolutions combined with the squeeze-excitation module are introduced for exploiting more contextual features on the highest-level layer of the encoder. Furthermore, a triple spatial attention module is utilized for emphasizing serviceable features on each decoder layer. Besides, a multi-scale weighted hybrid loss function is employed to resolve the class-imbalance issues. The experiments are conducted on a private dataset of 100 images for IMC and Lumen segmentation, as well as on two public datasets of 1600 images for IMC segmentation. For the private dataset, our method obtain the IMC Dice, Lumen Dice, Precision, Recall, and F1 score of 0.814 ± 0.061, 0.941 ± 0.024, 0.911 ± 0.044, 0.916 ± 0.039, and 0.913 ± 0.027, respectively. For the public datasets, we obtain the IMC Dice, Precision, Recall, and F1 score of 0.885 ± 0.067, 0.885 ± 0.070, 0.894 ± 0.089, and 0.885 ± 0.067, respectively. The results demonstrate that the proposed method precedes some cutting-edge methods, and the ablation experiments show the validity of each module. The proposed method may be useful for the IMC segmentation of carotid ultrasound images in the clinic. Our code is publicly available at https://github.com/yuanyc798/US-IMC-code.
Collapse
Affiliation(s)
- Yanchao Yuan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Hefei Innovation Research Institute, Beihang University, Hefei, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Cancheng Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Hefei Innovation Research Institute, Beihang University, Hefei, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Lu Xu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Hefei Innovation Research Institute, Beihang University, Hefei, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Shangming Zhu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Yang Hua
- Department of Vascular Ultrasonography, XuanWu Hospital, Capital Medical University, Beijing, China; Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Jicong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Hefei Innovation Research Institute, Beihang University, Hefei, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.
| |
Collapse
|
112
|
Guo X, Li J, Lin Q, Tu Z, Hu X, Che S. Joint optic disc and cup segmentation using feature fusion and attention. Comput Biol Med 2022; 150:106094. [PMID: 36122442 DOI: 10.1016/j.compbiomed.2022.106094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 08/18/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022]
Abstract
Currently, glaucoma is one of the leading causes of irreversible vision loss. So far, glaucoma is incurable, but early treatment can stop the progression of the condition and slow down the speed and extent of vision loss. Early detection and treatment are crucial to prevent glaucoma from developing into blindness. It is an effective method for glaucoma diagnosis to measure Cup to Disc Ratio (CDR) by the segmentation of Optic Disc (OD) and Optic Cup (OC). Compared with OD segmentation, OC segmentation still faces difficulties in segmentation accuracy. In this paper, a deep learning architecture named FAU-Net (feature fusion and attention U-Net) is proposed for the joint segmentation of OD and OC. It is an improved architecture based on U-Net. By adding a feature fusion module in U-Net, information loss in feature extraction can be reduced. The channel and spatial attention mechanisms are combined to highlight the important features related to the segmentation task and suppress the expression of irrelevant regional features. Finally, a multi-label loss is used to generate the final joint segmentation of OD and OC. Experimental results show that the proposed FAU-Net outperforms the state-of-the-art segmentation of OD and OC on Drishti-GS1, REFUGE, RIM-ONE and ODIR datasets.
Collapse
Affiliation(s)
- Xiaoxin Guo
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China; College of Computer Science and Technology, Jilin University, Changchun 130012, China.
| | - Jiahui Li
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China; College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Qifeng Lin
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China; College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Zhenchuan Tu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China; College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Xiaoying Hu
- Ophthalmology Department, Bethune First Hospital of Jilin University, Changchun 130021, China
| | - Songtian Che
- Ophthalmology Department, Bethune Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
113
|
Multiresolution Mutual Assistance Network for Cardiac Magnetic Resonance Images Segmentation. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5311825. [PMID: 36353681 PMCID: PMC9640236 DOI: 10.1155/2022/5311825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023]
Abstract
The automatic segmentation of cardiac magnetic resonance (MR) images is the basis for the diagnosis of cardiac-related diseases. However, the segmentation of cardiac MR images is a challenging task due to the inhomogeneity of MR images intensity distribution and the unclear boundaries between adjacent tissues. In this paper, we propose a novel multiresolution mutual assistance network (MMA-Net) for cardiac MR images segmentation. It is mainly composed of multibranch input module, multiresolution mutual assistance module, and multilabel deep supervision. First, the multibranch input module helps the network to extract local and global features more pertinently. Then, the multiresolution mutual assistance module implements multiresolution feature interaction and progressively improves semantic features to more completely express the information of the tissue. Finally, the multilabel deep supervision is proposed to generate the final segmentation map. We compare with state-of-the-art medical image segmentation methods on the medical image computing and computer-assisted intervention (MICCAI) automated cardiac diagnosis challenge datasets and the MICCAI atrial segmentation challenge datasets. The mean dice scores of our method in the left atrium, right ventricle, myocardium, and left ventricle are 0.919, 0.920, 0.881, and 0.960, respectively. The analysis of evaluation indicators and segmentation results shows that our method achieves the best performance in cardiac magnetic resonance images segmentation.
Collapse
|
114
|
Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: An unseen Artificial Intelligence paradigm for stroke risk assessment. Comput Biol Med 2022; 149:106017. [DOI: 10.1016/j.compbiomed.2022.106017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 12/18/2022]
|
115
|
Zhou X, Nie X, Li Z, Lin X, Xue E, Wang L, Lan J, Chen G, Du M, Tong T. H-Net: A dual-decoder enhanced FCNN for automated biomedical image diagnosis. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
116
|
Chen G, Dai Y, Zhang J. C-Net: Cascaded convolutional neural network with global guidance and refinement residuals for breast ultrasound images segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107086. [PMID: 36044802 DOI: 10.1016/j.cmpb.2022.107086] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Breast lesions segmentation is an important step of computer-aided diagnosis system. However, speckle noise, heterogeneous structure, and similar intensity distributions bring challenges for breast lesion segmentation. METHODS In this paper, we presented a novel cascaded convolutional neural network integrating U-net, bidirectional attention guidance network (BAGNet) and refinement residual network (RFNet) for the lesion segmentation in breast ultrasound images. Specifically, we first use U-net to generate a set of saliency maps containing low-level and high-level image structures. Then, the bidirectional attention guidance network is used to capture the context between global (low-level) and local (high-level) features from the saliency map. The introduction of the global feature map can reduce the interference of surrounding tissue on the lesion regions. Furthermore, we developed a refinement residual network based on the core architecture of U-net to learn the difference between rough saliency feature maps and ground-truth masks. The learning of residuals can assist us to obtain a more complete lesion mask. RESULTS To evaluate the segmentation performance of the network, we compared with several state-of-the-art segmentation methods on the public breast ultrasound dataset (BUSIS) using six commonly used evaluation metrics. Our method achieves the highest scores on six metrics. Furthermore, p-values indicate significant differences between our method and the comparative methods. CONCLUSIONS Experimental results show that our method achieves the most competitive segmentation results. In addition, we apply the network on renal ultrasound images segmentation. In general, our method has good adaptability and robustness on ultrasound image segmentation.
