101
|
Calisto FM, Santiago C, Nunes N, Nascimento JC. BreastScreening-AI: Evaluating medical intelligent agents for human-AI interactions. Artif Intell Med 2022; 127:102285. [DOI: 10.1016/j.artmed.2022.102285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 01/19/2023]
|
102
|
Li D, Peng Y, Guo Y, Sun J. TAUNet: a triple-attention-based multi-modality MRI fusion U-Net for cardiac pathology segmentation. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractAutomated segmentation of cardiac pathology in MRI plays a significant role for diagnosis and treatment of some cardiac disease. In clinical practice, multi-modality MRI is widely used to improve the cardiac pathology segmentation, because it can provide multiple or complementary information. Recently, deep learning methods have presented implausible performance in multi-modality medical image segmentation. However, how to fuse the underlying multi-modality information effectively to segment the pathology with irregular shapes and small region at random locations, is still a challenge task. In this paper, a triple-attention-based multi-modality MRI fusion U-Net was proposed to learn complex relationship between different modalities and pay more attention on shape information, thus to achieve improved pathology segmentation. First, three independent encoders and one fusion encoder were applied to extract specific and multiple modality features. Secondly, we concatenate the modality feature maps and use the channel attention to fuse specific modal information at every stage of the three dedicate independent encoders, then the three single modality feature maps and channel attention feature maps are together concatenated to the decoder path. Spatial attention was adopted in decoder path to capture the correlation of various positions. Once more, we employ shape attention to focus shape-dependent information. Lastly, the training approach is made efficient by introducing deep supervision mechanism with object contextual representations block to ensure precisely boundary prediction. Our proposed network was evaluated on the public MICCAI 2020 Myocardial pathology segmentation dataset which involves patients suffering from myocardial infarction. Experiments on the dataset with three modalities demonstrate the effectiveness of fusion mode of our model, and attention mechanism can integrate various modality information well. We demonstrated that such a deep learning approach could better fuse complementary information to improve the segmentation performance of cardiac pathology.
Collapse
|
103
|
Zhang L, Li J, Li P, Lu X, Gong M, Shen P, Zhu G, Shah SA, Bennamoun M, Qian K, Schuller BW. MEDAS: an open-source platform as a service to help break the walls between medicine and informatics. Neural Comput Appl 2022; 34:6547-6567. [PMID: 35068703 PMCID: PMC8761112 DOI: 10.1007/s00521-021-06750-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/10/2021] [Indexed: 11/04/2022]
Abstract
In the past decade, deep learning (DL) has achieved unprecedented success in numerous fields, such as computer vision and healthcare. Particularly, DL is experiencing an increasing development in advanced medical image analysis applications in terms of segmentation, classification, detection, and other tasks. On the one hand, tremendous needs that leverage DL's power for medical image analysis arise from the research community of a medical, clinical, and informatics background to share their knowledge, skills, and experience jointly. On the other hand, barriers between disciplines are on the road for them, often hampering a full and efficient collaboration. To this end, we propose our novel open-source platform, i.e., MEDAS-the MEDical open-source platform As Service. To the best of our knowledge, MEDAS is the first open-source platform providing collaborative and interactive services for researchers from a medical background using DL-related toolkits easily and for scientists or engineers from informatics modeling faster. Based on tools and utilities from the idea of RINV (Rapid Implementation aNd Verification), our proposed platform implements tools in pre-processing, post-processing, augmentation, visualization, and other phases needed in medical image analysis. Five tasks, concerning lung, liver, brain, chest, and pathology, are validated and demonstrated to be efficiently realizable by using MEDAS. MEDAS is available at http://medas.bnc.org.cn/.
Collapse
Affiliation(s)
| | | | - Ping Li
- Data and Virtual Research Room, Shanghai Broadband Network Center, Shanghai, China
| | - Xiaoyuan Lu
- Data and Virtual Research Room, Shanghai Broadband Network Center, Shanghai, China
| | | | | | | | - Syed Afaq Shah
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Mohammed Bennamoun
- School of Computer Science and Software Engineering, The University of Western Australia, Crawley, Australia
| | - Kun Qian
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Björn W. Schuller
- GLAM - Group on Language, Audio & Music, Imperial College London, London, UK
- Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany
| |
Collapse
|
104
|
Çelik G, Talu MF. A new 3D MRI segmentation method based on Generative Adversarial Network and Atrous Convolution. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
105
|
Peng C, Zhang Y, Zheng J, Li B, Shen J, Li M, Liu L, Qiu B, Chen DZ. IMIIN: An inter-modality information interaction network for 3D multi-modal breast tumor segmentation. Comput Med Imaging Graph 2022; 95:102021. [PMID: 34861622 DOI: 10.1016/j.compmedimag.2021.102021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022]
Abstract
Breast tumor segmentation is critical to the diagnosis and treatment of breast cancer. In clinical breast cancer analysis, experts often examine multi-modal images since such images provide abundant complementary information on tumor morphology. Known multi-modal breast tumor segmentation methods extracted 2D tumor features and used information from one modal to assist another. However, these methods were not conducive to fusing multi-modal information efficiently, or may even fuse interference information, due to the lack of effective information interaction management between different modalities. Besides, these methods did not consider the effect of small tumor characteristics on the segmentation results. In this paper, We propose a new inter-modality information interaction network to segment breast tumors in 3D multi-modal MRI. Our network employs a hierarchical structure to extract local information of small tumors, which facilitates precise segmentation of tumor boundaries. Under this structure, we present a 3D tiny object segmentation network based on DenseVoxNet to preserve the boundary details of the segmented tumors (especially for small tumors). Further, we introduce a bi-directional request-supply information interaction module between different modalities so that each modal can request helpful auxiliary information according to its own needs. Experiments on a clinical 3D multi-modal MRI breast tumor dataset show that our new 3D IMIIN is superior to state-of-the-art methods and attains better segmentation results, suggesting that our new method has a good clinical application prospect.
