101
|
Dong G, Zhang C, Deng L, Zhu Y, Dai J, Song L, Meng R, Niu T, Liang X, Xie Y. A deep unsupervised learning framework for the 4D CBCT artifact correction. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac55a5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Four-dimensional cone-beam computed tomography (4D CBCT) has unique advantages in moving target localization, tracking and therapeutic dose accumulation in adaptive radiotherapy. However, the severe fringe artifacts and noise degradation caused by 4D CBCT reconstruction restrict its clinical application. We propose a novel deep unsupervised learning model to generate the high-quality 4D CBCT from the poor-quality 4D CBCT. Approach. The proposed model uses a contrastive loss function to preserve the anatomical structure in the corrected image. To preserve the relationship between the input and output image, we use a multilayer, patch-based method rather than operate on entire images. Furthermore, we draw negatives from within the input 4D CBCT rather than from the rest of the dataset. Main results. The results showed that the streak and motion artifacts were significantly suppressed. The spatial resolution of the pulmonary vessels and microstructure were also improved. To demonstrate the results in the different directions, we make the animation to show the different views of the predicted correction image in the supplementary animation. Significance. The proposed method can be integrated into any 4D CBCT reconstruction method and maybe a practical way to enhance the image quality of the 4D CBCT.
Collapse
|
102
|
Ismail TF, Strugnell W, Coletti C, Božić-Iven M, Weingärtner S, Hammernik K, Correia T, Küstner T. Cardiac MR: From Theory to Practice. Front Cardiovasc Med 2022; 9:826283. [PMID: 35310962 PMCID: PMC8927633 DOI: 10.3389/fcvm.2022.826283] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading single cause of morbidity and mortality, causing over 17. 9 million deaths worldwide per year with associated costs of over $800 billion. Improving prevention, diagnosis, and treatment of CVD is therefore a global priority. Cardiovascular magnetic resonance (CMR) has emerged as a clinically important technique for the assessment of cardiovascular anatomy, function, perfusion, and viability. However, diversity and complexity of imaging, reconstruction and analysis methods pose some limitations to the widespread use of CMR. Especially in view of recent developments in the field of machine learning that provide novel solutions to address existing problems, it is necessary to bridge the gap between the clinical and scientific communities. This review covers five essential aspects of CMR to provide a comprehensive overview ranging from CVDs to CMR pulse sequence design, acquisition protocols, motion handling, image reconstruction and quantitative analysis of the obtained data. (1) The basic MR physics of CMR is introduced. Basic pulse sequence building blocks that are commonly used in CMR imaging are presented. Sequences containing these building blocks are formed for parametric mapping and functional imaging techniques. Commonly perceived artifacts and potential countermeasures are discussed for these methods. (2) CMR methods for identifying CVDs are illustrated. Basic anatomy and functional processes are described to understand the cardiac pathologies and how they can be captured by CMR imaging. (3) The planning and conduct of a complete CMR exam which is targeted for the respective pathology is shown. Building blocks are illustrated to create an efficient and patient-centered workflow. Further strategies to cope with challenging patients are discussed. (4) Imaging acceleration and reconstruction techniques are presented that enable acquisition of spatial, temporal, and parametric dynamics of the cardiac cycle. The handling of respiratory and cardiac motion strategies as well as their integration into the reconstruction processes is showcased. (5) Recent advances on deep learning-based reconstructions for this purpose are summarized. Furthermore, an overview of novel deep learning image segmentation and analysis methods is provided with a focus on automatic, fast and reliable extraction of biomarkers and parameters of clinical relevance.
Collapse
Affiliation(s)
- Tevfik F. Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Cardiology Department, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Wendy Strugnell
- Queensland X-Ray, Mater Hospital Brisbane, Brisbane, QLD, Australia
| | - Chiara Coletti
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
| | - Maša Božić-Iven
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | | | - Kerstin Hammernik
- Lab for AI in Medicine, Technical University of Munich, Munich, Germany
- Department of Computing, Imperial College London, London, United Kingdom
| | - Teresa Correia
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Centre of Marine Sciences, Faro, Portugal
| | - Thomas Küstner
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
103
|
Li Q, Li S, Li R, Wu W, Dong Y, Zhao J, Qiang Y, Aftab R. Low-dose computed tomography image reconstruction via a multistage convolutional neural network with autoencoder perceptual loss network. Quant Imaging Med Surg 2022; 12:1929-1957. [PMID: 35284282 PMCID: PMC8899925 DOI: 10.21037/qims-21-465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/01/2021] [Indexed: 07/05/2024]
Abstract
BACKGROUND Computed tomography (CT) is widely used in medical diagnoses due to its ability to non-invasively detect the internal structures of the human body. However, CT scans with normal radiation doses can cause irreversible damage to patients. The radiation exposure is reduced with low-dose CT (LDCT), although considerable speckle noise and streak artifacts in CT images and even structural deformation may result, significantly undermining its diagnostic capability. METHODS This paper proposes a multistage network framework which gradually divides the entire process into 2-staged sub-networks to complete the task of image reconstruction. Specifically, a dilated residual convolutional neural network (DRCNN) was used to denoise the LDCT image. Then, the learned context information was combined with the channel attention subnet, which retains local information, to preserve the structural details and features of the image and textural information. To obtain recognizable characteristic details, we introduced a novel self-calibration module (SCM) between the 2 stages to reweight the local features, which realizes the complementation of information at different stages while refining feature information. In addition, we also designed an autoencoder neural network, using a self-supervised learning scheme to train a perceptual loss neural network specifically for CT images. RESULTS We evaluated the diagnostic quality of the results and performed ablation experiments on the loss function and network structure modules to verify each module's effectiveness in the network. Our proposed network architecture obtained high peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and visual information fidelity (VIF) values in terms of quantitative evaluation. In the analysis of qualitative results, our network structure maintained a better balance between eliminating image noise and preserving image details. Experimental results showed that our proposed network structure obtained better metrics and visual evaluation. CONCLUSIONS This study proposed a new LDCT image reconstruction method by combining autoencoder perceptual loss networks with multistage convolutional neural networks (MSCNN). Experimental results showed that the newly proposed method has performance than other methods.
Collapse
Affiliation(s)
- Qing Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Saize Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Runrui Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Wei Wu
- Department of Clinical Laboratory, Affiliated People’s Hospital of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Yunyun Dong
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Juanjuan Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yan Qiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Rukhma Aftab
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
104
|
Li S, Ye W, Li F. LU-Net: combining LSTM and U-Net for sinogram synthesis in sparse-view SPECT reconstruction. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:4320-4340. [PMID: 35341300 DOI: 10.3934/mbe.2022200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lowering the dose in single-photon emission computed tomography (SPECT) imaging to reduce the radiation damage to patients has become very significant. In SPECT imaging, lower radiation dose can be achieved by reducing the activity of administered radiotracer, which will lead to projection data with either sparse projection views or reduced photon counts per view. Direct reconstruction of sparse-view projection data may lead to severe ray artifacts in the reconstructed image. Many existing works use neural networks to synthesize the projection data of sparse-view to address the issue of ray artifacts. However, these methods rarely consider the sequence feature of projection data along projection view. This work is dedicated to developing a neural network architecture that accounts for the sequence feature of projection data at adjacent view angles. In this study, we propose a network architecture combining Long Short-Term Memory network (LSTM) and U-Net, dubbed LU-Net, to learn the mapping from sparse-view projection data to full-view data. In particular, the LSTM module in the proposed network architecture can learn the sequence feature of projection data at adjacent angles to synthesize the missing views in the sinogram. All projection data used in the numerical experiment are generated by the Monte Carlo simulation software SIMIND. We evenly sample the full-view sinogram and obtain the 1/2-, 1/3- and 1/4-view projection data, respectively, representing three different levels of view sparsity. We explore the performance of the proposed network architecture at the three simulated view levels. Finally, we employ the preconditioned alternating projection algorithm (PAPA) to reconstruct the synthesized projection data. Compared with U-Net and traditional iterative reconstruction method with total variation regularization as well as PAPA solver (TV-PAPA), the proposed network achieves significant improvement in both global and local quality metrics.