Collapse
Affiliation(s)
- Gongping Chen
- College of Artificial Intelligence, Nankai University, Tianjin, China.
| | - Yu Dai
- College of Artificial Intelligence, Nankai University, Tianjin, China.
| | - Jianxun Zhang
- College of Artificial Intelligence, Nankai University, Tianjin, China
| |
Collapse
|
117
|
Xue X, Wang L, Du W, Fujiwara Y, Peng Y. Multiple Preprocessing Hybrid Level Set Model for Optic Disc Segmentation in Fundus Images. SENSORS (BASEL, SWITZERLAND) 2022; 22:6899. [PMID: 36146249 PMCID: PMC9506381 DOI: 10.3390/s22186899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The accurate segmentation of the optic disc (OD) in fundus images is a crucial step for the analysis of many retinal diseases. However, because of problems such as vascular occlusion, parapapillary atrophy (PPA), and low contrast, accurate OD segmentation is still a challenging task. Therefore, this paper proposes a multiple preprocessing hybrid level set model (HLSM) based on area and shape for OD segmentation. The area-based term represents the difference of average pixel values between the inside and outside of a contour, while the shape-based term measures the distance between a prior shape model and the contour. The average intersection over union (IoU) of the proposed method was 0.9275, and the average four-side evaluation (FSE) was 4.6426 on a public dataset with narrow-angle fundus images. The IoU was 0.8179 and the average FSE was 3.5946 on a wide-angle fundus image dataset compiled from a hospital. The results indicate that the proposed multiple preprocessing HLSM is effective in OD segmentation.
Collapse
Affiliation(s)
- Xiaozhong Xue
- Information and Human Science, Kyoto Institute of Technology University, Kyoto 6068585, Japan
| | - Linni Wang
- Retina & Neuron-Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin 300084, China
| | - Weiwei Du
- Information and Human Science, Kyoto Institute of Technology University, Kyoto 6068585, Japan
| | - Yusuke Fujiwara
- Information and Human Science, Kyoto Institute of Technology University, Kyoto 6068585, Japan
| | - Yahui Peng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
118
|
Panahi A, Askari Moghadam R, Tarvirdizadeh B, Madani K. Simplified U-Net as a deep learning intelligent medical assistive tool in glaucoma detection. EVOLUTIONARY INTELLIGENCE 2022. [DOI: 10.1007/s12065-022-00775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
119
|
Wang J, Tian S, Yu L, Wang Y, Wang F, Zhou Z. SBDF-Net: A versatile dual-branch fusion network for medical image segmentation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
120
|
Wei Z, Yuhan P, Jianhang J, Jikun Y, Weiqi B, Yugen Y, Wenle W. RMSDSC‐Net: A robust multiscale feature extraction with depthwise separable convolution network for optic disc and cup segmentation. INT J INTELL SYST 2022. [DOI: 10.1002/int.23051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhou Wei
- College of Computer Science Shenyang Aerospace University Shenyang China
| | - Peng Yuhan
- College of Computer Science Shenyang Aerospace University Shenyang China
| | - Ji Jianhang
- College of Computer Science Shenyang Aerospace University Shenyang China
| | - Yang Jikun
- Fundus Disease Specialty, Shenyang Aier Excellence Eye Hospital Co. Ltd. Shenyang China
| | - Bai Weiqi
- College of Computer Science Shenyang Aerospace University Shenyang China
| | - Yi Yugen
- School of Software Jiangxi Normal University Nanchang China
| | - Wang Wenle
- School of Software Jiangxi Normal University Nanchang China
| |
Collapse
|
121
|
Zhou Q, Guo J, Chen Z, Chen W, Deng C, Yu T, Li F, Yan X, Hu T, Wang L, Rong Y, Ding M, Wang J, Zhang X. Deep learning-based classification of the anterior chamber angle in glaucoma gonioscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4668-4683. [PMID: 36187252 PMCID: PMC9484423 DOI: 10.1364/boe.465286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
In the proposed network, the features were first extracted from the gonioscopically obtained anterior segment photographs using the densely-connected high-resolution network. Then the useful information is further strengthened using the hybrid attention module to improve the classification accuracy. Between October 30, 2020, and January 30, 2021, a total of 146 participants underwent glaucoma screening. One thousand seven hundred eighty original images of the ACA were obtained with the gonioscope and slit lamp microscope. After data augmentation, 4457 images are used for the training and validation of the HahrNet, and 497 images are used to evaluate our algorithm. Experimental results demonstrate that the proposed HahrNet exhibits a good performance of 96.2% accuracy, 99.0% specificity, 96.4% sensitivity, and 0.996 area under the curve (AUC) in classifying the ACA test dataset. Compared with several deep learning-based classification methods and nine human readers of different levels, the HahrNet achieves better or more competitive performance in terms of accuracy, specificity, and sensitivity. Indeed, the proposed ACA classification method will provide an automatic and accurate technology for the grading of glaucoma.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Biomedical Engineering, College of Life Science and Technology, Ministry of Education Key Laboratory of Molecular Biophysics, Huazhong University of Science and Technology, Wuhan 430074, China
- These authors contribute equally to this work
| | - Jingmin Guo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- These authors contribute equally to this work
| | - Zhiqi Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaohua Deng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian Yu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoqin Yan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Linhao Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Rong
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingyue Ding
- Department of Biomedical Engineering, College of Life Science and Technology, Ministry of Education Key Laboratory of Molecular Biophysics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuming Zhang
- Department of Biomedical Engineering, College of Life Science and Technology, Ministry of Education Key Laboratory of Molecular Biophysics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
122
|
Nie X, Zhou X, Tong T, Lin X, Wang L, Zheng H, Li J, Xue E, Chen S, Zheng M, Chen C, Du M. N-Net: A novel dense fully convolutional neural network for thyroid nodule segmentation. Front Neurosci 2022; 16:872601. [PMID: 36117632 PMCID: PMC9475170 DOI: 10.3389/fnins.2022.872601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Medical image segmentation is an essential component of computer-aided diagnosis (CAD) systems. Thyroid nodule segmentation using ultrasound images is a necessary step for the early diagnosis of thyroid diseases. An encoder-decoder based deep convolutional neural network (DCNN), like U-Net architecture and its variants, has been extensively used to deal with medical image segmentation tasks. In this article, we propose a novel N-shape dense fully convolutional neural network for medical image segmentation, referred to as N-Net. The proposed framework is composed of three major components: a multi-scale input layer, an attention guidance module, and an innovative stackable dilated convolution (SDC) block. First, we apply the multi-scale input layer to construct an image pyramid, which achieves multi-level receiver field sizes and obtains rich feature representation. After that, the U-shape convolutional network is employed as the backbone structure. Moreover, we use the attention guidance module to filter the features before several skip connections, which can transfer structural information from previous feature maps to the following layers. This module can also remove noise and reduce the negative impact of the background. Finally, we propose a stackable dilated convolution (SDC) block, which is able to capture deep semantic features that may be lost in bilinear upsampling. We have evaluated the proposed N-Net framework on a thyroid nodule ultrasound image dataset (called the TNUI-2021 dataset) and the DDTI publicly available dataset. The experimental results show that our N-Net model outperforms several state-of-the-art methods in the thyroid nodule segmentation tasks.