Collapse
Affiliation(s)
- Chengtao Peng
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China; Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yue Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Jian Zheng
- Suzhou Institute of Biomedical Engineering and Technology, CAS, Suzhou 215163, China.
| | - Bin Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Ming Li
- Suzhou Institute of Biomedical Engineering and Technology, CAS, Suzhou 215163, China
| | - Lei Liu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
106
|
Pancreatic cancer segmentation in unregistered multi-parametric MRI with adversarial learning and multi-scale supervision. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.09.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
107
|
Sun L, Li C, Ding X, Huang Y, Chen Z, Wang G, Yu Y, Paisley J. Few-shot medical image segmentation using a global correlation network with discriminative embedding. Comput Biol Med 2022; 140:105067. [PMID: 34920364 DOI: 10.1016/j.compbiomed.2021.105067] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 01/22/2023]
Abstract
Despite impressive developments in deep convolutional neural networks for medical imaging, the paradigm of supervised learning requires numerous annotations in training to avoid overfitting. In clinical cases, massive semantic annotations are difficult to acquire where biomedical expert knowledge is required. Moreover, it is common when only a few annotated classes are available. In this study, we proposed a new approach to few-shot medical image segmentation, which enables a segmentation model to quickly generalize to an unseen class with few training images. We constructed a few-shot image segmentation mechanism using a deep convolutional network trained episodically. Motivated by the spatial consistency and regularity in medical images, we developed an efficient global correlation module to model the correlation between a support and query image and incorporate it into the deep network. We enhanced the discrimination ability of the deep embedding scheme to encourage clustering of feature domains belonging to the same class while keeping feature domains of different organs far apart. We experimented using anatomical abdomen images from both CT and MRI modalities.
Collapse
Affiliation(s)
- Liyan Sun
- School of Informatics, Xiamen University, Xiamen, 361 005, Fujian, China; School of Electronic Science and Engineering, Xiamen University, Xiamen, 361 005, Fujian, China
| | - Chenxin Li
- School of Informatics, Xiamen University, Xiamen, 361 005, Fujian, China
| | - Xinghao Ding
- School of Informatics, Xiamen University, Xiamen, 361 005, Fujian, China.
| | - Yue Huang
- School of Informatics, Xiamen University, Xiamen, 361 005, Fujian, China
| | - Zhong Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361 005, Fujian, China
| | - Guisheng Wang
- Department of Radiology, Third Medical Centre, Chinese PLA General Hospital, Beijing, 100 036, China
| | - Yizhou Yu
- Deepwise AI Laboratory, Beijing, 100 125, China
| | - John Paisley
- Department of Electrical Engineering and the Data Science Institute, Columbia University, New York, 10 027, NY, USA
| |
Collapse
|
108
|
Patel G, Dolz J. Weakly supervised segmentation with cross-modality equivariant constraints. Med Image Anal 2022; 77:102374. [DOI: 10.1016/j.media.2022.102374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
|
109
|
Myocardial Pathology Segmentation of Multi-modal Cardiac MR Images with a Simple but Efficient Siamese U-shaped Network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
110
|
Srivastava A, Jha D, Chanda S, Pal U, Johansen H, Johansen D, Riegler M, Ali S, Halvorsen P. MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image Segmentation. IEEE J Biomed Health Inform 2021; 26:2252-2263. [PMID: 34941539 DOI: 10.1109/jbhi.2021.3138024] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Methods based on convolutional neural networks have improved the performance of biomedical image segmentation. However, most of these methods cannot efficiently segment objects of variable sizes and train on small and biased datasets, which are common for biomedical use cases. While methods exist that incorporate multi-scale fusion approaches to address the challenges arising with variable sizes, they usually use complex models that are more suitable for general semantic segmentation problems. In this paper, we propose a novel architecture called Multi-Scale Residual Fusion Network (MSRF-Net), which is specially designed for medical image segmentation. The proposed MSRF-Net is able to exchange multi-scale features of varying receptive fields using a Dual-Scale Dense Fusion (DSDF) block. Our DSDF block can exchange information rigorously across two different resolution scales, and our MSRF sub-network uses multiple DSDF blocks in sequence to perform multi-scale fusion. This allows the preservation of resolution, improved information flow and propagation of both high- and low-level features to obtain accurate segmentation maps. The proposed MSRF-Net allows to capture object variabilities and provides improved results on different biomedical datasets. Extensive experiments on MSRF-Net demonstrate that the proposed method outperforms the cutting edge medical image segmentation methods on four publicly available datasets. We achieve the Dice Coefficient (DSC) of 0.9217, 0.9420, and 0.9224, 0.8824 on Kvasir-SEG, CVC-ClinicDB, 2018 Data Science Bowl dataset, and ISIC-2018 skin lesion segmentation challenge dataset respectively. We further conducted generalizability tests that also achieved the highest DSC score with 0.7921 and 0.7575 on CVC-ClinicDB and Kvasir-SEG, respectively.
Collapse
|
111
|
Chen W, Han X, Wang J, Cao Y, Jia X, Zheng Y, Zhou J, Zeng W, Wang L, Shi H, Feng J. Deep diagnostic agent forest (DDAF): A deep learning pathogen recognition system for pneumonia based on CT. Comput Biol Med 2021; 141:105143. [PMID: 34953357 DOI: 10.1016/j.compbiomed.2021.105143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Even though antibiotics agents are widely used, pneumonia is still one of the most common causes of death around the world. Some severe, fast-spreading pneumonia can even cause huge influence on global economy and life security. In order to give optimal medication regimens and prevent infectious pneumonia's spreading, recognition of pathogens is important. METHOD In this single-institution retrospective study, 2,353 patients with their CT volumes are included, each of whom was infected by one of 12 known kinds of pathogens. We propose Deep Diagnostic Agent Forest (DDAF) to recognize the pathogen of a patient based on ones' CT volume, which is a challenging multiclass classification problem, with large intraclass variations and small interclass variations and very imbalanced data. RESULTS The model achieves 0.899 ± 0.004 multi-way area under curves of receiver (AUC) for level-I pathogen recognition, which are five rough groups of pathogens, and 0.851 ± 0.003 AUC for level-II recognition, which are 12 fine-level pathogens. The model also outperforms the average result of seven human readers in level-I recognition and outperforms all readers in level-II recognition, who can only reach an average result of 7.71 ± 4.10% accuracy. CONCLUSION Deep learning model can help in recognition pathogens using CTs only, which might help accelerate the process of etiological diagnosis.
Collapse
Affiliation(s)
- Weixiang Chen
- Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
| | - Xiaoyu Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Jia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhou
- Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
| | - Wenjuan Zeng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jianjiang Feng
- Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China.