Collapse
Affiliation(s)
- Si Li
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenquan Ye
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenghuan Li
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
105
|
Leuliet T, Maxim V, Peyrin F, Sixou B. Impact of the training loss in deep learning based CT reconstruction of bone microarchitecture. Med Phys 2022; 49:2952-2964. [PMID: 35218039 DOI: 10.1002/mp.15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/23/2021] [Accepted: 02/13/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Computed tomography (CT) is a technique of choice to image bone structure at different scales. Methods to enhance the quality of degraded reconstructions obtained from low-dose CT data have shown impressive results recently, especially in the realm of supervised deep learning. As the choice of the loss function affects the reconstruction quality, it is necessary to focus on the way neural networks evaluate the correspondence between predicted and target images during the training stage. This is even more true in the case of bone microarchitecture imaging at high spatial resolution where both the quantitative analysis of Bone Mineral Density (BMD) and bone microstructure are essential for assessing diseases such as osteoporosis. Our aim is thus to evaluate the quality of reconstruction on key metrics for diagnosis depending on the loss function that has been used for training the neural network. METHODS We compare and analyze volumes that are reconstructed with neural networks trained with pixelwise, structural and adversarial loss functions or with a combination of them. We perform realistic simulations of various low-dose acquisitions of bone microarchitecture. Our comparative study is performed with metrics that have an interest regarding the diagnosis of bone diseases. We therefore focus on bone-specific metrics such as BV/TV, resolution, connectivity assessed with the Euler number and quantitative analysis of BMD to evaluate the quality of reconstruction obtained with networks trained with the different loss functions. RESULTS We find that using L1 norm as the pixelwise loss is the best choice compared to L2 or no pixelwise loss since it improves resolution without deteriorating other metrics. VGG perceptual loss, especially when combined with an adversarial loss, allows to better retrieve topological and morphological parameters of bone microarchitecture compared to SSIM. This however leads to a decreased resolution performance. The adversarial loss enchances the reconstruction performance in terms of BMD distribution accuracy. CONCLUSIONS In order to retrieve the quantitative and structural characteristics of bone microarchitecture that are essential for post-reconstruction diagnosis, our results suggest to use L1 norm as part of the loss function. Then, trade-offs should be made depending on the application: VGG perceptual loss improves accuracy in terms of connectivity at the cost of a deteriorated resolution, and adversarial losses help better retrieve BMD distribution while significantly increasing the training time. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Théo Leuliet
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| | - Voichiţa Maxim
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| | - Françoise Peyrin
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| | - Bruno Sixou
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| |
Collapse
|
106
|
A Review of Deep Learning Methods for Compressed Sensing Image Reconstruction and Its Medical Applications. ELECTRONICS 2022. [DOI: 10.3390/electronics11040586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compressed sensing (CS) and its medical applications are active areas of research. In this paper, we review recent works using deep learning method to solve CS problem for images or medical imaging reconstruction including computed tomography (CT), magnetic resonance imaging (MRI) and positron-emission tomography (PET). We propose a novel framework to unify traditional iterative algorithms and deep learning approaches. In short, we define two projection operators toward image prior and data consistency, respectively, and any reconstruction algorithm can be decomposed to the two parts. Though deep learning methods can be divided into several categories, they all satisfies the framework. We built the relationship between different reconstruction methods of deep learning, and connect them to traditional methods through the proposed framework. It also indicates that the key to solve CS problem and its medical applications is how to depict the image prior. Based on the framework, we analyze the current deep learning methods and point out some important directions of research in the future.
Collapse
|
107
|
Zarei M, Sotoudeh-Paima S, Abadi E, Samei E. A truth-based primal-dual learning approach to reconstruct CT images utilizing the virtual imaging trial platform. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12031:120313B. [PMID: 35574204 PMCID: PMC9101919 DOI: 10.1117/12.2613168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inherent to Computed tomography (CT) is image reconstruction, constructing 3D voxel values from noisy projection data. Modeling this inverse operation is not straightforward. Given the ill-posed nature of inverse problem in CT reconstruction, data-driven methods need regularization to enhance the accuracy of the reconstructed images. Besides, generalization of the results hinges upon the availability of large training datasets with access to ground truth. This paper offers a new strategy to reconstruct CT images with the advantage of ground truth accessible through a virtual imaging trial (VIT) platform. A learned primal-dual deep neural network (LPD-DNN) employed the forward model and its adjoint as a surrogate of the imaging's geometry and physics. VIT offered simulated CT projections paired with ground truth labels from anthropomorphic human models without image noise and resolution degradation. The models included a library of anthropomorphic, computational patient models (XCAT). The DukeSim simulator was utilized to form realistic projection data emulating the impact of the physics and geometry of a commercial-equivalent CT scanner. The resultant noisy sinogram data associated with each slice was thus generated for training. Corresponding linear attenuation coefficients of phantoms' materials at the effective energy of the x-ray spectrum were used as the ground truth labels. The LPD-DNN was deployed to learn the complex operators and hyper-parameters in the proximal primal-dual optimization. The obtained validation results showed a 12% normalized root mean square error with respect to the ground truth labels, a peak signal-to-noise ratio of 32 dB, a signal-to-noise ratio of 1.5, and a structural similarity index of 96%. These results were highly favorable compared to standard filtered-back projection reconstruction (65%, 17 dB, 1.0, 26%).
Collapse
Affiliation(s)
- Mojtaba Zarei
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories
- Department of Radiology, Duke University School of Medicine
- Dept. of Electrical & Computer Engineering, Pratt School of Engineering, Duke University
| | - Saman Sotoudeh-Paima
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories
- Department of Radiology, Duke University School of Medicine
- Dept. of Electrical & Computer Engineering, Pratt School of Engineering, Duke University
| | - Ehsan Abadi
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories
- Department of Radiology, Duke University School of Medicine
- Dept. of Electrical & Computer Engineering, Pratt School of Engineering, Duke University
| | - Ehsan Samei
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories
- Department of Radiology, Duke University School of Medicine
- Dept. of Electrical & Computer Engineering, Pratt School of Engineering, Duke University
| |
Collapse
|
108
|
An optimal control framework for joint-channel parallel MRI reconstruction without coil sensitivities. Magn Reson Imaging 2022; 89:1-11. [DOI: 10.1016/j.mri.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/09/2021] [Accepted: 01/23/2022] [Indexed: 01/30/2023]
|
109
|
Fu Y, Zhang H, Morris ED, Glide-Hurst CK, Pai S, Traverso A, Wee L, Hadzic I, Lønne PI, Shen C, Liu T, Yang X. Artificial Intelligence in Radiation Therapy. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:158-181. [PMID: 35992632 PMCID: PMC9385128 DOI: 10.1109/trpms.2021.3107454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Artificial intelligence (AI) has great potential to transform the clinical workflow of radiotherapy. Since the introduction of deep neural networks, many AI-based methods have been proposed to address challenges in different aspects of radiotherapy. Commercial vendors have started to release AI-based tools that can be readily integrated to the established clinical workflow. To show the recent progress in AI-aided radiotherapy, we have reviewed AI-based studies in five major aspects of radiotherapy including image reconstruction, image registration, image segmentation, image synthesis, and automatic treatment planning. In each section, we summarized and categorized the recently published methods, followed by a discussion of the challenges, concerns, and future development. Given the rapid development of AI-aided radiotherapy, the efficiency and effectiveness of radiotherapy in the future could be substantially improved through intelligent automation of various aspects of radiotherapy.
Collapse
Affiliation(s)
- Yabo Fu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Hao Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric D. Morris
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Carri K. Glide-Hurst
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Suraj Pai
- Maastricht University Medical Centre, Netherlands
| | | | - Leonard Wee
- Maastricht University Medical Centre, Netherlands
| | | | - Per-Ivar Lønne
- Department of Medical Physics, Oslo University Hospital, PO Box 4953 Nydalen, 0424 Oslo, Norway
| | - Chenyang Shen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75002, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
110
|
Maneas E, Hauptmann A, Alles EJ, Xia W, Vercauteren T, Ourselin S, David AL, Arridge S, Desjardins AE. Deep Learning for Instrumented Ultrasonic Tracking: From Synthetic Training Data to In Vivo Application. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:543-552. [PMID: 34748488 DOI: 10.1109/tuffc.2021.3126530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Instrumented ultrasonic tracking is used to improve needle localization during ultrasound guidance of minimally invasive percutaneous procedures. Here, it is implemented with transmitted ultrasound pulses from a clinical ultrasound imaging probe, which is detected by a fiber-optic hydrophone integrated into a needle. The detected transmissions are then reconstructed to form the tracking image. Two challenges are considered with the current implementation of ultrasonic tracking. First, tracking transmissions are interleaved with the acquisition of B-mode images, and thus, the effective B-mode frame rate is reduced. Second, it is challenging to achieve an accurate localization of the needle tip when the signal-to-noise ratio is low. To address these challenges, we present a framework based on a convolutional neural network (CNN) to maintain spatial resolution with fewer tracking transmissions and enhance signal quality. A major component of the framework included the generation of realistic synthetic training data. The trained network was applied to unseen synthetic data and experimental in vivo tracking data. The performance of needle localization was investigated when reconstruction was performed with fewer (up to eightfold) tracking transmissions. CNN-based processing of conventional reconstructions showed that the axial and lateral spatial resolutions could be improved even with an eightfold reduction in tracking transmissions. The framework presented in this study will significantly improve the performance of ultrasonic tracking, leading to faster image acquisition rates and increased localization accuracy.
Collapse
|
111
|
Bai H, Pan J, Xiang X, Tang J. Self-Guided Image Dehazing Using Progressive Feature Fusion. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:1217-1229. [PMID: 35015639 DOI: 10.1109/tip.2022.3140609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We propose an effective image dehazing algorithm which explores useful information from the input hazy image itself as the guidance for the haze removal. The proposed algorithm first uses a deep pre-dehazer to generate an intermediate result, and takes it as the reference image due to the clear structures it contains. To better explore the guidance information in the generated reference image, it then develops a progressive feature fusion module to fuse the features of the hazy image and the reference image. Finally, the image restoration module takes the fused features as input to use the guidance information for better clear image restoration. All the proposed modules are trained in an end-to-end fashion, and we show that the proposed deep pre-dehazer with progressive feature fusion module is able to help haze removal. Extensive experimental results show that the proposed algorithm performs favorably against state-of-the-art methods on the widely-used dehazing benchmark datasets as well as real-world hazy images.
Collapse
|
112
|
Cycloidal CT with CNN-based sinogram completion and in-scan generation of training data. Sci Rep 2022; 12:893. [PMID: 35042961 PMCID: PMC8766453 DOI: 10.1038/s41598-022-04910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022] Open
Abstract
In x-ray computed tomography (CT), the achievable image resolution is typically limited by several pre-fixed characteristics of the x-ray source and detector. Structuring the x-ray beam using a mask with alternating opaque and transmitting septa can overcome this limit. However, the use of a mask imposes an undersampling problem: to obtain complete datasets, significant lateral sample stepping is needed in addition to the sample rotation, resulting in high x-ray doses and long acquisition times. Cycloidal CT, an alternative scanning scheme by which the sample is rotated and translated simultaneously, can provide high aperture-driven resolution without sample stepping, resulting in a lower radiation dose and faster scans. However, cycloidal sinograms are incomplete and must be restored before tomographic images can be computed. In this work, we demonstrate that high-quality images can be reconstructed by applying the recently proposed Mixed Scale Dense (MS-D) convolutional neural network (CNN) to this task. We also propose a novel training approach by which training data are acquired as part of each scan, thus removing the need for large sets of pre-existing reference data, the acquisition of which is often not practicable or possible. We present results for both simulated datasets and real-world data, showing that the combination of cycloidal CT and machine learning-based data recovery can lead to accurate high-resolution images at a limited dose.