Collapse
Affiliation(s)
- Xingqing Nie
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Xiaogen Zhou
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Tong Tong
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
- Imperial Vision Technology, Fuzhou, China
| | - Xingtao Lin
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Luoyan Wang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Haonan Zheng
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Jing Li
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Ensheng Xue
- Fujian Medical Ultrasound Research Institute, Fuzhou, China
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shun Chen
- Fujian Medical Ultrasound Research Institute, Fuzhou, China
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Meijuan Zheng
- Fujian Medical Ultrasound Research Institute, Fuzhou, China
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Cong Chen
- Fujian Medical Ultrasound Research Institute, Fuzhou, China
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Min Du
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| |
Collapse
|
123
|
|
124
|
Qayyum A, Lalande A, Meriaudeau F. Effective multiscale deep learning model for COVID19 segmentation tasks: A further step towards helping radiologist. Neurocomputing 2022; 499:63-80. [PMID: 35578654 PMCID: PMC9095500 DOI: 10.1016/j.neucom.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/28/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022]
Abstract
Infection by the SARS-CoV-2 leading to COVID-19 disease is still rising and techniques to either diagnose or evaluate the disease are still thoroughly investigated. The use of CT as a complementary tool to other biological tests is still under scrutiny as the CT scans are prone to many false positives as other lung diseases display similar characteristics on CT scans. However, fully investigating CT images is of tremendous interest to better understand the disease progression and therefore thousands of scans need to be segmented by radiologists to study infected areas. Over the last year, many deep learning models for segmenting CT-lungs were developed. Unfortunately, the lack of large and shared annotated multicentric datasets led to models that were either under-tested (small dataset) or not properly compared (own metrics, none shared dataset), often leading to poor generalization performance. To address, these issues, we developed a model that uses a multiscale and multilevel feature extraction strategy for COVID19 segmentation and extensively validated it on several datasets to assess its generalization capability for other segmentation tasks on similar organs. The proposed model uses a novel encoder and decoder with a proposed kernel-based atrous spatial pyramid pooling module that is used at the bottom of the model to extract small features with a multistage skip connection concatenation approach. The results proved that our proposed model could be applied on a small-scale dataset and still produce generalizable performances on other segmentation tasks. The proposed model produced an efficient Dice score of 90% on a 100 cases dataset, 95% on the NSCLC dataset, 88.49% on the COVID19 dataset, and 97.33 on the StructSeg 2019 dataset as compared to existing state-of-the-art models. The proposed solution could be used for COVID19 segmentation in clinic applications. The source code is publicly available at https://github.com/RespectKnowledge/Mutiscale-based-Covid-_segmentation-usingDeep-Learning-models.
Collapse
Affiliation(s)
- Abdul Qayyum
- ImViA Laboratory, University of Bourgogne Franche-Comt́e, Dijon, France
| | - Alain Lalande
- ImViA Laboratory, University of Bourgogne Franche-Comt́e, Dijon, France
- Medical Imaging Department, University Hospital of Dijon, Dijon, France
| | | |
Collapse
|
125
|
Wan Q, Ouyang A, Liu Y, Xiong Z, Li X, Li L. Detection of infestation by striped stem‐borer (Chilo suppressalis) in rice based on hyperspectral imaging. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Qiming Wan
- School of Mechatronics & Vehicle Engineering East China Jiaotong University Nanchang China
- National and Local Joint Engineering Research Center of Fruit Intelligent Photoelectric Detection Technology and Equipment East China Jiaotong University Nanchang China
| | - Aiguo Ouyang
- School of Mechatronics & Vehicle Engineering East China Jiaotong University Nanchang China
- National and Local Joint Engineering Research Center of Fruit Intelligent Photoelectric Detection Technology and Equipment East China Jiaotong University Nanchang China
| | - Yande Liu
- School of Mechatronics & Vehicle Engineering East China Jiaotong University Nanchang China
- National and Local Joint Engineering Research Center of Fruit Intelligent Photoelectric Detection Technology and Equipment East China Jiaotong University Nanchang China
| | - Zhiyi Xiong
- School of Mechatronics & Vehicle Engineering East China Jiaotong University Nanchang China
- National and Local Joint Engineering Research Center of Fruit Intelligent Photoelectric Detection Technology and Equipment East China Jiaotong University Nanchang China
| | - Xiong Li
- School of Mechatronics & Vehicle Engineering East China Jiaotong University Nanchang China
- National and Local Joint Engineering Research Center of Fruit Intelligent Photoelectric Detection Technology and Equipment East China Jiaotong University Nanchang China
| | - Lisha Li
- School of Mechatronics & Vehicle Engineering East China Jiaotong University Nanchang China
- National and Local Joint Engineering Research Center of Fruit Intelligent Photoelectric Detection Technology and Equipment East China Jiaotong University Nanchang China
| |
Collapse
|
126
|
Canal-Net for automatic and robust 3D segmentation of mandibular canals in CBCT images using a continuity-aware contextual network. Sci Rep 2022; 12:13460. [PMID: 35931733 PMCID: PMC9356068 DOI: 10.1038/s41598-022-17341-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U-Net with bidirectional convolutional long short-term memory (ConvLSTM) under a multi-task learning framework. Specifically, the Canal-Net learned the 3D anatomical context information of the MC by incorporating spatio-temporal features from ConvLSTM, and also the structural continuity of the overall MC volume under a multi-task learning framework using multi-planar projection losses complementally. The Canal-Net showed higher segmentation accuracies in 2D and 3D performance metrics (p < 0.05), and especially, a significant improvement in Dice similarity coefficient scores and mean curve distance (p < 0.05) throughout the entire MC volume compared to other popular deep learning networks. As a result, the Canal-Net achieved high consistent accuracy in 3D segmentations of the entire MC in spite of the areas of low visibility by the unclear and ambiguous cortical bone layer. Therefore, the Canal-Net demonstrated the automatic and robust 3D segmentation of the entire MC volume by improving structural continuity and boundary details of the MC in CBCT images.
Collapse
|
127
|
Elsawy A, Abdel-Mottaleb M. PIPE-Net: A pyramidal-input-parallel-encoding network for the segmentation of corneal layer interfaces in OCT images. Comput Biol Med 2022; 147:105595. [DOI: 10.1016/j.compbiomed.2022.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
|
128
|
Yang L, Gu Y, Huo B, Liu Y, Bian G. A shape-guided deep residual network for automated CT lung segmentation. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
129
|
Practical Application of Artificial Intelligence Technology in Glaucoma Diagnosis. J Ophthalmol 2022; 2022:5212128. [PMID: 35957747 PMCID: PMC9357716 DOI: 10.1155/2022/5212128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose. By comparing the performance of different models between artificial intelligence (AI) and doctors, we aim to evaluate and identify the optimal model for future usage of AI. Methods. A total of 500 fundus images of glaucoma and 500 fundus images of normal eyes were collected and randomly divided into five groups, with each group corresponding to one round. The AI system provided diagnostic suggestions for each image. Four doctors provided diagnoses without the assistance of the AI in the first round and with the assistance of the AI in the second and third rounds. In the fourth round, doctor B and doctor D made diagnoses with the help of the AI and the other two doctors without the help of the AI. In the last round, doctor A and doctor B made diagnoses with the help of AI and the other two doctors without the help of the AI. Results. Doctor A, doctor B, and doctor D had a higher accuracy in the diagnosis of glaucoma with the assistance of AI in the second (
,
, and
) and the third round (
,
, and
) than in the first round. The accuracy of at least one doctor was higher than that of AI in the second and third rounds, in spite of no detectable significance (
,
,
, and
). The four doctors’ overall accuracy (
and
) and sensitivity (
and
) as a whole were significantly improved in the second and third rounds. Conclusions. This “Doctor + AI” model can clarify the role of doctors and AI in medical responsibility and ensure the safety of patients, and importantly, this model shows great potential and application prospects.