| |
Collapse
|
112
|
Ashraf GM, Chatzichronis S, Alexiou A, Kyriakopoulos N, Alghamdi BSA, Tayeb HO, Alghamdi JS, Khan W, Jalal MB, Atta HM. BrainFD: Measuring the Intracranial Brain Volume With Fractal Dimension. Front Aging Neurosci 2021; 13:765185. [PMID: 34899274 PMCID: PMC8662626 DOI: 10.3389/fnagi.2021.765185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
A few methods and tools are available for the quantitative measurement of the brain volume targeting mainly brain volume loss. However, several factors, such as the clinical conditions, the time of the day, the type of MRI machine, the brain volume artifacts, the pseudoatrophy, and the variations among the protocols, produce extreme variations leading to misdiagnosis of brain atrophy. While brain white matter loss is a characteristic lesion during neurodegeneration, the main objective of this study was to create a computational tool for high precision measuring structural brain changes using the fractal dimension (FD) definition. The validation of the BrainFD software is based on T1-weighted MRI images from the Open Access Series of Imaging Studies (OASIS)-3 brain database, where each participant has multiple MRI scan sessions. The software is based on the Python and JAVA programming languages with the main functionality of the FD calculation using the box-counting algorithm, for different subjects on the same brain regions, with high accuracy and resolution, offering the ability to compare brain data regions from different subjects and on multiple sessions, creating different imaging profiles based on the Clinical Dementia Rating (CDR) scores of the participants. Two experiments were executed. The first was a cross-sectional study where the data were separated into two CDR classes. In the second experiment, a model on multiple heterogeneous data was trained, and the FD calculation for each participant of the OASIS-3 database through multiple sessions was evaluated. The results suggest that the FD variation efficiently describes the structural complexity of the brain and the related cognitive decline. Additionally, the FD efficiently discriminates the two classes achieving 100% accuracy. It is shown that this classification outperforms the currently existing methods in terms of accuracy and the size of the dataset. Therefore, the FD calculation for identifying intracranial brain volume loss could be applied as a potential low-cost personalized imaging biomarker. Furthermore, the possibilities measuring different brain areas and subregions could give robust evidence of the slightest variations to imaging data obtained from repetitive measurements to Physicians and Radiologists.
Collapse
Affiliation(s)
- Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Stylianos Chatzichronis
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece.,Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia.,AFNP Med Austria, Vienna, Austria
| | | | - Badrah Saeed Ali Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum Osama Tayeb
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Division of Neurology, Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamaan Salem Alghamdi
- Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waseem Khan
- Department of Radiology, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal Ben Jalal
- Department of Radiology, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hazem Mahmoud Atta
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| |
Collapse
|
113
|
Gare GR, Li J, Joshi R, Magar R, Vaze MP, Yousefpour M, Rodriguez RL, Galeotti JM. W-Net: Dense and diagnostic semantic segmentation of subcutaneous and breast tissue in ultrasound images by incorporating ultrasound RF waveform data. Med Image Anal 2021; 76:102326. [PMID: 34936967 DOI: 10.1016/j.media.2021.102326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022]
Abstract
We study the use of raw ultrasound waveforms, often referred to as the "Radio Frequency" (RF) data, for the semantic segmentation of ultrasound scans to carry out dense and diagnostic labeling. We present W-Net, a novel Convolution Neural Network (CNN) framework that employs the raw ultrasound waveforms in addition to the grey ultrasound image to semantically segment and label tissues for anatomical, pathological, or other diagnostic purposes. To the best of our knowledge, this is also the first deep-learning or CNN approach for segmentation that analyzes ultrasound raw RF data along with the grey image. We chose subcutaneous tissue (SubQ) segmentation as our initial clinical goal for dense segmentation since it has diverse intermixed tissues, is challenging to segment, and is an underrepresented research area. SubQ potential applications include plastic surgery, adipose stem-cell harvesting, lymphatic monitoring, and possibly detection/treatment of certain types of tumors. Unlike prior work, we seek to label every pixel in the image, without the use of a background class. A custom dataset consisting of hand-labeled images by an expert clinician and trainees are used for the experimentation, currently labeled into the following categories: skin, fat, fat fascia/stroma, muscle, and muscle fascia. We compared W-Net and attention variant of W-Net (AW-Net) with U-Net and Attention U-Net (AU-Net). Our novel W-Net's RF-Waveform encoding architecture outperformed regular U-Net and AU-Net, achieving the best mIoU accuracy (averaged across all tissue classes). We study the impact of RF data on dense labeling of the SubQ region, which is followed by the analyses of the generalization capability of the networks to patients and analysis on the SubQ tissue classes, determining that fascia tissues, especially muscle fascia in particular, are the most difficult anatomic class to recognize for both humans and AI algorithms. We present diagnostic semantic segmentation, which is semantic segmentation carried out for the purposes of direct diagnostic pixel labeling, and apply it to breast tumor detection task on a publicly available dataset to segment pixels into malignant tumor, benign tumor, and background tissue class. Using the segmented image we diagnose the patient by classifying the breast lesion as either benign or malignant. We demonstrate the diagnostic capability of RF data with the use of W-Net, which achieves the best segmentation scores across all classes.
Collapse
Affiliation(s)
| | - Jiayuan Li
- Carnegie Mellon University, Pittsburgh PA 15213, USA
| | - Rohan Joshi
- Carnegie Mellon University, Pittsburgh PA 15213, USA
| | | | - Mrunal Prashant Vaze
- Carnegie Mellon University, Pittsburgh PA 15213, USA; Simple Origin Inc, Pittsburgh, PA 15206, USA
| | - Michael Yousefpour
- Carnegie Mellon University, Pittsburgh PA 15213, USA; University of Pittsburgh Medical Center, Pittsburgh PA 15260, USA
| | | | | |
Collapse
|
114
|
Chaichana A, Frey EC, Teyateeti A, Rhoongsittichai K, Tocharoenchai C, Pusuwan P, Jangpatarapongsa K. Automated segmentation of lung, liver, and liver tumors from Tc-99m MAA SPECT/CT images for Y-90 radioembolization using convolutional neural networks. Med Phys 2021; 48:7877-7890. [PMID: 34657293 PMCID: PMC9298038 DOI: 10.1002/mp.15303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE 90 Y selective internal radiation therapy (SIRT) has become a safe and effective treatment option for liver cancer. However, segmentation of target and organ-at-risks is labor-intensive and time-consuming in 90 Y SIRT planning. In this study, we developed a convolutional neural network (CNN)-based method for automated lungs, liver, and tumor segmentation on 99m Tc-MAA SPECT/CT images for 90 Y SIRT planning. METHODS 99m Tc-MAA SPECT/CT images and corresponding clinical segmentations were retrospectively collected from 56 patients who underwent 90 Y SIRT. The collected data were used to train three CNN-based segmentation algorithms for lungs, liver, and tumor segmentation. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), surface DSC, and average symmetric surface distance (ASSD). Dosimetric parameters (volume, counts, and lung shunt fraction) were measured from the segmentation results and were compared with clinical reference segmentations. RESULTS The evaluation results show that the method can accurately segment lungs, liver, and tumor with median [interquartile range] DSCs of 0.98 [0.97-0.98], 0.91 [0.83-0.93], and 0.85 [0.71-0.88]; surface DSCs of 0.99 [0.97-0.99], 0.86 [0.77-0.93], and 0.85 [0.62-0.93], and ASSDs of 0.91 [0.69-1.5], 4.8 [2.6-8.4], and 4.7 [3.5-9.2] mm, respectively. Dosimetric parameters from the three segmentation networks show relationship with those from the reference segmentations. The overall segmentation took about 1 min per patient on an NVIDIA RTX-2080Ti GPU. CONCLUSION This work presents CNN-based algorithms to segment lungs, liver, and tumor from 99m Tc-MAA SPECT/CT images. The results demonstrated the potential of the proposed CNN-based segmentation method for assisting 90 Y SIRT planning while drastically reducing operator time.