Collapse
|
113
|
Eldar YC, Li Y, Ye JC. Mathematical Foundations of AIM. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
114
|
Gallet A, Rigby S, Tallman TN, Kong X, Hajirasouliha I, Liew A, Liu D, Chen L, Hauptmann A, Smyl D. Structural engineering from an inverse problems perspective. Proc Math Phys Eng Sci 2022; 478:20210526. [PMID: 35153609 PMCID: PMC8791046 DOI: 10.1098/rspa.2021.0526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/07/2021] [Indexed: 01/16/2023] Open
Abstract
The field of structural engineering is vast, spanning areas from the design of new infrastructure to the assessment of existing infrastructure. From the onset, traditional entry-level university courses teach students to analyse structural responses given data including external forces, geometry, member sizes, restraint, etc.-characterizing a forward problem (structural causalities → structural response). Shortly thereafter, junior engineers are introduced to structural design where they aim to, for example, select an appropriate structural form for members based on design criteria, which is the inverse of what they previously learned. Similar inverse realizations also hold true in structural health monitoring and a number of structural engineering sub-fields (response → structural causalities). In this light, we aim to demonstrate that many structural engineering sub-fields may be fundamentally or partially viewed as inverse problems and thus benefit via the rich and established methodologies from the inverse problems community. To this end, we conclude that the future of inverse problems in structural engineering is inexorably linked to engineering education and machine learning developments.
Collapse
Affiliation(s)
- A. Gallet
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | - S. Rigby
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | - T. N. Tallman
- School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA
| | - X. Kong
- Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC, USA
| | - I. Hajirasouliha
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | - A. Liew
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | - D. Liu
- School of Physical Sciences, University of Science and Technology of China, Hefei, People’s Republic of China
| | - L. Chen
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | - A. Hauptmann
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
- Department of Computer Science, University College London, London, UK
| | - D. Smyl
- Department of Civil, Coastal, and Environmental Engineering, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
115
|
Zeng D, Wang L, Geng M, Li S, Deng Y, Xie Q, Li D, Zhang H, Li Y, Xu Z, Meng D, Ma J. Noise-Generating-Mechanism-Driven Unsupervised Learning for Low-Dose CT Sinogram Recovery. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3083361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
116
|
Fan Y, Wang H, Gemmeke H, Hopp T, Hesser J. Model-data-driven image reconstruction with neural networks for ultrasound computed tomography breast imaging. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
117
|
Pelt DM, Hendriksen AA, Batenburg KJ. Foam-like phantoms for comparing tomography algorithms. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:254-265. [PMID: 34985443 PMCID: PMC8733984 DOI: 10.1107/s1600577521011322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Tomographic algorithms are often compared by evaluating them on certain benchmark datasets. For fair comparison, these datasets should ideally (i) be challenging to reconstruct, (ii) be representative of typical tomographic experiments, (iii) be flexible to allow for different acquisition modes, and (iv) include enough samples to allow for comparison of data-driven algorithms. Current approaches often satisfy only some of these requirements, but not all. For example, real-world datasets are typically challenging and representative of a category of experimental examples, but are restricted to the acquisition mode that was used in the experiment and are often limited in the number of samples. Mathematical phantoms are often flexible and can sometimes produce enough samples for data-driven approaches, but can be relatively easy to reconstruct and are often not representative of typical scanned objects. In this paper, we present a family of foam-like mathematical phantoms that aims to satisfy all four requirements simultaneously. The phantoms consist of foam-like structures with more than 100000 features, making them challenging to reconstruct and representative of common tomography samples. Because the phantoms are computer-generated, varying acquisition modes and experimental conditions can be simulated. An effectively unlimited number of random variations of the phantoms can be generated, making them suitable for data-driven approaches. We give a formal mathematical definition of the foam-like phantoms, and explain how they can be generated and used in virtual tomographic experiments in a computationally efficient way. In addition, several 4D extensions of the 3D phantoms are given, enabling comparisons of algorithms for dynamic tomography. Finally, example phantoms and tomographic datasets are given, showing that the phantoms can be effectively used to make fair and informative comparisons between tomography algorithms.
Collapse
Affiliation(s)
| | | | - Kees Joost Batenburg
- LIACS, Leiden University, Leiden, The Netherlands
- Computational Imaging Group, CWI, Amsterdam, The Netherlands
| |
Collapse
|
118
|
Zeng G, Guo Y, Zhan J, Wang Z, Lai Z, Du X, Qu X, Guo D. A review on deep learning MRI reconstruction without fully sampled k-space. BMC Med Imaging 2021; 21:195. [PMID: 34952572 PMCID: PMC8710001 DOI: 10.1186/s12880-021-00727-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is an effective auxiliary diagnostic method in clinical medicine, but it has always suffered from the problem of long acquisition time. Compressed sensing and parallel imaging are two common techniques to accelerate MRI reconstruction. Recently, deep learning provides a new direction for MRI, while most of them require a large number of data pairs for training. However, there are many scenarios where fully sampled k-space data cannot be obtained, which will seriously hinder the application of supervised learning. Therefore, deep learning without fully sampled data is indispensable. MAIN TEXT In this review, we first introduce the forward model of MRI as a classic inverse problem, and briefly discuss the connection of traditional iterative methods to deep learning. Next, we will explain how to train reconstruction network without fully sampled data from the perspective of obtaining prior information. CONCLUSION Although the reviewed methods are used for MRI reconstruction, they can also be extended to other areas where ground-truth is not available. Furthermore, we may anticipate that the combination of traditional methods and deep learning will produce better reconstruction results.
Collapse
Affiliation(s)
- Gushan Zeng
- School of Computer and Information Engineering, Fujian Engineering Research Center for Medical Data Mining and Application, Xiamen University of Technology, Xiamen, China
| | - Yi Guo
- School of Computer and Information Engineering, Fujian Engineering Research Center for Medical Data Mining and Application, Xiamen University of Technology, Xiamen, China
| | - Jiaying Zhan
- School of Computer and Information Engineering, Fujian Engineering Research Center for Medical Data Mining and Application, Xiamen University of Technology, Xiamen, China
| | - Zi Wang
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Zongying Lai
- School of Information Engineering, Jimei University, Xiamen, China
| | - Xiaofeng Du
- School of Computer and Information Engineering, Fujian Engineering Research Center for Medical Data Mining and Application, Xiamen University of Technology, Xiamen, China
| | - Xiaobo Qu
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Di Guo
- School of Computer and Information Engineering, Fujian Engineering Research Center for Medical Data Mining and Application, Xiamen University of Technology, Xiamen, China.
| |
Collapse
|
119
|
Ma G, Zhao X, Zhu Y, Zhang H. Projection-to-image transform frame: a lightweight block reconstruction network (LBRN) for computed tomography. Phys Med Biol 2021; 67. [PMID: 34879357 DOI: 10.1088/1361-6560/ac4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022]
Abstract
To solve the problem of learning based computed tomography (CT) reconstruction, several reconstruction networks were invented. However, applying neural network to tomographic reconstruction still remains challenging due to unacceptable memory space requirement. In this study, we presents a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which, respectively, correspond to the filter and back-projection of FBP method. The first module of LBRN decouples the relationship of Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection module, can use the block reconstruction strategy. Due to each image block is only connected with part filtered projection data, the network structure is greatly simplified and the parameters of the whole network is dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest (ROI), metal artifacts reduction and real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.
Collapse
Affiliation(s)
- Genwei Ma
- Capital Normal University School of Mathematical Sciences, ., Beijing, 100037, CHINA
| | - Xing Zhao
- Capital Normal University School of Mathematical Sciences, West Third Ring Road North, Beijing, 100037, CHINA
| | - Yining Zhu
- school of mathmatical, Capital Normal University, ., Beijing, 100037, CHINA
| | - Huitao Zhang
- Capital Normal University School of Mathematical Sciences, ., Beijing, 100037, CHINA
| |
Collapse
|
120
|
Wu D, Kim K, Li Q. Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning. Med Phys 2021; 48:7657-7672. [PMID: 34791655 PMCID: PMC11216369 DOI: 10.1002/mp.15101] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Deep learning-based image denoising and reconstruction methods demonstrated promising performance on low-dose CT imaging in recent years. However, most existing deep learning-based low-dose CT reconstruction methods require normal-dose images for training. Sometimes such clean images do not exist such as for dynamic CT imaging or very large patients. The purpose of this work is to develop a low-dose CT image reconstruction algorithm based on deep learning which does not need clean images for training. METHODS In this paper, we proposed a novel reconstruction algorithm where the image prior was expressed via the Noise2Noise network, whose weights were fine-tuned along with the image during the iterative reconstruction. The Noise2Noise network built a self-consistent loss by projection data splitting and mapping the corresponding filtered backprojection (FBP) results to each other with a deep neural network. Besides, the network weights are optimized along with the image to be reconstructed under an alternating optimization scheme. In the proposed method, no clean image is needed for network training and the testing-time fine-tuning leads to optimization for each reconstruction. RESULTS We used the 2016 Low-dose CT Challenge dataset to validate the feasibility of the proposed method. We compared its performance to several existing iterative reconstruction algorithms that do not need clean training data, including total variation, non-local mean, convolutional sparse coding, and Noise2Noise denoising. It was demonstrated that the proposed Noise2Noise reconstruction achieved better RMSE, SSIM and texture preservation compared to the other methods. The performance is also robust against the different noise levels, hyperparameters, and network structures used in the reconstruction. Furthermore, we also demonstrated that the proposed methods achieved competitive results without any pre-training of the network at all, that is, using randomly initialized network weights during testing. The proposed iterative reconstruction algorithm also has empirical convergence with and without network pre-training. CONCLUSIONS The proposed Noise2Noise reconstruction method can achieve promising image quality in low-dose CT image reconstruction. The method works both with and without pre-training, and only noisy data are required for pre-training.