Collapse
|
130
|
Multi-task deep learning for glaucoma detection from color fundus images. Sci Rep 2022; 12:12361. [PMID: 35858986 PMCID: PMC9300731 DOI: 10.1038/s41598-022-16262-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022] Open
Abstract
Glaucoma is an eye condition that leads to loss of vision and blindness if not diagnosed in time. Diagnosis requires human experts to estimate in a limited time subtle changes in the shape of the optic disc from retinal fundus images. Deep learning methods have been satisfactory in classifying and segmenting diseases in retinal fundus images, assisting in analyzing the increasing amount of images. Model training requires extensive annotations to achieve successful generalization, which can be highly problematic given the costly expert annotations. This work aims at designing and training a novel multi-task deep learning model that leverages the similarities of related eye-fundus tasks and measurements used in glaucoma diagnosis. The model simultaneously learns different segmentation and classification tasks, thus benefiting from their similarity. The evaluation of the method in a retinal fundus glaucoma challenge dataset, including 1200 retinal fundus images from different cameras and medical centers, obtained a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$96.76 \pm 0.96$$\end{document}96.76±0.96 AUC performance compared to an \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$93.56 \pm 1.48$$\end{document}93.56±1.48 obtained by the same backbone network trained to detect glaucoma. Our approach outperforms other multi-task learning models, and its performance pairs with trained experts using \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$~\sim 3.5$$\end{document}∼3.5 times fewer parameters than training each task separately. The data and the code for reproducing our results are publicly available.
Collapse
|
131
|
Zhang H, Zhong X, Li Z, Chen Y, Zhu Z, Lv J, Li C, Zhou Y, Li G. TiM-Net: Transformer in M-Net for Retinal Vessel Segmentation. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9016401. [PMID: 35859930 PMCID: PMC9293566 DOI: 10.1155/2022/9016401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
retinal image is a crucial window for the clinical observation of cardiovascular, cerebrovascular, or other correlated diseases. Retinal vessel segmentation is of great benefit to the clinical diagnosis. Recently, the convolutional neural network (CNN) has become a dominant method in the retinal vessel segmentation field, especially the U-shaped CNN models. However, the conventional encoder in CNN is vulnerable to noisy interference, and the long-rang relationship in fundus images has not been fully utilized. In this paper, we propose a novel model called Transformer in M-Net (TiM-Net) based on M-Net, diverse attention mechanisms, and weighted side output layers to efficaciously perform retinal vessel segmentation. First, to alleviate the effects of noise, a dual-attention mechanism based on channel and spatial is designed. Then the self-attention mechanism in Transformer is introduced into skip connection to re-encode features and model the long-range relationship explicitly. Finally, a weighted SideOut layer is proposed for better utilization of the features from each side layer. Extensive experiments are conducted on three public data sets to show the effectiveness and robustness of our TiM-Net compared with the state-of-the-art baselines. Both quantitative and qualitative results prove its clinical practicality. Moreover, variants of TiM-Net also achieve competitive performance, demonstrating its scalability and generalization ability. The code of our model is available at https://github.com/ZX-ECJTU/TiM-Net.
Collapse
Affiliation(s)
- Hongbin Zhang
- School of Software, East China Jiaotong University, Nanchang, China
| | - Xiang Zhong
- School of Software, East China Jiaotong University, Nanchang, China
| | - Zhijie Li
- School of Software, East China Jiaotong University, Nanchang, China
| | - Yanan Chen
- School of International, East China Jiaotong University, Nanchang, China
| | - Zhiliang Zhu
- School of Software, East China Jiaotong University, Nanchang, China
| | - Jingqin Lv
- School of Software, East China Jiaotong University, Nanchang, China
| | - Chuanxiu Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Ying Zhou
- Medical School, Nanchang University, Nanchang, China
| | - Guangli Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| |
Collapse
|
132
|
Retinal Glaucoma Public Datasets: What Do We Have and What Is Missing? J Clin Med 2022; 11:jcm11133850. [PMID: 35807135 PMCID: PMC9267177 DOI: 10.3390/jcm11133850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Public databases for glaucoma studies contain color images of the retina, emphasizing the optic papilla. These databases are intended for research and standardized automated methodologies such as those using deep learning techniques. These techniques are used to solve complex problems in medical imaging, particularly in the automated screening of glaucomatous disease. The development of deep learning techniques has demonstrated potential for implementing protocols for large-scale glaucoma screening in the population, eliminating possible diagnostic doubts among specialists, and benefiting early treatment to delay the onset of blindness. However, the images are obtained by different cameras, in distinct locations, and from various population groups and are centered on multiple parts of the retina. We can also cite the small number of data, the lack of segmentation of the optic papillae, and the excavation. This work is intended to offer contributions to the structure and presentation of public databases used in the automated screening of glaucomatous papillae, adding relevant information from a medical point of view. The gold standard public databases present images with segmentations of the disc and cupping made by experts and division between training and test groups, serving as a reference for use in deep learning architectures. However, the data offered are not interchangeable. The quality and presentation of images are heterogeneous. Moreover, the databases use different criteria for binary classification with and without glaucoma, do not offer simultaneous pictures of the two eyes, and do not contain elements for early diagnosis.