Collapse
Affiliation(s)
- Anucha Chaichana
- Department of Radiological Technology, Faculty of Medical TechnologyMahidol UniversityBangkok10700Thailand
| | - Eric C. Frey
- Johns Hopkins School of MedicineJohns Hopkins UniversityBaltimoreMaryland21218USA
- Radiopharmaceutical Imaging and Dosimetry, LLCLuthervilleMaryland21093USA
| | - Ajalaya Teyateeti
- Department of Radiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkok10700Thailand
| | - Kijja Rhoongsittichai
- Department of Radiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkok10700Thailand
| | - Chiraporn Tocharoenchai
- Department of Radiological Technology, Faculty of Medical TechnologyMahidol UniversityBangkok10700Thailand
| | - Pawana Pusuwan
- Department of Radiology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkok10700Thailand
| | | |
Collapse
|
115
|
Servi M, Mussi E, Magherini R, Carfagni M, Furferi R, Volpe Y. U-net for auricular elements segmentation: a proof-of-concept study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:2712-2716. [PMID: 34891811 DOI: 10.1109/embc46164.2021.9629774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Convolutional neural networks are increasingly used in the medical field for the automatic segmentation of several anatomical regions on diagnostic and non-diagnostic images. Such automatic algorithms allow to speed up time-consuming processes and to avoid the presence of expert personnel, reducing time and costs. The present work proposes the use of a convolutional neural network, the U-net architecture, for the segmentation of ear elements. The auricular elements segmentation process is a crucial step of a wider procedure, already automated by the authors, that has as final goal the realization of surgical guides designed to assist surgeons in the reconstruction of the external ear. The segmentation, performed on depth map images of 3D ear models, aims to define of the contour of the helix, antihelix, tragus-antitragus and concha. A dataset of 131 ear depth map was created;70% of the data are used as the training set, 15% composes the validation set, and the remaining 15% is used as testing set. The network showed excellent performance, achieving 97% accuracy on the validation test.
Collapse
|
116
|
Huang B, Wei Z, Tang X, Fujita H, Cai Q, Gao Y, Wu T, Zhou L. Deep learning network for medical volume data segmentation based on multi axial plane fusion. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 212:106480. [PMID: 34736168 DOI: 10.1016/j.cmpb.2021.106480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE High-dimensional data generally contains more accurate information for medical image, e.g., computerized tomography (CT) data can depict the three dimensional structure of organs more precisely. However, the data in high-dimension often needs enormous computation and has high memory requirements in the deep learning convolution networks, while dimensional reduction usually leads to performance degradation. METHODS In this paper, a two-dimensional deep learning segmentation network was proposed for medical volume data based on multi-pinacoidal plane fusion to cover more information under the control of computation.This approach has conducive compatibility while using the model proposed to extract the global information between different inputs layers. RESULTS Our approach has worked in different backbone network. Using the approach, DeepUnet's Dice coefficient (Dice) and Positive Predictive Value (PPV) are 0.883 and 0.982 showing the satisfied progress. Various backbones can enjoy the profit of the method. CONCLUSIONS Through the comparison of different backbones, it can be found that the proposed network with multi-pinacoidal plane fusion can achieve better results both quantitively and qualitatively.
Collapse
Affiliation(s)
- Bo Huang
- Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, Shanghai, 201620, China.
| | - Ziran Wei
- Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, Shanghai, 200003, China
| | - Xianhua Tang
- Changzhou United Imaging Healthcare Surgical Technology Co.,Ltd, No.5 Longfan Road, Wujin High-Tech Industrial Development Zone, Changzhou, China
| | - Hamido Fujita
- Faculty of Information Technology, Ho Chi Minh City University of Technology(HUTECH), Ho Chi Minh City, Vietnam; i-SOMET.org Incorporated Association, Iwate 020-0104, Japan; Andalusian Research Institute in Data Science and Computational Intelligence(DaSCI), University of Granada, Granada, Spain; College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China.
| | - Qingping Cai
- Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, Shanghai, 200003, China
| | - Yongbin Gao
- Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, Shanghai, 201620, China
| | - Tao Wu
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Liang Zhou
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
117
|
Zhang Y, Zhong P, Jie D, Wu J, Zeng S, Chu J, Liu Y, Wu EX, Tang X. Brain Tumor Segmentation From Multi-Modal MR Images via Ensembling UNets. FRONTIERS IN RADIOLOGY 2021; 1:704888. [PMID: 37492172 PMCID: PMC10365098 DOI: 10.3389/fradi.2021.704888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/27/2021] [Indexed: 07/27/2023]
Abstract
Glioma is a type of severe brain tumor, and its accurate segmentation is useful in surgery planning and progression evaluation. Based on different biological properties, the glioma can be divided into three partially-overlapping regions of interest, including whole tumor (WT), tumor core (TC), and enhancing tumor (ET). Recently, UNet has identified its effectiveness in automatically segmenting brain tumor from multi-modal magnetic resonance (MR) images. In this work, instead of network architecture, we focus on making use of prior knowledge (brain parcellation), training and testing strategy (joint 3D+2D), ensemble and post-processing to improve the brain tumor segmentation performance. We explore the accuracy of three UNets with different inputs, and then ensemble the corresponding three outputs, followed by post-processing to achieve the final segmentation. Similar to most existing works, the first UNet uses 3D patches of multi-modal MR images as the input. The second UNet uses brain parcellation as an additional input. And the third UNet is inputted by 2D slices of multi-modal MR images, brain parcellation, and probability maps of WT, TC, and ET obtained from the second UNet. Then, we sequentially unify the WT segmentation from the third UNet and the fused TC and ET segmentation from the first and the second UNets as the complete tumor segmentation. Finally, we adopt a post-processing strategy by labeling small ET as non-enhancing tumor to correct some false-positive ET segmentation. On one publicly-available challenge validation dataset (BraTS2018), the proposed segmentation pipeline yielded average Dice scores of 91.03/86.44/80.58% and average 95% Hausdorff distances of 3.76/6.73/2.51 mm for WT/TC/ET, exhibiting superior segmentation performance over other state-of-the-art methods. We then evaluated the proposed method on the BraTS2020 training data through five-fold cross validation, with similar performance having also been observed. The proposed method was finally evaluated on 10 in-house data, the effectiveness of which has been established qualitatively by professional radiologists.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Tencent Music Entertainment, Shenzhen, China
| | - Pinyuan Zhong
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dabin Jie
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiewei Wu
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
| | - Shanmei Zeng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianping Chu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yilong Liu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoying Tang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
118
|