Collapse
Affiliation(s)
- Dufan Wu
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kyungsang Kim
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Quanzheng Li
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
121
|
Xia W, Lu Z, Huang Y, Shi Z, Liu Y, Chen H, Chen Y, Zhou J, Zhang Y. MAGIC: Manifold and Graph Integrative Convolutional Network for Low-Dose CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3459-3472. [PMID: 34110990 DOI: 10.1109/tmi.2021.3088344] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low-dose computed tomography (LDCT) scans, which can effectively alleviate the radiation problem, will degrade the imaging quality. In this paper, we propose a novel LDCT reconstruction network that unrolls the iterative scheme and performs in both image and manifold spaces. Because patch manifolds of medical images have low-dimensional structures, we can build graphs from the manifolds. Then, we simultaneously leverage the spatial convolution to extract the local pixel-level features from the images and incorporate the graph convolution to analyze the nonlocal topological features in manifold space. The experiments show that our proposed method outperforms both the quantitative and qualitative aspects of state-of-the-art methods. In addition, aided by a projection loss component, our proposed method also demonstrates superior performance for semi-supervised learning. The network can remove most noise while maintaining the details of only 10% (40 slices) of the training data labeled.
Collapse
|
122
|
Su T, Cui Z, Yang J, Zhang Y, Liu J, Zhu J, Gao X, Fang S, Zheng H, Ge Y, Liang D. Generalized deep iterative reconstruction for sparse-view CT imaging. Phys Med Biol 2021; 67. [PMID: 34847538 DOI: 10.1088/1361-6560/ac3eae] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022]
Abstract
Sparse-view CT is a promising approach in reducing the X-ray radiation dose in clinical CT imaging. However, the CT images reconstructed from the conventional filtered backprojection (FBP) algorithm suffer from severe streaking artifacts. Iterative reconstruction (IR) algorithms have been widely adopted to mitigate these streaking artifacts, but they may prolong the CT imaging time due to the intense data-specific computations. Recently, model-driven deep learning (DL) CT image reconstruction method, which unrolls the iterative optimization procedures into the deep neural network, has shown exciting prospect in improving the image quality and shortening the reconstruction time. In this work, we explore the generalized unrolling scheme for such iterative model to further enhance its performance on sparse-view CT imaging. By using it, the iteration parameters, regularizer term, data-fidelity term and even the mathematical operations are all assumed to be learned and optimized via the network training. Results from the numerical and experimental sparse-view CT imaging demonstrate that the newly proposed network with the maximum generalization provides the best reconstruction performance.
Collapse
Affiliation(s)
- Ting Su
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences, Shenzhen, CHINA
| | - Zhuoxu Cui
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences, Shenzhen, CHINA
| | - Jiecheng Yang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences, Shenzhen, CHINA
| | - Yunxin Zhang
- Beijing Jishuitan Hospital, Beijing, Beijing, CHINA
| | - Jian Liu
- Beijing Tiantan Hospital, Beijing, CHINA
| | - Jiongtao Zhu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences, Shenzhen, CHINA
| | - Xiang Gao
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences, Shenzhen, CHINA
| | - Shibo Fang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences, Shenzhen, CHINA
| | - Hairong Zheng
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Shenzhen Institutes of Advanced Technology, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P.R.China, Shenzhen, CHINA
| | - Yongshuai Ge
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences, Shenzhen, 518055, CHINA
| | - Dong Liang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P.R.China, Shenzhen, 518055, CHINA
| |
Collapse
|
123
|
Gassenmaier S, Küstner T, Nickel D, Herrmann J, Hoffmann R, Almansour H, Afat S, Nikolaou K, Othman AE. Deep Learning Applications in Magnetic Resonance Imaging: Has the Future Become Present? Diagnostics (Basel) 2021; 11:2181. [PMID: 34943418 PMCID: PMC8700442 DOI: 10.3390/diagnostics11122181] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Deep learning technologies and applications demonstrate one of the most important upcoming developments in radiology. The impact and influence of these technologies on image acquisition and reporting might change daily clinical practice. The aim of this review was to present current deep learning technologies, with a focus on magnetic resonance image reconstruction. The first part of this manuscript concentrates on the basic technical principles that are necessary for deep learning image reconstruction. The second part highlights the translation of these techniques into clinical practice. The third part outlines the different aspects of image reconstruction techniques, and presents a review of the current literature regarding image reconstruction and image post-processing in MRI. The promising results of the most recent studies indicate that deep learning will be a major player in radiology in the upcoming years. Apart from decision and diagnosis support, the major advantages of deep learning magnetic resonance imaging reconstruction techniques are related to acquisition time reduction and the improvement of image quality. The implementation of these techniques may be the solution for the alleviation of limited scanner availability via workflow acceleration. It can be assumed that this disruptive technology will change daily routines and workflows permanently.
Collapse
Affiliation(s)
- Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
| | - Thomas Küstner
- Department of Diagnostic and Interventional Radiology, Medical Image and Data Analysis (MIDAS.lab), Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany;
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany;
| | - Judith Herrmann
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
| | - Rüdiger Hoffmann
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
| | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
| | - Ahmed E. Othman
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany; (S.G.); (J.H.); (R.H.); (H.A.); (S.A.); (K.N.)
- Department of Neuroradiology, University Medical Center, 55131 Mainz, Germany
| |
Collapse
|
124
|
Learned Primal Dual Reconstruction for PET. J Imaging 2021; 7:jimaging7120248. [PMID: 34940715 PMCID: PMC8707496 DOI: 10.3390/jimaging7120248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
We have adapted, implemented and trained the Learned Primal Dual algorithm suggested by Adler and Öktem and evaluated its performance in reconstructing projection data from our PET scanner. Learned Primal Dual reconstructions are compared to Maximum Likelihood Expectation Maximisation (MLEM) reconstructions. Different strategies for training are also compared. Whenever the noise level of the data to reconstruct is sufficiently represented in the training set, the Learned Primal Dual algorithm performs well on the recovery of the activity concentrations and on noise reduction as compared to MLEM. The algorithm is also shown to be robust against the appearance of artefacts, even when the images that are to be reconstructed present features were not present in the training set. Once trained, the algorithm reconstructs images in few seconds or less.
Collapse
|
125
|
Denker A, Schmidt M, Leuschner J, Maass P. Conditional Invertible Neural Networks for Medical Imaging. J Imaging 2021; 7:243. [PMID: 34821874 PMCID: PMC8624162 DOI: 10.3390/jimaging7110243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/02/2022] Open
Abstract
Over recent years, deep learning methods have become an increasingly popular choice for solving tasks from the field of inverse problems. Many of these new data-driven methods have produced impressive results, although most only give point estimates for the reconstruction. However, especially in the analysis of ill-posed inverse problems, the study of uncertainties is essential. In our work, we apply generative flow-based models based on invertible neural networks to two challenging medical imaging tasks, i.e., low-dose computed tomography and accelerated medical resonance imaging. We test different architectures of invertible neural networks and provide extensive ablation studies. In most applications, a standard Gaussian is used as the base distribution for a flow-based model. Our results show that the choice of a radial distribution can improve the quality of reconstructions.
Collapse
Affiliation(s)
- Alexander Denker
- Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 5, 28359 Bremen, Germany; (M.S.); (J.L.); (P.M.)
| | | | | | | |
Collapse
|
126
|
Image Denoising Using Nonlocal Regularized Deep Image Prior. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Deep neural networks have shown great potential in various low-level vision tasks, leading to several state-of-the-art image denoising techniques. Training a deep neural network in a supervised fashion usually requires the collection of a great number of examples and the consumption of a significant amount of time. However, the collection of training samples is very difficult for some application scenarios, such as the full-sampled data of magnetic resonance imaging and the data of satellite remote sensing imaging. In this paper, we overcome the problem of a lack of training data by using an unsupervised deep-learning-based method. Specifically, we propose a deep-learning-based method based on the deep image prior (DIP) method, which only requires a noisy image as training data, without any clean data. It infers the natural images with random inputs and the corrupted observation with the help of performing correction via a convolutional network. We improve the original DIP method as follows: Firstly, the original optimization objective function is modified by adding nonlocal regularizers, consisting of a spatial filter and a frequency domain filter, to promote the gradient sparsity of the solution. Secondly, we solve the optimization problem with the alternating direction method of multipliers (ADMM) framework, resulting in two separate optimization problems, including a symmetric U-Net training step and a plug-and-play proximal denoising step. As such, the proposed method exploits the powerful denoising ability of both deep neural networks and nonlocal regularizations. Experiments validate the effectiveness of leveraging a combination of DIP and nonlocal regularizers, and demonstrate the superior performance of the proposed method both quantitatively and visually compared with the original DIP method.