Collapse
|
133
|
Qin J, He Y, Zhou Y, Zhao J, Ding B. REU-Net: Region-enhanced nuclei segmentation network. Comput Biol Med 2022; 146:105546. [DOI: 10.1016/j.compbiomed.2022.105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/24/2022] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
|
134
|
Garcia Marin YF, Alonso-Caneiro D, Vincent SJ, Collins MJ. Anterior segment optical coherence tomography (AS-OCT) image analysis methods and applications: A systematic review. Comput Biol Med 2022; 146:105471. [DOI: 10.1016/j.compbiomed.2022.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
|
135
|
Deng Z, Cai Y, Chen L, Gong Z, Bao Q, Yao X, Fang D, Yang W, Zhang S, Ma L. RFormer: Transformer-Based Generative Adversarial Network for Real Fundus Image Restoration on a New Clinical Benchmark. IEEE J Biomed Health Inform 2022; 26:4645-4655. [PMID: 35767498 DOI: 10.1109/jbhi.2022.3187103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ophthalmologists have used fundus images to screen and diagnose eye diseases. However, different equipments and ophthalmologists pose large variations to the quality of fundus images. Low-quality (LQ) degraded fundus images easily lead to uncertainty in clinical screening and generally increase the risk of misdiagnosis. Thus, real fundus image restoration is worth studying. Unfortunately, real clinical benchmark has not been explored for this task so far. In this paper, we investigate the real clinical fundus image restoration problem. Firstly, We establish a clinical dataset, Real Fundus (RF), including 120 low- and high-quality (HQ) image pairs. Then we propose a novel Transformer-based Generative Adversarial Network (RFormer) to restore the real degradation of clinical fundus images. The key component in our network is the Window-based Self-Attention Block (WSAB) which captures non-local self-similarity and long-range dependencies. To produce more visually pleasant results, a Transformer-based discriminator is introduced. Extensive experiments on our clinical benchmark show that the proposed RFormer significantly outperforms the state-of-the-art (SOTA) methods. In addition, experiments of downstream tasks such as vessel segmentation and optic disc/cup detection demonstrate that our proposed RFormer benefits clinical fundus image analysis and applications. The dataset, code, and models will be made publicly available at https://github.com/dengzhuo-AI/Real-Fundus.
Collapse
|
136
|
Biswas S, Khan MIA, Hossain MT, Biswas A, Nakai T, Rohdin J. Which Color Channel Is Better for Diagnosing Retinal Diseases Automatically in Color Fundus Photographs? LIFE (BASEL, SWITZERLAND) 2022; 12:life12070973. [PMID: 35888063 PMCID: PMC9321111 DOI: 10.3390/life12070973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
Color fundus photographs are the most common type of image used for automatic diagnosis of retinal diseases and abnormalities. As all color photographs, these images contain information about three primary colors, i.e., red, green, and blue, in three separate color channels. This work aims to understand the impact of each channel in the automatic diagnosis of retinal diseases and abnormalities. To this end, the existing works are surveyed extensively to explore which color channel is used most commonly for automatically detecting four leading causes of blindness and one retinal abnormality along with segmenting three retinal landmarks. From this survey, it is clear that all channels together are typically used for neural network-based systems, whereas for non-neural network-based systems, the green channel is most commonly used. However, from the previous works, no conclusion can be drawn regarding the importance of the different channels. Therefore, systematic experiments are conducted to analyse this. A well-known U-shaped deep neural network (U-Net) is used to investigate which color channel is best for segmenting one retinal abnormality and three retinal landmarks.
Collapse
Affiliation(s)
- Sangeeta Biswas
- Faculty of Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.I.A.K.); (M.T.H.)
- Correspondence: or
| | - Md. Iqbal Aziz Khan
- Faculty of Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.I.A.K.); (M.T.H.)
| | - Md. Tanvir Hossain
- Faculty of Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.I.A.K.); (M.T.H.)
| | - Angkan Biswas
- CAPM Company Limited, Bonani, Dhaka 1213, Bangladesh;
| | - Takayoshi Nakai
- Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan;
| | - Johan Rohdin
- Faculty of Information Technology, Brno University of Technology, 61200 Brno, Czech Republic;
| |
Collapse
|
137
|
Joshi A, Sharma KK. Graph deep network for optic disc and optic cup segmentation for glaucoma disease using retinal imaging. Phys Eng Sci Med 2022; 45:847-858. [PMID: 35737221 DOI: 10.1007/s13246-022-01154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
The fundus imaging method of eye screening detects eye diseases by segmenting the optic disc (OD) and optic cup (OC). OD and OC are still challenging to segment accurately. This work proposes three-layer graph-based deep architecture with an enhanced fusion method for OD and OC segmentation. CNN encoder-decoder architecture, extended graph network, and approximation via fusion-based rule are explored for connecting local and global information. A graph-based model is developed for combining local and overall knowledge. By extending feature masking, regularization of repetitive features with fusion for combining channels has been done. The performance of the proposed network is evaluated through the analysis of different metric parameters such as dice similarity coefficient (DSC), intersection of union (IOU), accuracy, specificity, sensitivity. Experimental verification of this methodology has been done using the four benchmarks publicly available datasets DRISHTI-GS, RIM-ONE for OD, and OC segmentation. In addition, DRIONS-DB and HRF fundus imaging datasets were analyzed for optimizing the model's performance based on OD segmentation. DSC metric of methodology achieved 0.97 and 0.96 for DRISHTI-GS and RIM-ONE, respectively. Similarly, IOU measures for DRISHTI-GS and RIM-ONE datasets were 0.96 and 0.93, respectively, for OD measurement. For OC segmentation, DSC and IOU were measured as 0.93 and 0.90 respectively for DRISHTI-GS and 0.83 and 0.82 for RIM-ONE data. The proposed technique improved value of metrics with most of the existing methods in terms of DSC and IOU of the results metric of the experiments for OD and OC segmentation.
Collapse
Affiliation(s)
- Abhilasha Joshi
- Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India.
| | - K K Sharma
- Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| |
Collapse
|
138
|
LGMSU-Net: Local Features, Global Features, and Multi-Scale Features Fused the U-Shaped Network for Brain Tumor Segmentation. ELECTRONICS 2022. [DOI: 10.3390/electronics11121911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Brain tumors are one of the deadliest cancers in the world. Researchers have conducted a lot of research work on brain tumor segmentation with good performance due to the rapid development of deep learning for assisting doctors in diagnosis and treatment. However, most of these methods cannot fully combine multiple feature information and their performances need to be improved. This study developed a novel network fusing local features representing detailed information, global features representing global information, and multi-scale features enhancing the model’s robustness to fully extract the features of brain tumors and proposed a novel axial-deformable attention module for modeling global information to improve the performance of brain tumor segmentation to assist clinicians in the automatic segmentation of brain tumors. Moreover, positional embeddings were used to make the network training faster and improve the method’s performance. Six metrics were used to evaluate the proposed method on the BraTS2018 dataset. Outstanding performance was obtained with Dice score, mean Intersection over Union, precision, recall, params, and inference time of 0.8735, 0.7756, 0.9477, 0.8769, 69.02 M, and 15.66 millisecond, respectively, for the whole tumor. Extensive experiments demonstrated that the proposed network obtained excellent performance and was helpful in providing supplementary advice to the clinicians.
Collapse
|
139
|
Zhao J, Lu Y, Zhu S, Li K, Jiang Q, Yang W. Systematic Bibliometric and Visualized Analysis of Research Hotspots and Trends on the Application of Artificial Intelligence in Ophthalmic Disease Diagnosis. Front Pharmacol 2022; 13:930520. [PMID: 35754490 PMCID: PMC9214201 DOI: 10.3389/fphar.2022.930520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Artificial intelligence (AI) has been used in the research of ophthalmic disease diagnosis, and it may have an impact on medical and ophthalmic practice in the future. This study explores the general application and research frontier of artificial intelligence in ophthalmic disease detection. Methods: Citation data were downloaded from the Web of Science Core Collection database to evaluate the extent of the application of Artificial intelligence in ophthalmic disease diagnosis in publications from 1 January 2012, to 31 December 2021. This information was analyzed using CiteSpace.5.8. R3 and Vosviewer. Results: A total of 1,498 publications from 95 areas were examined, of which the United States was determined to be the most influential country in this research field. The largest cluster labeled "Brownian motion" was used prior to the application of AI for ophthalmic diagnosis from 2007 to 2017, and was an active topic during this period. The burst keywords in the period from 2020 to 2021 were system, disease, and model. Conclusion: The focus of artificial intelligence research in ophthalmic disease diagnosis has transitioned from the development of AI algorithms and the analysis of abnormal eye physiological structure to the investigation of more mature ophthalmic disease diagnosis systems. However, there is a need for further studies in ophthalmology and computer engineering.