Huang S, Cheng Z, Lai L, Zheng W, He M, Li J, Zeng T, Huang X, Yang X. Integrating multiple MRI sequences for pelvic organs segmentation via the attention mechanism. Med Phys 2021; 48:7930-7945. [PMID: 34658035 DOI: 10.1002/mp.15285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To create a network which fully utilizes multi-sequence MRI and compares favorably with manual human contouring. METHODS We retrospectively collected 89 MRI studies of the pelvic cavity from patients with prostate cancer and cervical cancer. The dataset contained 89 samples from 87 patients with a total of 84 valid samples. MRI was performed with T1-weighted (T1), T2-weighted (T2), and Enhanced Dixon T1-weighted (T1DIXONC) sequences. There were two cohorts. The training cohort contained 55 samples and the testing cohort contained 29 samples. The MRI images in the training cohort contained contouring data from radiotherapist α. The MRI images in the testing cohort contained contouring data from radiotherapist α and contouring data from another radiotherapist: radiotherapist β. The training cohort was used to optimize the convolution neural networks, which included the attention mechanism through the proposed activation module and the blended module into multiple MRI sequences, to perform autodelineation. The testing cohort was used to assess the networks' autodelineation performance. The contoured organs at risk (OAR) were the anal canal, bladder, rectum, femoral head (L), and femoral head (R). RESULTS We compared our proposed network with UNet and FuseUNet using our dataset. When T1 was the main sequence, we input three sequences to segment five organs and evaluated the results using four metrics: the DSC (Dice similarity coefficient), the JSC (Jaccard similarity coefficient), the ASD (average mean distance), and the 95% HD (robust Hausdorff distance). The proposed network achieved improved results compared with the baselines among all metrics. The DSC were 0.834±0.029, 0.818±0.037, and 0.808±0.050 for our proposed network, FuseUNet, and UNet, respectively. The 95% HD were 7.256±2.748 mm, 8.404±3.297 mm, and 8.951±4.798 mm for our proposed network, FuseUNet, and UNet, respectively. Our proposed network also had superior performance on the JSC and ASD coefficients. CONCLUSION Our proposed activation module and blended module significantly improved the performance of FuseUNet for multi-sequence MRI segmentation. Our proposed network integrated multiple MRI sequences efficiently and autosegmented OAR rapidly and accurately. We also discovered that three-sequence fusion (T1-T1DIXONC-T2) was superior to two-sequence fusion (T1-T2 and T1-T1DIXONC, respectively). We infer that the more MRI sequences fused, the better the automatic segmentation results.
Collapse
Affiliation(s)
- Sijuan Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, China
| | - Zesen Cheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, China.,School of Electronic and Information Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Lijuan Lai
- School of Electronic and Information Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Wanjia Zheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, China.,Department of Radiation Oncology, Southern Theater Air Force Hospital of the People's Liberation Army, Guangzhou, Guangdong, 510050, China
| | - Mengxue He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, China
| | - Junyun Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, China
| | - Tianyu Zeng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, China.,School of Electronic and Information Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Xiaoyan Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, China
| | - Xin Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, China
| |
Collapse
|
119
|
Qu T, Wang X, Fang C, Mao L, Li J, Li P, Qu J, Li X, Xue H, Yu Y, Jin Z. M 3Net: A multi-scale multi-view framework for multi-phase pancreas segmentation based on cross-phase non-local attention. Med Image Anal 2021; 75:102232. [PMID: 34700243 DOI: 10.1016/j.media.2021.102232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/21/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
The complementation of arterial and venous phases visual information of CTs can help better distinguish the pancreas from its surrounding structures. However, the exploration of cross-phase contextual information is still under research in computer-aided pancreas segmentation. This paper presents M3Net, a framework that integrates multi-scale multi-view information for multi-phase pancreas segmentation. The core of M3Net is built upon a dual-path network in which individual branches are set up for two phases. Cross-phase interactive connections bridging the two branches are introduced to interleave and integrate dual-phase complementary visual information. Besides, we further devise two types of non-local attention modules to enhance the high-level feature representation across phases. First, we design a location attention module to generate cross-phase reliable feature correlations to suppress the misalignment regions. Second, the depth-wise attention module is used to capture the channel dependencies and then strengthen feature representations. The experiment data consists of 224 internal CTs (106 normal and 118 abnormal) with 1 mm slice thickness, and 66 external CTs (29 normal and 37 abnormal) with 5 mm slice thickness. We achieve new state-of-the-art performance with average DSC of 91.19% on internal data, and promising result with average DSC of 86.34% on external data.
Collapse
Affiliation(s)
- Taiping Qu
- AI Lab, Deepwise Healthcare, Beijing 100080, China
| | - Xiheng Wang
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing 100730, China
| | - Chaowei Fang
- School of Artificial Intelligence, Xidian University, Xian, China
| | - Li Mao
- AI Lab, Deepwise Healthcare, Beijing 100080, China
| | - Juan Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing 100730, China
| | - Ping Li
- Department of Radiology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450008, China
| | - Jinrong Qu
- Department of Radiology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450008, China
| | - Xiuli Li
- AI Lab, Deepwise Healthcare, Beijing 100080, China
| | - Huadan Xue
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing 100730, China.
| | - Yizhou Yu
- Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No.1, Wangfujing Street, Dongcheng District, Beijing 100730, China
| |
Collapse
|
120
|
Li Y, Cui J, Sheng Y, Liang X, Wang J, Chang EIC, Xu Y. Whole brain segmentation with full volume neural network. Comput Med Imaging Graph 2021; 93:101991. [PMID: 34634548 DOI: 10.1016/j.compmedimag.2021.101991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/13/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Whole brain segmentation is an important neuroimaging task that segments the whole brain volume into anatomically labeled regions-of-interest. Convolutional neural networks have demonstrated good performance in this task. Existing solutions, usually segment the brain image by classifying the voxels, or labeling the slices or the sub-volumes separately. Their representation learning is based on parts of the whole volume whereas their labeling result is produced by aggregation of partial segmentation. Learning and inference with incomplete information could lead to sub-optimal final segmentation result. To address these issues, we propose to adopt a full volume framework, which feeds the full volume brain image into the segmentation network and directly outputs the segmentation result for the whole brain volume. The framework makes use of complete information in each volume and can be implemented easily. An effective instance in this framework is given subsequently. We adopt the 3D high-resolution network (HRNet) for learning spatially fine-grained representations and the mixed precision training scheme for memory-efficient training. Extensive experiment results on a publicly available 3D MRI brain dataset show that our proposed model advances the state-of-the-art methods in terms of segmentation performance.