Collapse
|
127
|
Zhang Y, Hu D, Zhao Q, Quan G, Liu J, Liu Q, Zhang Y, Coatrieux G, Chen Y, Yu H. CLEAR: Comprehensive Learning Enabled Adversarial Reconstruction for Subtle Structure Enhanced Low-Dose CT Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3089-3101. [PMID: 34270418 DOI: 10.1109/tmi.2021.3097808] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
X-ray computed tomography (CT) is of great clinical significance in medical practice because it can provide anatomical information about the human body without invasion, while its radiation risk has continued to attract public concerns. Reducing the radiation dose may induce noise and artifacts to the reconstructed images, which will interfere with the judgments of radiologists. Previous studies have confirmed that deep learning (DL) is promising for improving low-dose CT imaging. However, almost all the DL-based methods suffer from subtle structure degeneration and blurring effect after aggressive denoising, which has become the general challenging issue. This paper develops the Comprehensive Learning Enabled Adversarial Reconstruction (CLEAR) method to tackle the above problems. CLEAR achieves subtle structure enhanced low-dose CT imaging through a progressive improvement strategy. First, the generator established on the comprehensive domain can extract more features than the one built on degraded CT images and directly map raw projections to high-quality CT images, which is significantly different from the routine GAN practice. Second, a multi-level loss is assigned to the generator to push all the network components to be updated towards high-quality reconstruction, preserving the consistency between generated images and gold-standard images. Finally, following the WGAN-GP modality, CLEAR can migrate the real statistical properties to the generated images to alleviate over-smoothing. Qualitative and quantitative analyses have demonstrated the competitive performance of CLEAR in terms of noise suppression, structural fidelity and visual perception improvement.
Collapse
|
128
|
Xia W, Lu Z, Huang Y, Liu Y, Chen H, Zhou J, Zhang Y. CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3065-3076. [PMID: 34086564 DOI: 10.1109/tmi.2021.3085839] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The current mainstream computed tomography (CT) reconstruction methods based on deep learning usually need to fix the scanning geometry and dose level, which significantly aggravates the training costs and requires more training data for real clinical applications. In this paper, we propose a parameter-dependent framework (PDF) that trains a reconstruction network with data originating from multiple alternative geometries and dose levels simultaneously. In the proposed PDF, the geometry and dose level are parameterized and fed into two multilayer perceptrons (MLPs). The outputs of the MLPs are used to modulate the feature maps of the CT reconstruction network, which condition the network outputs on different geometries and dose levels. The experiments show that our proposed method can obtain competitive performance compared to the original network trained with either specific or mixed geometry and dose level, which can efficiently save extra training costs for multiple geometries and dose levels.
Collapse
|
129
|
Wu W, Hu D, Niu C, Yu H, Vardhanabhuti V, Wang G. DRONE: Dual-Domain Residual-based Optimization NEtwork for Sparse-View CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3002-3014. [PMID: 33956627 PMCID: PMC8591633 DOI: 10.1109/tmi.2021.3078067] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and optical imaging. Among various topics, sparse-view CT remains a challenge which targets a decent image reconstruction from very few projections. To address this challenge, in this article we propose a Dual-domain Residual-based Optimization NEtwork (DRONE). DRONE consists of three modules respectively for embedding, refinement, and awareness. In the embedding module, a sparse sinogram is first extended. Then, sparse-view artifacts are effectively suppressed in the image domain. After that, the refinement module recovers image details in the residual data and image domains synergistically. Finally, the results from the embedding and refinement modules in the data and image domains are regularized for optimized image quality in the awareness module, which ensures the consistency between measurements and images with the kernel awareness of compressed sensing. The DRONE network is trained, validated, and tested on preclinical and clinical datasets, demonstrating its merits in edge preservation, feature recovery, and reconstruction accuracy.
Collapse
|
130
|
Tao X, Wang Y, Lin L, Hong Z, Ma J. Learning to Reconstruct CT Images From the VVBP-Tensor. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3030-3041. [PMID: 34138703 DOI: 10.1109/tmi.2021.3090257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deep learning (DL) is bringing a big movement in the field of computed tomography (CT) imaging. In general, DL for CT imaging can be applied by processing the projection or the image data with trained deep neural networks (DNNs), unrolling the iterative reconstruction as a DNN for training, or training a well-designed DNN to directly reconstruct the image from the projection. In all of these applications, the whole or part of the DNNs work in the projection or image domain alone or in combination. In this study, instead of focusing on the projection or image, we train DNNs to reconstruct CT images from the view-by-view backprojection tensor (VVBP-Tensor). The VVBP-Tensor is the 3D data before summation in backprojection. It contains structures of the scanned object after applying a sorting operation. Unlike the image or projection that provides compressed information due to the integration/summation step in forward or back projection, the VVBP-Tensor provides lossless information for processing, allowing the trained DNNs to preserve fine details of the image. We develop a learning strategy by inputting slices of the VVBP-Tensor as feature maps and outputting the image. Such strategy can be viewed as a generalization of the summation step in conventional filtered backprojection reconstruction. Numerous experiments reveal that the proposed VVBP-Tensor domain learning framework obtains significant improvement over the image, projection, and hybrid projection-image domain learning frameworks. We hope the VVBP-Tensor domain learning framework could inspire algorithm development for DL-based CT imaging.
Collapse
|
131
|
Huang Y, Preuhs A, Manhart M, Lauritsch G, Maier A. Data Extrapolation From Learned Prior Images for Truncation Correction in Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3042-3053. [PMID: 33844627 DOI: 10.1109/tmi.2021.3072568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Data truncation is a common problem in computed tomography (CT). Truncation causes cupping artifacts inside the field-of-view (FOV) and anatomical structures missing outside the FOV. Deep learning has achieved impressive results in CT reconstruction from limited data. However, its robustness is still a concern for clinical applications. Although the image quality of learning-based compensation schemes may be inadequate for clinical diagnosis, they can provide prior information for more accurate extrapolation than conventional heuristic extrapolation methods. With extrapolated projection, a conventional image reconstruction algorithm can be applied to obtain a final reconstruction. In this work, a general plug-and-play (PnP) method for truncation correction is proposed based on this idea, where various deep learning methods and conventional reconstruction algorithms can be plugged in. Such a PnP method integrates data consistency for measured data and learned prior image information for truncated data. This shows to have better robustness and interpretability than deep learning only. To demonstrate the efficacy of the proposed PnP method, two state-of-the-art deep learning methods, FBPConvNet and Pix2pixGAN, are investigated for truncation correction in cone-beam CT in noise-free and noisy cases. Their robustness is evaluated by showing false negative and false positive lesion cases. With our proposed PnP method, false lesion structures are corrected for both deep learning methods. For FBPConvNet, the root-mean-square error (RMSE) inside the FOV can be improved from 92HU to around 30HU by PnP in the noisy case. Pix2pixGAN solely achieves better image quality than FBPConvNet solely for truncation correction in general. PnP further improves the RMSE inside the FOV from 42HU to around 27HU for Pix2pixGAN. The efficacy of PnP is also demonstrated on real clinical head data.
Collapse
|
132
|
Zhi S, KachelrieB M, Pan F, Mou X. CycN-Net: A Convolutional Neural Network Specialized for 4D CBCT Images Refinement. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3054-3064. [PMID: 34010129 DOI: 10.1109/tmi.2021.3081824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Four-dimensional cone-beam computed tomography (4D CBCT) has been developed to provide a sequence of phase-resolved reconstructions in image-guided radiation therapy. However, 4D CBCT images are degraded by severe streaking artifacts and noise because the phase-resolved image is an extremely sparse-view CT procedure wherein a few under-sampled projections are used for the reconstruction of each phase. Aiming at improving the overall quality of 4D CBCT images, we proposed two CNN models, named N-Net and CycN-Net, respectively, by fully excavating the inherent property of 4D CBCT. To be specific, the proposed N-Net incorporates the prior image reconstructed from entire projection data based on U-Net to boost the image quality for each phase-resolved image. Based on N-Net, a temporal correlation among the phase-resolved images is also considered by the proposed CycN-Net. Extensive experiments on both XCAT simulation data and real patient 4D CBCT datasets were carried out to verify the feasibility of the proposed CNNs. Both networks can effectively suppress streaking artifacts and noise while restoring the distinct features simultaneously, compared with the existing CNN models and two state-of-the-art iterative algorithms. Moreover, the proposed method is robust in handling complicated tasks of various patient datasets and imaging devices, which implies its excellent generalization ability.
Collapse
|
133
|
Ye S, Li Z, McCann MT, Long Y, Ravishankar S. Unified Supervised-Unsupervised (SUPER) Learning for X-Ray CT Image Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2986-3001. [PMID: 34232871 DOI: 10.1109/tmi.2021.3095310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Traditional model-based image reconstruction (MBIR) methods combine forward and noise models with simple object priors. Recent machine learning methods for image reconstruction typically involve supervised learning or unsupervised learning, both of which have their advantages and disadvantages. In this work, we propose a unified supervised-unsupervised (SUPER) learning framework for X-ray computed tomography (CT) image reconstruction. The proposed learning formulation combines both unsupervised learning-based priors (or even simple analytical priors) together with (supervised) deep network-based priors in a unified MBIR framework based on a fixed point iteration analysis. The proposed training algorithm is also an approximate scheme for a bilevel supervised training optimization problem, wherein the network-based regularizer in the lower-level MBIR problem is optimized using an upper-level reconstruction loss. The training problem is optimized by alternating between updating the network weights and iteratively updating the reconstructions based on those weights. We demonstrate the learned SUPER models' efficacy for low-dose CT image reconstruction, for which we use the NIH AAPM Mayo Clinic Low Dose CT Grand Challenge dataset for training and testing. In our experiments, we studied different combinations of supervised deep network priors and unsupervised learning-based or analytical priors. Both numerical and visual results show the superiority of the proposed unified SUPER methods over standalone supervised learning-based methods, iterative MBIR methods, and variations of SUPER obtained via ablation studies. We also show that the proposed algorithm converges rapidly in practice.