Collapse
Affiliation(s)
- Junqiang Zhao
- Department of Nursing, Xinxiang Medical University, Xinxiang, China
| | - Yi Lu
- Department of Nursing, Xinxiang Medical University, Xinxiang, China
| | - Shaojun Zhu
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Keran Li
- The Laboratory of Artificial Intelligence and Bigdata in Ophthalmology, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Laboratory of Artificial Intelligence and Bigdata in Ophthalmology, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Weihua Yang
- The Laboratory of Artificial Intelligence and Bigdata in Ophthalmology, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
140
|
Yi J, Ran Y, Yang G. Particle Swarm Optimization-Based Approach for Optic Disc Segmentation. ENTROPY (BASEL, SWITZERLAND) 2022; 24:796. [PMID: 35741517 PMCID: PMC9222690 DOI: 10.3390/e24060796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023]
Abstract
Fundus segmentation is an important step in the diagnosis of ophthalmic diseases, especially glaucoma. A modified particle swarm optimization algorithm for optic disc segmentation is proposed, considering the fact that the current public fundus datasets do not have enough images and are unevenly distributed. The particle swarm optimization algorithm has been proved to be a good tool to deal with various extreme value problems, which requires little data and does not require pre-training. In this paper, the segmentation problem is converted to a set of extreme value problems. The scheme performs data preprocessing based on the features of the fundus map, reduces noise on the picture, and simplifies the search space for particles. The search space is divided into multiple sub-search spaces according to the number of subgroups, and the particles inside the subgroups search for the optimal solution in their respective sub-search spaces. The gradient values are used to calculate the fitness of particles and contours. The entire group is divided into some subgroups. Every particle flies in their exploration for the best solution. During the iteration, particles are not only influenced by local and global optimal solutions but also additionally attracted by particles between adjacent subgroups. By collaboration and information sharing, the particles are capable of obtaining accurate disc segmentation. This method has been tested with the Drishti-GS and RIM-ONE V3 dataset. Compared to several state-of-the-art methods, the proposed method substantially improves the optic disc segmentation results on the tested datasets, which demonstrates the superiority of the proposed work.
Collapse
Affiliation(s)
- Junyan Yi
- Department of Computer Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (J.Y.); (Y.R.)
| | - Ya Ran
- Department of Computer Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (J.Y.); (Y.R.)
| | - Gang Yang
- Information School, Renmin University of China, Beijing 100080, China
| |
Collapse
|
141
|
Wang T, Lan J, Han Z, Hu Z, Huang Y, Deng Y, Zhang H, Wang J, Chen M, Jiang H, Lee RG, Gao Q, Du M, Tong T, Chen G. O-Net: A Novel Framework With Deep Fusion of CNN and Transformer for Simultaneous Segmentation and Classification. Front Neurosci 2022; 16:876065. [PMID: 35720715 PMCID: PMC9201625 DOI: 10.3389/fnins.2022.876065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
The application of deep learning in the medical field has continuously made huge breakthroughs in recent years. Based on convolutional neural network (CNN), the U-Net framework has become the benchmark of the medical image segmentation task. However, this framework cannot fully learn global information and remote semantic information. The transformer structure has been demonstrated to capture global information relatively better than the U-Net, but the ability to learn local information is not as good as CNN. Therefore, we propose a novel network referred to as the O-Net, which combines the advantages of CNN and transformer to fully use both the global and the local information for improving medical image segmentation and classification. In the encoder part of our proposed O-Net framework, we combine the CNN and the Swin Transformer to acquire both global and local contextual features. In the decoder part, the results of the Swin Transformer and the CNN blocks are fused to get the final results. We have evaluated the proposed network on the synapse multi-organ CT dataset and the ISIC 2017 challenge dataset for the segmentation task. The classification network is simultaneously trained by using the encoder weights of the segmentation network. The experimental results show that our proposed O-Net achieves superior segmentation performance than state-of-the-art approaches, and the segmentation results are beneficial for improving the accuracy of the classification task. The codes and models of this study are available at https://github.com/ortonwang/O-Net.
Collapse
Affiliation(s)
- Tao Wang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Junlin Lan
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Zixin Han
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Ziwei Hu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Yuxiu Huang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Yanglin Deng
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Hejun Zhang
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, China
| | - Jianchao Wang
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, China
| | - Musheng Chen
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, China
| | - Haiyan Jiang
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
- College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Ren-Guey Lee
- Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Qinquan Gao
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
- Imperial Vision Technology, Fuzhou, China
| | - Ming Du
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
| | - Tong Tong
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
- Imperial Vision Technology, Fuzhou, China
| | - Gang Chen
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicin, Fuzhou, China
| |
Collapse
|
142
|
Cao J, Lai H, Zhang J, Zhang J, Xie T, Wang H, Bu J, Feng Q, Huang M. 2D-3D cascade network for glioma segmentation in multisequence MRI images using multiscale information. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106894. [PMID: 35613498 DOI: 10.1016/j.cmpb.2022.106894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 04/21/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Glioma segmentation is an important procedure for the treatment plan and follow-up evaluation of patients with glioma. UNet-based networks are widely used in medical image segmentation tasks and have achieved state-of-the-art performance. However, context information along the third dimension is ignored in 2D convolutions, whereas difference between z-axis and in-plane resolutions is large in 3D convolutions. Moreover, an original UNet structure cannot capture fine details because of the reduced resolution of feature maps near bottleneck layers. METHODS To address these issues, a novel 2D-3D cascade network with multiscale information module is proposed for the multiclass segmentation of gliomas in multisequence MRI images. First, a 2D network is applied to fully exploit potential intra-slice features. A variational autoencoder module is incorporated into 2D DenseUNet to regularize a shared encoder, extract useful information, and represent glioma heterogeneity. Second, we integrated 3D DenseUNet with the 2D network in cascade mode to extract useful inter-slice features and alleviate the influence of large difference between z-axis and in-plane resolutions. Moreover, a multiscale information module is used in the 2D and 3D networks to further capture the fine details of gliomas. Finally, the whole 2D-3D cascade network is trained in an end-to-end manner, where the intra-slice and inter-slice features are fused and optimized jointly to take full advantage of 3D image information. RESULTS Our method is evaluated on publicly available and clinical datasets and achieves competitive performance in these two datasets. CONCLUSIONS These results indicate that the proposed method may be a useful tool for glioma segmentation.