Collapse
Affiliation(s)
- Yeshu Li
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, United States.
| | - Jonathan Cui
- Vacaville Christian Schools, Vacaville, CA 95687, United States.
| | - Yilun Sheng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China; Microsoft Research, Beijing 100080, China.
| | - Xiao Liang
- High School Affiliated to Renmin University of China, Beijing 100080, China.
| | | | | | - Yan Xu
- School of Biological Science and Medical Engineering and Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China; Microsoft Research, Beijing 100080, China.
| |
Collapse
|
121
|
HybridCTrm: Bridging CNN and Transformer for Multimodal Brain Image Segmentation. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:7467261. [PMID: 34630994 PMCID: PMC8500745 DOI: 10.1155/2021/7467261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
Multimodal medical image segmentation is always a critical problem in medical image segmentation. Traditional deep learning methods utilize fully CNNs for encoding given images, thus leading to deficiency of long-range dependencies and bad generalization performance. Recently, a sequence of Transformer-based methodologies emerges in the field of image processing, which brings great generalization and performance in various tasks. On the other hand, traditional CNNs have their own advantages, such as rapid convergence and local representations. Therefore, we analyze a hybrid multimodal segmentation method based on Transformers and CNNs and propose a novel architecture, HybridCTrm network. We conduct experiments using HybridCTrm on two benchmark datasets and compare with HyperDenseNet, a network based on fully CNNs. Results show that our HybridCTrm outperforms HyperDenseNet on most of the evaluation metrics. Furthermore, we analyze the influence of the depth of Transformer on the performance. Besides, we visualize the results and carefully explore how our hybrid methods improve on segmentations.
Collapse
|
122
|
Design of Flexible Hardware Accelerators for Image Convolutions and Transposed Convolutions. J Imaging 2021; 7:jimaging7100210. [PMID: 34677296 PMCID: PMC8538663 DOI: 10.3390/jimaging7100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Nowadays, computer vision relies heavily on convolutional neural networks (CNNs) to perform complex and accurate tasks. Among them, super-resolution CNNs represent a meaningful example, due to the presence of both convolutional (CONV) and transposed convolutional (TCONV) layers. While the former exploit multiply-and-accumulate (MAC) operations to extract features of interest from incoming feature maps (fmaps), the latter perform MACs to tune the spatial resolution of the received fmaps properly. The ever-growing real-time and low-power requirements of modern computer vision applications represent a stimulus for the research community to investigate the deployment of CNNs on well-suited hardware platforms, such as field programmable gate arrays (FPGAs). FPGAs are widely recognized as valid candidates for trading off computational speed and power consumption, thanks to their flexibility and their capability to also deal with computationally intensive models. In order to reduce the number of operations to be performed, this paper presents a novel hardware-oriented algorithm able to efficiently accelerate both CONVs and TCONVs. The proposed strategy was validated by employing it within a reconfigurable hardware accelerator purposely designed to adapt itself to different operating modes set at run-time. When characterized using the Xilinx XC7K410T FPGA device, the proposed accelerator achieved a throughput of up to 2022.2 GOPS and, in comparison to state-of-the-art competitors, it reached an energy efficiency up to 2.3 times higher, without compromising the overall accuracy.
Collapse
|
123
|
Wang S, Li C, Wang R, Liu Z, Wang M, Tan H, Wu Y, Liu X, Sun H, Yang R, Liu X, Chen J, Zhou H, Ben Ayed I, Zheng H. Annotation-efficient deep learning for automatic medical image segmentation. Nat Commun 2021; 12:5915. [PMID: 34625565 PMCID: PMC8501087 DOI: 10.1038/s41467-021-26216-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
Automatic medical image segmentation plays a critical role in scientific research and medical care. Existing high-performance deep learning methods typically rely on large training datasets with high-quality manual annotations, which are difficult to obtain in many clinical applications. Here, we introduce Annotation-effIcient Deep lEarning (AIDE), an open-source framework to handle imperfect training datasets. Methodological analyses and empirical evaluations are conducted, and we demonstrate that AIDE surpasses conventional fully-supervised models by presenting better performance on open datasets possessing scarce or noisy annotations. We further test AIDE in a real-life case study for breast tumor segmentation. Three datasets containing 11,852 breast images from three medical centers are employed, and AIDE, utilizing 10% training annotations, consistently produces segmentation maps comparable to those generated by fully-supervised counterparts or provided by independent radiologists. The 10-fold enhanced efficiency in utilizing expert labels has the potential to promote a wide range of biomedical applications.
Collapse
Affiliation(s)
- Shanshan Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Peng Cheng Laboratory, Shenzhen, Guangdong, China.
- Pazhou Laboratory, Guangzhou, Guangdong, China.
| | - Cheng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Rongpin Wang
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Zaiyi Liu
- Department of Medical Imaging, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongna Tan
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaping Wu
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinfeng Liu
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Hui Sun
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Rui Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jie Chen
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
- School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong, China
| | - Huihui Zhou
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | | | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
124
|
Lu Y, Zheng K, Li W, Wang Y, Harrison AP, Lin C, Wang S, Xiao J, Lu L, Kuo CF, Miao S. Contour Transformer Network for One-Shot Segmentation of Anatomical Structures. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2672-2684. [PMID: 33290215 DOI: 10.1109/tmi.2020.3043375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accurate segmentation of anatomical structures is vital for medical image analysis. The state-of-the-art accuracy is typically achieved by supervised learning methods, where gathering the requisite expert-labeled image annotations in a scalable manner remains a main obstacle. Therefore, annotation-efficient methods that permit to produce accurate anatomical structure segmentation are highly desirable. In this work, we present Contour Transformer Network (CTN), a one-shot anatomy segmentation method with a naturally built-in human-in-the-loop mechanism. We formulate anatomy segmentation as a contour evolution process and model the evolution behavior by graph convolutional networks (GCNs). Training the CTN model requires only one labeled image exemplar and leverages additional unlabeled data through newly introduced loss functions that measure the global shape and appearance consistency of contours. On segmentation tasks of four different anatomies, we demonstrate that our one-shot learning method significantly outperforms non-learning-based methods and performs competitively to the state-of-the-art fully supervised deep learning methods. With minimal human-in-the-loop editing feedback, the segmentation performance can be further improved to surpass the fully supervised methods.