Collapse
|
134
|
Ketola JHJ, Heino H, Juntunen MAK, Nieminen MT, Siltanen S, Inkinen SI. Generative adversarial networks improve interior computed tomography angiography reconstruction. Biomed Phys Eng Express 2021; 7. [PMID: 34673559 DOI: 10.1088/2057-1976/ac31cb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022]
Abstract
In interior computed tomography (CT), the x-ray beam is collimated to a limited field-of-view (FOV) (e.g. the volume of the heart) to decrease exposure to adjacent organs, but the resulting image has a severe truncation artifact when reconstructed with traditional filtered back-projection (FBP) type algorithms. In some examinations, such as cardiac or dentomaxillofacial imaging, interior CT could be used to achieve further dose reductions. In this work, we describe a deep learning (DL) method to obtain artifact-free images from interior CT angiography. Our method employs the Pix2Pix generative adversarial network (GAN) in a two-stage process: (1) An extended sinogram is computed from a truncated sinogram with one GAN model, and (2) the FBP reconstruction obtained from that extended sinogram is used as an input to another GAN model that improves the quality of the interior reconstruction. Our double GAN (DGAN) model was trained with 10 000 truncated sinograms simulated from real computed tomography angiography slice images. Truncated sinograms (input) were used with original slice images (target) in training to yield an improved reconstruction (output). DGAN performance was compared with the adaptive de-truncation method, total variation regularization, and two reference DL methods: FBPConvNet, and U-Net-based sinogram extension (ES-UNet). Our DGAN method and ES-UNet yielded the best root-mean-squared error (RMSE) (0.03 ± 0.01), and structural similarity index (SSIM) (0.92 ± 0.02) values, and reference DL methods also yielded good results. Furthermore, we performed an extended FOV analysis by increasing the reconstruction area by 10% and 20%. In both cases, the DGAN approach yielded best results at RMSE (0.03 ± 0.01 and 0.04 ± 0.01 for the 10% and 20% cases, respectively), peak signal-to-noise ratio (PSNR) (30.5 ± 2.6 dB and 28.6 ± 2.6 dB), and SSIM (0.90 ± 0.02 and 0.87 ± 0.02). In conclusion, our method was able to not only reconstruct the interior region with improved image quality, but also extend the reconstructed FOV by 20%.
Collapse
Affiliation(s)
- Juuso H J Ketola
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, FI-90014, Finland.,The South Savo Social and Health Care Authority, Mikkeli Central Hospital, FI-50100, Finland
| | - Helinä Heino
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, FI-90014, Finland
| | - Mikael A K Juntunen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, FI-90014, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, FI-90029, Finland
| | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, FI-90014, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, FI-90029, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, FI-90014, Finland
| | - Samuli Siltanen
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, FI-00014, Finland
| | - Satu I Inkinen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, FI-90014, Finland
| |
Collapse
|
135
|
Xu J, Noo F. Patient-specific hyperparameter learning for optimization-based CT image reconstruction. Phys Med Biol 2021; 66:10.1088/1361-6560/ac0f9a. [PMID: 34186530 PMCID: PMC8584383 DOI: 10.1088/1361-6560/ac0f9a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/29/2021] [Indexed: 11/11/2022]
Abstract
We propose a hyperparameter learning framework that learnspatient-specifichyperparameters for optimization-based image reconstruction problems for x-ray CT applications. The framework consists of two functional modules: (1) a hyperparameter learning module parameterized by a convolutional neural network, (2) an image reconstruction module that takes as inputs both the noisy sinogram and the hyperparameters from (1) and generates the reconstructed images. As a proof-of-concept study, in this work we focus on a subclass of optimization-based image reconstruction problems with exactly computable solutions so that the whole network can be trained end-to-end in an efficient manner. Unlike existing hyperparameter learning methods, our proposed framework generates patient-specific hyperparameters from the sinogram of the same patient. Numerical studies demonstrate the effectiveness of our proposed approach compared to bi-level optimization.
Collapse
Affiliation(s)
- Jingyan Xu
- Department of Radiology, Johns Hopkins University, United States of America
| | - Frederic Noo
- Department of Radiology and Imaging Sciences, University of Utah, United States of America
| |
Collapse
|
136
|
Zhi S, Kachelrieß M, Mou X. Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction. Med Phys 2021; 48:6421-6436. [PMID: 34514608 DOI: 10.1002/mp.15009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Four-dimensional cone-beam computed tomography (4D CBCT) is developed to reconstruct a sequence of phase-resolved images, which could assist in verifying the patient's position and offering information for cancer treatment planning. However, 4D CBCT images suffer from severe streaking artifacts and noise due to the extreme sparse-view CT reconstruction problem for each phase. As a result, it would cause inaccuracy of treatment estimation. The purpose of this paper was to develop a new 4D CBCT reconstruction method to generate a series of high spatiotemporal 4D CBCT images. METHODS Considering the advantage of (DL) on representing structural features and correlation between neighboring pixels effectively, we construct a novel DL-based method for the 4D CBCT reconstruction. In this study, both a motion-aware dictionary and a spatially structural 2D dictionary are trained for 4D CBCT by excavating the spatiotemporal correlation among ten phase-resolved images and the spatial information in each image, respectively. Specifically, two reconstruction models are produced in this study. The first one is the motion-aware dictionary learning-based 4D CBCT algorithm, called motion-aware DL based 4D CBCT (MaDL). The second one is the MaDL equipped with a prior knowledge constraint, called pMaDL. Qualitative and quantitative evaluations are performed using a 4D extended cardiac torso (XCAT) phantom, simulated patient data, and two sets of patient data sets. Several state-of-the-art 4D CBCT algorithms, such as the McKinnon-Bates (MKB) algorithm, prior image constrained compressed sensing (PICCS), and the high-quality initial image-guided 4D CBCT reconstruction method (HQI-4DCBCT) are applied for comparison to validate the performance of the proposed MaDL and prior constraint MaDL (pMaDL) pmadl reconstruction frameworks. RESULTS Experimental results validate that the proposed MaDL can output the reconstructions with few streaking artifacts but some structural information such as tumors and blood vessels, may still be missed. Meanwhile, the results of the proposed pMaDL demonstrate an improved spatiotemporal resolution of the reconstructed 4D CBCT images. In these improved 4D CBCT reconstructions, streaking artifacts are suppressed primarily and detailed structures are also restored. Regarding the XCAT phantom, quantitative evaluations indicate that an average of 58.70%, 45.25%, and 40.10% decrease in terms of root-mean-square error (RMSE) and an average of 2.10, 1.37, and 1.37 times in terms of structural similarity index (SSIM) are achieved by the proposed pMaDL method when compared with piccs, PICCS, MaDL(2D), and MaDL(2D), respectively. Moreover the proposed pMaDL achieves a comparable performance with HQI-4DCBCT algorithm in terms of RMSE and SSIM metrics. However, pMaDL has a better ability to suppress streaking artifacts than HQI-4DCBCT. CONCLUSIONS The proposed algorithm could reconstruct a set of 4D CBCT images with both high spatiotemporal resolution and detailed features preservation. Moreover the proposed pMaDL can effectively suppress the streaking artifacts in the resultant reconstructions, while achieving an overall improved spatiotemporal resolution by incorporating the motion-aware dictionary with a prior constraint into the proposed 4D CBCT iterative framework.
Collapse
Affiliation(s)
- Shaohua Zhi
- Institute of Image Processing and Pattern Recognition, School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Marc Kachelrieß
- German Cancer Research Center, Heidelberg (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Xuanqin Mou
- Institute of Image Processing and Pattern Recognition, School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
137
|
Ma G, Zhang Y, Zhao X, Wang T, Li H. A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction. Med Phys 2021; 48:6464-6481. [PMID: 34482570 DOI: 10.1002/mp.15205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Limited-angle computed tomography is a challenging but important task in certain medical and industrial applications for nondestructive testing. The limited-angle reconstruction problem is highly ill-posed and conventional reconstruction algorithms would introduce heavy artifacts. Various models and methods have been proposed to improve the quality of reconstructions by introducing different priors regarding to the projection data or ideal images. However, the assumed priors might not be practically applicable to all limited-angle reconstruction problems. Convolutional neural network (CNN) exhibits great promise in the modeling of data coupling and has recently become an important technique in medical imaging applications. Although existing CNN methods have demonstrated promising results, their robustness is still a concern. In this paper, in light of the theory of visible and invisible boundaries, we propose an alternating edge-preserving diffusion and smoothing neural network (AEDSNN) for limited-angle reconstruction that builds the visible boundaries as priors into its structure. The proposed method generalizes the alternating edge-preserving diffusion and smoothing (AEDS) method for limited-angle reconstruction developed in the literature by replacing its regularization terms by CNNs, by which the piecewise constant assumption assumed by AEDS is effectively relaxed. METHODS The AEDSNN is derived by unrolling the AEDS algorithm. AEDSNN consists of several blocks, and each block corresponds to one iteration of the AEDS algorithm. In each iteration of the AEDS algorithm, three subproblems are sequentially solved. So, each block of AEDSNN possesses three main layers: data matching layer, x -direction regularization layer for visible edges diffusion, and y -direction regularization layer for artifacts suppressing. The data matching layer is implemented by conventional ordered-subset simultaneous algebraic reconstruction technique (OS-SART) reconstruction algorithm, while the two regularization layers are modeled by CNNs for more intelligent and better encoding of priors regarding to the reconstructed images. To further strength the visible edge prior, the attention mechanism and the pooling layers are incorporated into AEDSNN to facilitate the procedure of edge-preserving diffusion from visible edges. RESULTS We have evaluated the performance of AEDSNN by comparing it with popular algorithms for limited-angle reconstruction. Experiments on the medical dataset show that the proposed AEDSNN effectively breaks through the piecewise constant assumption usually assumed by conventional reconstruction algorithms, and works much better for piecewise smooth images with nonsharp edges. Experiments on the printed circuit board (PCB) dataset show that AEDSNN can better encode and utilize the visible edge prior, and its reconstructions are consistently better compared to the competing algorithms. CONCLUSIONS A deep-learning approach for limited-angle reconstruction is proposed in this paper, which significantly outperforms existing methods. The superiority of AEDSNN consists of three aspects. First, by the virtue of CNN, AEDSNN is free of parameter-tuning. This is a great facility compared to conventional reconstruction methods; Second, AEDSNN is quite fast. Conventional reconstruction methods usually need hundreds even thousands of iterations, while AEDSNN just needs three to five iterations (i.e., blocks); Third, the learned regularizer by AEDSNN enjoys a broader application capacity, which could work well with piecewise smooth images and surpass the piecewise constant assumption frequently assumed for computed tomography images.