Collapse
Affiliation(s)
- Jianyun Cao
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Haoran Lai
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Jiawei Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Junde Zhang
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tao Xie
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Heqing Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Junguo Bu
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Meiyan Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
143
|
Mishra S, Zhang Y, Chen DZ, Hu XS. Data-Driven Deep Supervision for Medical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1560-1574. [PMID: 35030076 DOI: 10.1109/tmi.2022.3143371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Medical image segmentation plays a vital role in disease diagnosis and analysis. However, data-dependent difficulties such as low image contrast, noisy background, and complicated objects of interest render the segmentation problem challenging. These difficulties diminish dense prediction and make it tough for known approaches to explore data-specific attributes for robust feature extraction. In this paper, we study medical image segmentation by focusing on robust data-specific feature extraction to achieve improved dense prediction. We propose a new deep convolutional neural network (CNN), which exploits specific attributes of input datasets to utilize deep supervision for enhanced feature extraction. In particular, we strategically locate and deploy auxiliary supervision, by matching the object perceptive field (OPF) (which we define and compute) with the layer-wise effective receptive fields (LERF) of the network. This helps the model pay close attention to some distinct input data dependent features, which the network might otherwise 'ignore' during training. Further, to achieve better target localization and refined dense prediction, we propose the densely decoded networks (DDN), by selectively introducing additional network connections (the 'crutch' connections). Using five public datasets (two retinal vessel, melanoma, optic disc/cup, and spleen segmentation) and two in-house datasets (lymph node and fungus segmentation), we verify the effectiveness of our proposed approach in 2D and 3D segmentation.
Collapse
|
144
|
Wang Y, Yu X, Wu C. An Efficient Hierarchical Optic Disc and Cup Segmentation Network Combined with Multi-task Learning and Adversarial Learning. J Digit Imaging 2022; 35:638-653. [PMID: 35212860 PMCID: PMC9156633 DOI: 10.1007/s10278-021-00579-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Automatic and accurate segmentation of optic disc (OD) and optic cup (OC) in fundus images is a fundamental task in computer-aided ocular pathologies diagnosis. The complex structures, such as blood vessels and macular region, and the existence of lesions in fundus images bring great challenges to the segmentation task. Recently, the convolutional neural network-based methods have exhibited its potential in fundus image analysis. In this paper, we propose a cascaded two-stage network architecture for robust and accurate OD and OC segmentation in fundus images. In the first stage, the U-Net like framework with an improved attention mechanism and focal loss is proposed to detect accurate and reliable OD location from the full-scale resolution fundus images. Based on the outputs of the first stage, a refined segmentation network in the second stage that integrates multi-task framework and adversarial learning is further designed for OD and OC segmentation separately. The multi-task framework is conducted to predict the OD and OC masks by simultaneously estimating contours and distance maps as auxiliary tasks, which can guarantee the smoothness and shape of object in segmentation predictions. The adversarial learning technique is introduced to encourage the segmentation network to produce an output that is consistent with the true labels in space and shape distribution. We evaluate the performance of our method using two public retinal fundus image datasets (RIM-ONE-r3 and REFUGE). Extensive ablation studies and comparison experiments with existing methods demonstrate that our approach can produce competitive performance compared with state-of-the-art methods.
Collapse
Affiliation(s)
- Ying Wang
- College of Information Science and Engineering, Northeastern University, Liaoning, 110819 China
| | - Xiaosheng Yu
- Faculty of Robot Science and Engineering, Northeastern University, Liaoning, 110819 China
| | - Chengdong Wu
- Faculty of Robot Science and Engineering, Northeastern University, Liaoning, 110819 China
| |
Collapse
|
145
|
Ou X, Gao L, Quan X, Zhang H, Yang J, Li W. BFENet: A two-stream interaction CNN method for multi-label ophthalmic diseases classification with bilateral fundus images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 219:106739. [PMID: 35344766 DOI: 10.1016/j.cmpb.2022.106739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Early fundus screening and timely treatment of ophthalmology diseases can effectively prevent blindness. Previous studies just focus on fundus images of single eye without utilizing the useful relevant information of the left and right eyes. While clinical ophthalmologists usually use binocular fundus images to help ocular disease diagnosis. Besides, previous works usually target only one ocular diseases at a time. Considering the importance of patient-level bilateral eye diagnosis and multi-label ophthalmic diseases classification, we propose a bilateral feature enhancement network (BFENet) to address the above two problems. METHODS We propose a two-stream interactive CNN architecture for multi-label ophthalmic diseases classification with bilateral fundus images. Firstly, we design a feature enhancement module, which makes use of the interaction between bilateral fundus images to strengthen the extracted feature information. Specifically, attention mechanism is used to learn the interdependence between local and global information in the designed interactive architecture for two-stream, which leads to the reweighting of these features, and recover more details. In order to capture more disease characteristics, we further design a novel multiscale module, which enriches the feature maps by superimposing feature information of different resolutions images extracted through dilated convolution. RESULTS In the off-site set, the Kappa, F1, AUC and Final score are 0.535, 0.892, 0.912 and 0.780, respectively. In the on-site set, the Kappa, F1, AUC and Final score are 0.513, 0.886, 0.903 and 0.767 respectively. Comparing with existing methods, BFENet achieves the best classification performance. CONCLUSIONS Comprehensive experiments are conducted to demonstrate the effectiveness of this proposed model. Besides, our method can be extended to similar tasks where the correlation between different images is important.
Collapse
Affiliation(s)
- Xingyuan Ou
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Li Gao
- Ophthalmology, Tianjin Huanhu Hospital, Tianjin, China
| | - Xiongwen Quan
- College of Artificial Intelligence, Nankai University, Tianjin, China.
| | - Han Zhang
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Jinglong Yang
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Wei Li
- College of Artificial Intelligence, Nankai University, Tianjin, China
| |
Collapse
|
146
|
Guo F, Li W, Shen Z, Shi X. MTCLF: A multitask curriculum learning framework for unbiased glaucoma screenings. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106910. [PMID: 35660942 DOI: 10.1016/j.cmpb.2022.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Glaucoma is a disease that causes irreversible damage to the optic nerve. Research on accurate automatic screening algorithms is essential for the prevention and treatment of glaucoma. However, due to the imbalance of existing datasets and the existence of some hard samples that accompany other diverse and complex fundus diseases, the performance of current glaucoma screening algorithms is limited. In addition, the lack of interpretability also makes it difficult for the current algorithms to meet the requirements of clinical applications. METHOD In this paper, we propose a new multitask curriculum learning framework (MTCLF) for unbiased glaucoma screenings and visualizations of model decision-making areas. MTCLF is a teacher-student framework. The teacher network is used to generate the label evidence map. The student network can diagnose glaucoma and predict the evidence map at the same time with the well-designed dual-branch CNN structure and collaborative learning module. We design two curriculum coefficients θ and σ to guide the training process of the student network in the sample space so that the student network can adaptively balance the sample contribution, reduce the prediction bias and mine hard samples. RESULTS The experimental results show that the accuracy, sensitivity, specificity, AUC and F2-score of MTCLF based on the LAG dataset for glaucoma diagnoses are 0.967, 0.961, 0.970, 0.996, and 0.958, respectively. These results are superior to those of the state-of-the-art methods. CONCLUSION MTCLF not only achieves the best performance for unbiased glaucoma diagnoses but also generates a reliable evidence map to help clinicians explore fine lesion areas.