Collapse
|
125
|
Delisle PL, Anctil-Robitaille B, Desrosiers C, Lombaert H. Realistic image normalization for multi-Domain segmentation. Med Image Anal 2021; 74:102191. [PMID: 34509168 DOI: 10.1016/j.media.2021.102191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/22/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Image normalization is a building block in medical image analysis. Conventional approaches are customarily employed on a per-dataset basis. This strategy, however, prevents the current normalization algorithms from fully exploiting the complex joint information available across multiple datasets. Consequently, ignoring such joint information has a direct impact on the processing of segmentation algorithms. This paper proposes to revisit the conventional image normalization approach by, instead, learning a common normalizing function across multiple datasets. Jointly normalizing multiple datasets is shown to yield consistent normalized images as well as an improved image segmentation when intensity shifts are large. To do so, a fully automated adversarial and task-driven normalization approach is employed as it facilitates the training of realistic and interpretable images while keeping performance on par with the state-of-the-art. The adversarial training of our network aims at finding the optimal transfer function to improve both, jointly, the segmentation accuracy and the generation of realistic images. We have evaluated the performance of our normalizer on both infant and adult brain images from the iSEG, MRBrainS and ABIDE datasets. The results indicate that our contribution does provide an improved realism to the normalized images, while retaining a segmentation accuracy at par with the state-of-the-art learnable normalization approaches.
Collapse
Affiliation(s)
| | | | | | - Herve Lombaert
- Department of Computer and Software Engineering, ETS Montreal, Canada
| |
Collapse
|
126
|
|
127
|
Basnet R, Ahmad MO, Swamy M. A deep dense residual network with reduced parameters for volumetric brain tissue segmentation from MR images. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.103063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
128
|
Cao X, Chen H, Li Y, Peng Y, Wang S, Cheng L. Dilated densely connected U-Net with uncertainty focus loss for 3D ABUS mass segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 209:106313. [PMID: 34364182 DOI: 10.1016/j.cmpb.2021.106313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Accurate segmentation of breast mass in 3D automated breast ultrasound (ABUS) images plays an important role in qualitative and quantitative ABUS image analysis. Yet this task is challenging due to the low signal to noise ratio and serious artifacts in ABUS images, the large shape and size variation of breast masses, as well as the small training dataset compared with natural images. The purpose of this study is to address these difficulties by designing a dilated densely connected U-Net (D2U-Net) together with an uncertainty focus loss. METHODS A lightweight yet effective densely connected segmentation network is constructed to extensively explore feature representations in the small ABUS dataset. In order to deal with the high variation in shape and size of breast masses, a set of hybrid dilated convolutions is integrated into the dense blocks of the D2U-Net. We further suggest an uncertainty focus loss to put more attention on unreliable network predictions, especially the ambiguous mass boundaries caused by low signal to noise ratio and artifacts. Our segmentation algorithm is evaluated on an ABUS dataset of 170 volumes from 107 patients. Ablation analysis and comparison with existing methods are conduct to verify the effectiveness of the proposed method. RESULTS Experiment results demonstrate that the proposed algorithm outperforms existing methods on 3D ABUS mass segmentation tasks, with Dice similarity coefficient, Jaccard index and 95% Hausdorff distance of 69.02%, 56.61% and 4.92 mm, respectively. CONCLUSIONS The proposed method is effective in segmenting breast masses on our small ABUS dataset, especially breast masses with large shape and size variations.
Collapse
Affiliation(s)
- Xuyang Cao
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Houjin Chen
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Yanfeng Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yahui Peng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Shu Wang
- Peking University People's Hospital, Beijing 100044, China
| | - Lin Cheng
- Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
129
|
Wang M, Jiang H, Shi T, Yao YD. HD-RDS-UNet: Leveraging Spatial-Temporal Correlation between the Decoder Feature Maps for Lymphoma Segmentation. IEEE J Biomed Health Inform 2021; 26:1116-1127. [PMID: 34351864 DOI: 10.1109/jbhi.2021.3102612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lymphoma is a group of malignant tumors originated in the lymphatic system. Automatic and accurate lymphoma segmentation in PET/CT volumes is critical yet challenging in the clinical practice. Recently, UNet-like architectures are widely used for medical image segmentation. The pure UNet-like architectures model the spatial correlation between the feature maps very well, whereas they discard the critical temporal correlation. Some prior work combines UNet with recurrent neural networks (RNNs) to utilize the spatial and temporal correlation simultaneously. However, it is inconvenient to incorporate some advanced techniques for UNet to RNNs, which hampers their further improvements. In this paper, we propose a recurrent dense siamese decoder architecture, which simulates RNNs and can densely utilize the spatial-temporal correlation between the decoder feature maps following a UNet approach. We combine it with a modified hyper dense encoder. Therefore, the proposed model is a UNet with a hyper dense encoder and a recurrent dense siamese decoder (HD-RDS-UNet). To stabilize the training process, we propose a weighted Dice loss with stable gradient and self-adaptive parameters. We perform patient-independent fivefold cross-validation on 3D volumes collected from whole-body PET/CT scans of patients with lymphomas. The experimental results show that the volume-wise average Dice score and sensitivity are 85.58% and 94.63%, respectively. The patient-wise average Dice score and sensitivity are 85.85% and 95.01%, respectively. The different configurations of HD-RDS-UNet consistently show superiority in the performance comparison. Besides, a trained HD-RDS-UNet can be easily pruned, resulting in significantly reduced inference time and memory usage, while keeping very good segmentation performance.
Collapse
|
130
|
Dai Y, Gao Y, Liu F. TransMed: Transformers Advance Multi-Modal Medical Image Classification. Diagnostics (Basel) 2021; 11:diagnostics11081384. [PMID: 34441318 PMCID: PMC8391808 DOI: 10.3390/diagnostics11081384] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Over the past decade, convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks, such as disease classification, tumor segmentation, and lesion detection. CNN has great advantages in extracting local features of images. However, due to the locality of convolution operation, it cannot deal with long-range relationships well. Recently, transformers have been applied to computer vision and achieved remarkable success in large-scale datasets. Compared with natural images, multi-modal medical images have explicit and important long-range dependencies, and effective multi-modal fusion strategies can greatly improve the performance of deep models. This prompts us to study transformer-based structures and apply them to multi-modal medical images. Existing transformer-based network architectures require large-scale datasets to achieve better performance. However, medical imaging datasets are relatively small, which makes it difficult to apply pure transformers to medical image analysis. Therefore, we propose TransMed for multi-modal medical image classification. TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images and establish long-range dependencies between modalities. We evaluated our model on two datasets, parotid gland tumors classification and knee injury classification. Combining our contributions, we achieve an improvement of 10.1% and 1.9% in average accuracy, respectively, outperforming other state-of-the-art CNN-based models. The results of the proposed method are promising and have tremendous potential to be applied to a large number of medical image analysis tasks. To our best knowledge, this is the first work to apply transformers to multi-modal medical image classification.
Collapse
Affiliation(s)
- Yin Dai
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; (Y.D.); (Y.G.)