Collapse
Affiliation(s)
- Genwei Ma
- School of Mathematical Sciences, Capital Normal University, Beijing, China.,Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing, China
| | - Yinghui Zhang
- School of Mathematical Sciences, Capital Normal University, Beijing, China.,Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing, China
| | - Xing Zhao
- School of Mathematical Sciences, Capital Normal University, Beijing, China.,Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing, China
| | - Tong Wang
- School of Mathematical Sciences, Capital Normal University, Beijing, China.,Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing, China
| | - Hongwei Li
- School of Mathematical Sciences, Capital Normal University, Beijing, China.,Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing, China
| |
Collapse
|
138
|
Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2306-2317. [PMID: 33929957 PMCID: PMC8428775 DOI: 10.1109/tmi.2021.3075856] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Accelerating MRI scans is one of the principal outstanding problems in the MRI research community. Towards this goal, we hosted the second fastMRI competition targeted towards reconstructing MR images with subsampled k-space data. We provided participants with data from 7,299 clinical brain scans (de-identified via a HIPAA-compliant procedure by NYU Langone Health), holding back the fully-sampled data from 894 of these scans for challenge evaluation purposes. In contrast to the 2019 challenge, we focused our radiologist evaluations on pathological assessment in brain images. We also debuted a new Transfer track that required participants to submit models evaluated on MRI scanners from outside the training set. We received 19 submissions from eight different groups. Results showed one team scoring best in both SSIM scores and qualitative radiologist evaluations. We also performed analysis on alternative metrics to mitigate the effects of background noise and collected feedback from the participants to inform future challenges. Lastly, we identify common failure modes across the submissions, highlighting areas of need for future research in the MRI reconstruction community.
Collapse
|
139
|
Zhang C, Li Y, Chen GH. Accurate and robust sparse-view angle CT image reconstruction using deep learning and prior image constrained compressed sensing (DL-PICCS). Med Phys 2021; 48:5765-5781. [PMID: 34458996 DOI: 10.1002/mp.15183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Sparse-view CT image reconstruction problems encountered in dynamic CT acquisitions are technically challenging. Recently, many deep learning strategies have been proposed to reconstruct CT images from sparse-view angle acquisitions showing promising results. However, two fundamental problems with these deep learning reconstruction methods remain to be addressed: (1) limited reconstruction accuracy for individual patients and (2) limited generalizability for patient statistical cohorts. PURPOSE The purpose of this work is to address the previously mentioned challenges in current deep learning methods. METHODS A method that combines a deep learning strategy with prior image constrained compressed sensing (PICCS) was developed to address these two problems. In this method, the sparse-view CT data were reconstructed by the conventional filtered backprojection (FBP) method first, and then processed by the trained deep neural network to eliminate streaking artifacts. The outputs of the deep learning architecture were then used as the needed prior image in PICCS to reconstruct the image. If the noise level from the PICCS reconstruction is not satisfactory, another light duty deep neural network can then be used to reduce noise level. Both extensive numerical simulation data and human subject data have been used to quantitatively and qualitatively assess the performance of the proposed DL-PICCS method in terms of reconstruction accuracy and generalizability. RESULTS Extensive evaluation studies have demonstrated that: (1) quantitative reconstruction accuracy of DL-PICCS for individual patient is improved when it is compared with the deep learning methods and CS-based methods; (2) the false-positive lesion-like structures and false negative missing anatomical structures in the deep learning approaches can be effectively eliminated in the DL-PICCS reconstructed images; and (3) DL-PICCS enables a deep learning scheme to relax its working conditions to enhance its generalizability. CONCLUSIONS DL-PICCS offers a promising opportunity to achieve personalized reconstruction with improved reconstruction accuracy and enhanced generalizability.
Collapse
Affiliation(s)
- Chengzhu Zhang
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yinsheng Li
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Guang-Hong Chen
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
140
|
Celledoni E, Ehrhardt MJ, Etmann C, Owren B, Schönlieb CB, Sherry F. Equivariant neural networks for inverse problems. INVERSE PROBLEMS 2021; 37:085006. [PMID: 34334869 PMCID: PMC8317019 DOI: 10.1088/1361-6420/ac104f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In recent years the use of convolutional layers to encode an inductive bias (translational equivariance) in neural networks has proven to be a very fruitful idea. The successes of this approach have motivated a line of research into incorporating other symmetries into deep learning methods, in the form of group equivariant convolutional neural networks. Much of this work has been focused on roto-translational symmetry of R d , but other examples are the scaling symmetry of R d and rotational symmetry of the sphere. In this work, we demonstrate that group equivariant convolutional operations can naturally be incorporated into learned reconstruction methods for inverse problems that are motivated by the variational regularisation approach. Indeed, if the regularisation functional is invariant under a group symmetry, the corresponding proximal operator will satisfy an equivariance property with respect to the same group symmetry. As a result of this observation, we design learned iterative methods in which the proximal operators are modelled as group equivariant convolutional neural networks. We use roto-translationally equivariant operations in the proposed methodology and apply it to the problems of low-dose computerised tomography reconstruction and subsampled magnetic resonance imaging reconstruction. The proposed methodology is demonstrated to improve the reconstruction quality of a learned reconstruction method with a little extra computational cost at training time but without any extra cost at test time.
Collapse
Affiliation(s)
- Elena Celledoni
- Department of Mathematical Sciences, NTNU, N-7491 Trondheim, Norway
| | - Matthias J Ehrhardt
- Institute for Mathematical Innovation, University of Bath, Bath BA2 7JU, United Kingdom
| | - Christian Etmann
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Brynjulf Owren
- Department of Mathematical Sciences, NTNU, N-7491 Trondheim, Norway
| | - Carola-Bibiane Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Ferdia Sherry
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
141
|
Tian L, Hunt B, Bell MAL, Yi J, Smith JT, Ochoa M, Intes X, Durr NJ. Deep Learning in Biomedical Optics. Lasers Surg Med 2021; 53:748-775. [PMID: 34015146 PMCID: PMC8273152 DOI: 10.1002/lsm.23414] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
This article reviews deep learning applications in biomedical optics with a particular emphasis on image formation. The review is organized by imaging domains within biomedical optics and includes microscopy, fluorescence lifetime imaging, in vivo microscopy, widefield endoscopy, optical coherence tomography, photoacoustic imaging, diffuse tomography, and functional optical brain imaging. For each of these domains, we summarize how deep learning has been applied and highlight methods by which deep learning can enable new capabilities for optics in medicine. Challenges and opportunities to improve translation and adoption of deep learning in biomedical optics are also summarized. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- L. Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - B. Hunt
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - M. A. L. Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - J. Yi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - J. T. Smith
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, New York NY 12180
| | - M. Ochoa
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, New York NY 12180
| | - X. Intes
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, New York NY 12180
| | - N. J. Durr
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
142
|
Fang W, Wu D, Kim K, Kalra MK, Singh R, Li L, Li Q. Iterative material decomposition for spectral CT using self-supervised Noise2Noise prior. Phys Med Biol 2021; 66. [PMID: 34126602 DOI: 10.1088/1361-6560/ac0afd] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022]
Abstract
Compared to conventional computed tomography (CT), spectral CT can provide the capability of material decomposition, which can be used in many clinical diagnosis applications. However, the decomposed images can be very noisy due to the dose limit in CT scanning and the noise magnification of the material decomposition process. To alleviate this situation, we proposed an iterative one-step inversion material decomposition algorithm with a Noise2Noise prior. The algorithm estimated material images directly from projection data and used a Noise2Noise prior for denoising. In contrast to supervised deep learning methods, the designed Noise2Noise prior was built based on self-supervised learning and did not need external data for training. In our method, the data consistency term and the Noise2Noise network were alternatively optimized in the iterative framework, respectively, using a separable quadratic surrogate (SQS) and the Adam algorithm. The proposed iterative algorithm was validated and compared to other methods on simulated spectral CT data, preclinical photon-counting CT data and clinical dual-energy CT data. Quantitative analysis showed that our proposed method performs promisingly on noise suppression and structure detail recovery.