Collapse
Affiliation(s)
- Fan Guo
- School of Automation, Central South University, Changsha 410083, China.
| | - Weiqing Li
- School of Automation, Central South University, Changsha 410083, China
| | - Ziqi Shen
- School of Automation, Central South University, Changsha 410083, China
| | - Xiangyu Shi
- School of Automation, Central South University, Changsha 410083, China
| |
Collapse
|
147
|
Intuitionistic Fuzzy-Based Three-Way Label Enhancement for Multi-Label Classification. MATHEMATICS 2022. [DOI: 10.3390/math10111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Multi-label classification deals with the determination of instance-label associations for unseen instances. Although many margin-based approaches are delicately developed, the uncertainty classifications for those with smaller separation margins remain unsolved. The intuitionistic fuzzy set is an effective tool to characterize the concept of uncertainty, yet it has not been examined for multi-label cases. This paper proposed a novel model called intuitionistic fuzzy three-way label enhancement (IFTWLE) for multi-label classification. The IFTWLE combines label enhancement with an intuitionistic fuzzy set under the framework of three-way decisions. For unseen instances, we generated the pseudo-label for label uncertainty evaluation from a logical label-based model. An intuitionistic fuzzy set-based instance selection principle seamlessly bridges logical label learning and numerical label learning. The principle is hierarchically developed. At the label level, membership and non-membership functions are pair-wisely defined to measure the local uncertainty and generate candidate uncertain instances. After upgrading to the instance level, we select instances from the candidates for label enhancement, whereas they remained unchanged for the remaining. To the best of our knowledge, this is the first attempt to combine logical label learning with numerical label learning into a unified framework for minimizing classification uncertainty. Extensive experiments demonstrate that, with the selectively reconstructed label importance, IFTWLE achieves statistically superior over the state-of-the-art multi-label classification algorithms in terms of classification accuracy. The computational complexity of this algorithm is On2mk, where n, m, and k denote the unseen instances count, label count, and average label-specific feature size, respectively.
Collapse
|
148
|
Sharma P, Ninomiya T, Omodaka K, Takahashi N, Miya T, Himori N, Okatani T, Nakazawa T. A lightweight deep learning model for automatic segmentation and analysis of ophthalmic images. Sci Rep 2022; 12:8508. [PMID: 35595784 PMCID: PMC9122907 DOI: 10.1038/s41598-022-12486-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Detection, diagnosis, and treatment of ophthalmic diseases depend on extraction of information (features and/or their dimensions) from the images. Deep learning (DL) model are crucial for the automation of it. Here, we report on the development of a lightweight DL model, which can precisely segment/detect the required features automatically. The model utilizes dimensionality reduction of image to extract important features, and channel contraction to allow only the required high-level features necessary for reconstruction of segmented feature image. Performance of present model in detection of glaucoma from optical coherence tomography angiography (OCTA) images of retina is high (area under the receiver-operator characteristic curve AUC ~ 0.81). Bland–Altman analysis gave exceptionally low bias (~ 0.00185), and high Pearson’s correlation coefficient (p = 0.9969) between the parameters determined from manual and DL based segmentation. On the same dataset, bias is an order of magnitude higher (~ 0.0694, p = 0.8534) for commercial software. Present model is 10 times lighter than Unet (popular for biomedical image segmentation) and have a better segmentation accuracy and model training reproducibility (based on the analysis of 3670 OCTA images). High dice similarity coefficient (D) for variety of ophthalmic images suggested it’s wider scope in precise segmentation of images even from other fields. Our concept of channel narrowing is not only important for the segmentation problems, but it can also reduce number of parameters significantly in object classification models. Enhanced disease diagnostic accuracy can be achieved for the resource limited devices (such as mobile phone, Nvidia’s Jetson, Raspberry pi) used in self-monitoring, and tele-screening (memory size of trained model ~ 35 MB).
Collapse
Affiliation(s)
- Parmanand Sharma
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Takahiro Ninomiya
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Takahashi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Miya
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Takayuki Okatani
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
149
|
Wang L, Zhou X, Nie X, Lin X, Li J, Zheng H, Xue E, Chen S, Chen C, Du M, Tong T, Gao Q, Zheng M. A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification. Front Neurosci 2022; 16:878718. [PMID: 35663553 PMCID: PMC9160335 DOI: 10.3389/fnins.2022.878718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Automated thyroid nodule classification in ultrasound images is an important way to detect thyroid nodules and to make a more accurate diagnosis. In this paper, we propose a novel deep convolutional neural network (CNN) model, called n-ClsNet, for thyroid nodule classification. Our model consists of a multi-scale classification layer, multiple skip blocks, and a hybrid atrous convolution (HAC) block. The multi-scale classification layer first obtains multi-scale feature maps in order to make full use of image features. After that, each skip-block propagates information at different scales to learn multi-scale features for image classification. Finally, the HAC block is used to replace the downpooling layer so that the spatial information can be fully learned. We have evaluated our n-ClsNet model on the TNUI-2021 dataset. The proposed n-ClsNet achieves an average accuracy (ACC) score of 93.8% in the thyroid nodule classification task, which outperforms several representative state-of-the-art classification methods.
Collapse
Affiliation(s)
- Luoyan Wang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation & Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Xiaogen Zhou
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation & Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Xingqing Nie
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation & Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Xingtao Lin
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation & Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Jing Li
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation & Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Haonan Zheng
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation & Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Ensheng Xue
- Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical Ultrasound Research Institute, Fuzhou, China
| | - Shun Chen
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Cong Chen
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Min Du
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation & Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Tong Tong
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation & Pharmaceutical Technology, Fuzhou University, Fuzhou, China
| | - Qinquan Gao
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
- Fujian Key Lab of Medical Instrumentation & Pharmaceutical Technology, Fuzhou University, Fuzhou, China
- *Correspondence: Qinquan Gao
| | - Meijuan Zheng
- Fujian Medical University Union Hospital, Fuzhou, China
- Meijuan Zheng
| |
Collapse
|
150
|
Wang W, Zhou W, Ji J, Yang J, Guo W, Gong Z, Yi Y, Wang J. Deep sparse autoencoder integrated with three‐stage framework for glaucoma diagnosis. INT J INTELL SYST 2022. [DOI: 10.1002/int.22911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenle Wang
- School of Software Jiangxi Normal University Nanchang China
| | - Wei Zhou
- College of Computer Science Shenyang Aerospace University Shenyang China
| | - Jianhang Ji
- College of Computer Science Shenyang Aerospace University Shenyang China
| | - Jikun Yang
- Shenyang Aier Excellence Eye Hospital Co. Ltd. Shenyang China
| | - Wei Guo
- College of Computer Science Shenyang Aerospace University Shenyang China
| | - Zhaoxuan Gong
- College of Computer Science Shenyang Aerospace University Shenyang China
| | - Yugen Yi
- School of Software Jiangxi Normal University Nanchang China
| | - Jianzhong Wang
- College of Information Science and Technology Northeast Normal University Changchun China
| |
Collapse
|