Collapse
Affiliation(s)
- Wei Fang
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, People's Republic of China.,Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Dufan Wu
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America.,Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Kyungsang Kim
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America.,Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Ramandeep Singh
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Liang Li
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Quanzheng Li
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America.,Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
143
|
Zhang Z, Liang X, Zhao W, Xing L. Noise2Context: Context-assisted learning 3D thin-layer for low-dose CT. Med Phys 2021; 48:5794-5803. [PMID: 34287948 DOI: 10.1002/mp.15119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Computed tomography (CT) has played a vital role in medical diagnosis, assessment, and therapy planning, etc. In clinical practice, concerns about the increase of x-ray radiation exposure attract more and more attention. To lower the x-ray radiation, low-dose CT (LDCT) has been widely adopted in certain scenarios, while it will induce the degradation of CT image quality. In this paper, we proposed a deep learning-based method that can train denoising neural networks without any clean data. METHODS In this work, for 3D thin-slice LDCT scanning, we first drive an unsupervised loss function which was equivalent to a supervised loss function with paired noisy and clean samples when the noise in the different slices from a single scan was uncorrelated and zero-mean. Then, we trained the denoising neural network to map one noise LDCT image to its two adjacent LDCT images in a single 3D thin-layer LDCT scanning, simultaneously. In essence, with some latent assumptions, we proposed an unsupervised loss function to train the denoising neural network in an unsupervised manner, which integrated the similarity between adjacent CT slices in 3D thin-layer LDCT. RESULTS Further experiments on Mayo LDCT dataset and a realistic pig head were carried out. In the experiments using Mayo LDCT dataset, our unsupervised method can obtain performance comparable to that of the supervised baseline. With the realistic pig head, our method can achieve optimal performance at different noise levels as compared to all the other methods that demonstrated the superiority and robustness of the proposed Noise2Context. CONCLUSIONS In this work, we present a generalizable LDCT image denoising method without any clean data. As a result, our method not only gets rid of the complex artificial image priors but also amounts of paired high-quality training datasets.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Xiaokun Liang
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Wei Zhao
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| |
Collapse
|
144
|
Sun Z, Wang X, Yan X. An iterative gradient convolutional neural network and its application in endoscopic photoacoustic image formation from incomplete acoustic measurement. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
145
|
Zhou B, Zhou SK, Duncan JS, Liu C. Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1792-1804. [PMID: 33729929 PMCID: PMC8325575 DOI: 10.1109/tmi.2021.3066318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Limited view tomographic reconstruction aims to reconstruct a tomographic image from a limited number of projection views arising from sparse view or limited angle acquisitions that reduce radiation dose or shorten scanning time. However, such a reconstruction suffers from severe artifacts due to the incompleteness of sinogram. To derive quality reconstruction, previous methods use UNet-like neural architectures to directly predict the full view reconstruction from limited view data; but these methods leave the deep network architecture issue largely intact and cannot guarantee the consistency between the sinogram of the reconstructed image and the acquired sinogram, leading to a non-ideal reconstruction. In this work, we propose a cascaded residual dense spatial-channel attention network consisting of residual dense spatial-channel attention networks and projection data fidelity layers. We evaluate our methods on two datasets. Our experimental results on AAPM Low Dose CT Grand Challenge datasets demonstrate that our algorithm achieves a consistent and substantial improvement over the existing neural network methods on both limited angle reconstruction and sparse view reconstruction. In addition, our experimental results on Deep Lesion datasets demonstrate that our method is able to generate high-quality reconstruction for 8 major lesion types.
Collapse
|
146
|
Wang S, Xiao T, Liu Q, Zheng H. Deep learning for fast MR imaging: A review for learning reconstruction from incomplete k-space data. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
147
|
Sidky EY, Phillips JP, Zhou W, Ongie G, Cruz-Bastida JP, Reiser IS, Anastasio MA, Pan X. A signal detection model for quantifying overregularization in nonlinear image reconstruction. Med Phys 2021; 48:6312-6323. [PMID: 34169538 DOI: 10.1002/mp.14703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 11/08/2022] Open
Abstract
Many useful image quality metrics for evaluating linear image reconstruction techniques do not apply to or are difficult to interpret for nonlinear image reconstruction. The vast majority of metrics employed for evaluating nonlinear image reconstruction are based on some form of global image fidelity, such as image root mean square error (RMSE). Use of such metrics can lead to overregularization in the sense that they can favor removal of subtle details in the image. To address this shortcoming, we develop an image quality metric based on signal detection that serves as a surrogate to the qualitative loss of fine image details. The metric is demonstrated in the context of a breast CT simulation, where different equal-dose configurations are considered. The configurations differ in the number of projections acquired. Image reconstruction is performed with a nonlinear algorithm based on total variation constrained least-squares (TV-LSQ). The resulting images are studied as a function of three parameters: number of views acquired, total variation constraint value, and number of iterations. The images are evaluated visually, with image RMSE, and with the proposed signal-detection-based metric. The latter uses a small signal, and computes detectability in the sinogram and in the reconstructed image. Loss of signal detectability through the image reconstruction process is taken as a quantitative measure of loss of fine details in the image. Loss of signal detectability is seen to correlate well with the blocky or patchy appearance due to overregularization with TV-LSQ, and this trend runs counter to the image RMSE metric, which tends to favor the over-regularized images. The proposed signal detection-based metric provides an image quality assessment that is complimentary to that of image RMSE. Using the two metrics in concert may yield a useful prescription for determining CT algorithm and configuration parameters when nonlinear image reconstruction is used.
Collapse
Affiliation(s)
- Emil Y Sidky
- Department of Radiology, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - John Paul Phillips
- Department of Radiology, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Weimin Zhou
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green St., Urbana, IL, 61801, USA
| | - Greg Ongie
- Department of Mathematical and Statistical Sciences, Marquette University, 1313 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Juan P Cruz-Bastida
- Department of Radiology, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Ingrid S Reiser
- Department of Radiology, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Mark A Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green St., Urbana, IL, 61801, USA
| | - Xiaochuan Pan
- Department of Radiology, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| |
Collapse
|
148
|
Hendriksen AA, Bührer M, Leone L, Merlini M, Vigano N, Pelt DM, Marone F, di Michiel M, Batenburg KJ. Deep denoising for multi-dimensional synchrotron X-ray tomography without high-quality reference data. Sci Rep 2021; 11:11895. [PMID: 34088936 PMCID: PMC8178391 DOI: 10.1038/s41598-021-91084-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 11/08/2022] Open
Abstract
Synchrotron X-ray tomography enables the examination of the internal structure of materials at submicron spatial resolution and subsecond temporal resolution. Unavoidable experimental constraints can impose dose and time limits on the measurements, introducing noise in the reconstructed images. Convolutional neural networks (CNNs) have emerged as a powerful tool to remove noise from reconstructed images. However, their training typically requires collecting a dataset of paired noisy and high-quality measurements, which is a major obstacle to their use in practice. To circumvent this problem, methods for CNN-based denoising have recently been proposed that require no separate training data beyond the already available noisy reconstructions. Among these, the Noise2Inverse method is specifically designed for tomography and related inverse problems. To date, applications of Noise2Inverse have only taken into account 2D spatial information. In this paper, we expand the application of Noise2Inverse in space, time, and spectrum-like domains. This development enhances applications to static and dynamic micro-tomography as well as X-ray diffraction tomography. Results on real-world datasets establish that Noise2Inverse is capable of accurate denoising and enables a substantial reduction in acquisition time while maintaining image quality.
Collapse
Affiliation(s)
| | - Minna Bührer
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Laura Leone
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Milan, Italy
| | - Marco Merlini
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Milan, Italy
| | | | - Daniël M Pelt
- Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
- Leiden Institute of Advanced Computer Science, Leiden Universiteit, Leiden, The Netherlands
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | | | - K Joost Batenburg
- Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
- Leiden Institute of Advanced Computer Science, Leiden Universiteit, Leiden, The Netherlands
| |
Collapse
|
149
|
Aggarwal HK, Pramanik A, Jacob M. ENSURE: ENSEMBLE STEIN'S UNBIASED RISK ESTIMATOR FOR UNSUPERVISED LEARNING. PROCEEDINGS OF THE ... IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING. ICASSP (CONFERENCE) 2021; 2021:10.1109/icassp39728.2021.9414513. [PMID: 34335103 PMCID: PMC8323317 DOI: 10.1109/icassp39728.2021.9414513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Deep learning algorithms are emerging as powerful alternatives to compressed sensing methods, offering improved image quality and computational efficiency. Unfortunately, fully sampled training images may not be available or are difficult to acquire in several applications, including high-resolution and dynamic imaging. Previous studies in image reconstruction have utilized Stein's Unbiased Risk Estimator (SURE) as a mean square error (MSE) estimate for the image denoising step in an unrolled network. Unfortunately, the end-to-end training of a network using SURE remains challenging since the projected SURE loss is a poor approximation to the MSE, especially in the heavily undersampled setting. We propose an ENsemble SURE (ENSURE) approach to train a deep network only from undersampled measurements. In particular, we show that training a network using an ensemble of images, each acquired with a different sampling pattern, can closely approximate the MSE. Our preliminary experimental results show that the proposed ENSURE approach gives comparable reconstruction quality to supervised learning and a recent unsupervised learning method.
Collapse
|
150
|
Xiang J, Dong Y, Yang Y. FISTA-Net: Learning a Fast Iterative Shrinkage Thresholding Network for Inverse Problems in Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1329-1339. [PMID: 33493113 DOI: 10.1109/tmi.2021.3054167] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inverse problems are essential to imaging applications. In this letter, we propose a model-based deep learning network, named FISTA-Net, by combining the merits of interpretability and generality of the model-based Fast Iterative Shrinkage/Thresholding Algorithm (FISTA) and strong regularization and tuning-free advantages of the data-driven neural network. By unfolding the FISTA into a deep network, the architecture of FISTA-Net consists of multiple gradient descent, proximal mapping, and momentum modules in cascade. Different from FISTA, the gradient matrix in FISTA-Net can be updated during iteration and a proximal operator network is developed for nonlinear thresholding which can be learned through end-to-end training. Key parameters of FISTA-Net including the gradient step size, thresholding value and momentum scalar are tuning-free and learned from training data rather than hand-crafted. We further impose positive and monotonous constraints on these parameters to ensure they converge properly. The experimental results, evaluated both visually and quantitatively, show that the FISTA-Net can optimize parameters for different imaging tasks, i.e. Electromagnetic Tomography (EMT) and X-ray Computational Tomography (X-ray CT). It outperforms the state-of-the-art model-based and deep learning methods and exhibits good generalization ability over other competitive learning-based approaches under different noise levels.
Collapse
|