- Engineering Center on Medical Imaging and Intelligent Analysis, Ministry Education, Northeastern University, Shenyang 110169, China
| | - Yifan Gao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; (Y.D.); (Y.G.)
| | - Fayu Liu
- Department of Oromaxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Shenyang 110002, China
- Correspondence:
| |
Collapse
|
131
|
Dai Y, Gao Y, Liu F. TransMed: Transformers Advance Multi-Modal Medical Image Classification. Diagnostics (Basel) 2021. [PMID: 34441318 DOI: 10.1109/access.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Over the past decade, convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks, such as disease classification, tumor segmentation, and lesion detection. CNN has great advantages in extracting local features of images. However, due to the locality of convolution operation, it cannot deal with long-range relationships well. Recently, transformers have been applied to computer vision and achieved remarkable success in large-scale datasets. Compared with natural images, multi-modal medical images have explicit and important long-range dependencies, and effective multi-modal fusion strategies can greatly improve the performance of deep models. This prompts us to study transformer-based structures and apply them to multi-modal medical images. Existing transformer-based network architectures require large-scale datasets to achieve better performance. However, medical imaging datasets are relatively small, which makes it difficult to apply pure transformers to medical image analysis. Therefore, we propose TransMed for multi-modal medical image classification. TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images and establish long-range dependencies between modalities. We evaluated our model on two datasets, parotid gland tumors classification and knee injury classification. Combining our contributions, we achieve an improvement of 10.1% and 1.9% in average accuracy, respectively, outperforming other state-of-the-art CNN-based models. The results of the proposed method are promising and have tremendous potential to be applied to a large number of medical image analysis tasks. To our best knowledge, this is the first work to apply transformers to multi-modal medical image classification.
Collapse
Affiliation(s)
- Yin Dai
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Engineering Center on Medical Imaging and Intelligent Analysis, Ministry Education, Northeastern University, Shenyang 110169, China
| | - Yifan Gao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Fayu Liu
- Department of Oromaxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Shenyang 110002, China
| |
Collapse
|
132
|
Luan X, Zheng X, Li W, Liu L, Shu Y, Guo Y. Rubik-Net: Learning Spatial Information via Rotation-Driven Convolutions for Brain Segmentation. IEEE J Biomed Health Inform 2021; 26:289-300. [PMID: 34242176 DOI: 10.1109/jbhi.2021.3095846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The accurate segmentation of brain tissue in Magnetic Resonance Image (MRI) slices is essential for assessing neurological conditions and brain diseases. However, it is challenging to segment MRI slices because of the low contrast between different brain tissues and the partial volume effect. A 2-Dimensional (2-D) convolutional network cannot handle such volumetric medical image data well because it overlooks spatial information between MRI slices. Although 3-Dimensional (3-D) convolutions capture volumetric spatial information, they have not been fully exploited to enhance the representative ability of deep networks; moreover, they may lead to overfitting in the case of insufficient training data. In this paper, we propose a novel convolutional mechanism, termed Rubik convolution, to capture multi dimensional information between MRI slices. Rubik convolution rotates the axis of a set of consecutive slices, which enables a 2-D convolution kernel to extract features of each axial plane simultaneously. Next, feature maps are rotated back to fuse multidimensional information by the Max-View-Maps. Furthermore, we propose an efficient 2-D convolutional network, namely Rubik-Net, where the residual connections and the bottleneck structure are used to enhance information transmission and reduce the number of network parameters. The proposed Rubik-Net shows promising results on iSeg2017, iSeg2019, IBSR and Brainweb datasets in terms of segmentation accuracy. In particular, we achieved the best results in 95th-percentile Hausdorff distance and average surface distance in cerebrospinal fluid segmentation on the most challenging iSeg2019 dataset. The experiments indicate that Rubik-Net improves the accuracy and efficiency of medical image segmentation. Moreover, Rubik convolution can be easily embedded into existing 2-D convolutional networks.
Collapse
|
133
|
Lin CW, Hong Y, Liu J. Aggregation-and-Attention Network for brain tumor segmentation. BMC Med Imaging 2021; 21:109. [PMID: 34243703 PMCID: PMC8267236 DOI: 10.1186/s12880-021-00639-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glioma is a malignant brain tumor; its location is complex and is difficult to remove surgically. To diagnosis the brain tumor, doctors can precisely diagnose and localize the disease using medical images. However, the computer-assisted diagnosis for the brain tumor diagnosis is still the problem because the rough segmentation of the brain tumor makes the internal grade of the tumor incorrect. METHODS In this paper, we proposed an Aggregation-and-Attention Network for brain tumor segmentation. The proposed network takes the U-Net as the backbone, aggregates multi-scale semantic information, and focuses on crucial information to perform brain tumor segmentation. To this end, we proposed an enhanced down-sampling module and Up-Sampling Layer to compensate for the information loss. The multi-scale connection module is to construct the multi-receptive semantic fusion between encoder and decoder. Furthermore, we designed a dual-attention fusion module that can extract and enhance the spatial relationship of magnetic resonance imaging and applied the strategy of deep supervision in different parts of the proposed network. RESULTS Experimental results show that the performance of the proposed framework is the best on the BraTS2020 dataset, compared with the-state-of-art networks. The performance of the proposed framework surpasses all the comparison networks, and its average accuracies of the four indexes are 0.860, 0.885, 0.932, and 1.2325, respectively. CONCLUSIONS The framework and modules of the proposed framework are scientific and practical, which can extract and aggregate useful semantic information and enhance the ability of glioma segmentation.
Collapse
Affiliation(s)
- Chih-Wei Lin
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, China.
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China.
- Forestry Post-Doctoral Station of Fujian Agriculture and Forestry University, Fuzhou, China.
- Key Laboratory for Ecology and Resource Statistics of Fujian Province, Fuzhou, China.
| | - Yu Hong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Ecology and Resource Statistics of Fujian Province, Fuzhou, China
| | - Jinfu Liu
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Ecology and Resource Statistics of Fujian Province, Fuzhou, China
| |
Collapse
|
134
|
Kanithi P, de Ruiter NJA, Amma MR, Lindeman RW, Butler APH, Butler PH, Chernoglazov AI, Mandalika VBH, Adebileje SA, Alexander SD, Anjomrouz M, Asghariomabad F, Atharifard A, Atlas J, Bamford B, Bell ST, Bheesette S, Carbonez P, Chambers C, Clark JA, Colgan F, Crighton JS, Dahal S, Damet J, Doesburg RMN, Duncan N, Ghodsian N, Gieseg SP, Goulter BP, Gurney S, Healy JL, Kirkbride T, Lansley SP, Lowe C, Marfo E, Matanaghi A, Moghiseh M, Palmer D, Panta RK, Prebble HM, Raja AY, Renaud P, Sayous Y, Schleich N, Searle E, Sheeja JS, Uddin R, Broeke LV, Vivek VS, Walker EP, Walsh MF, Wijesooriya M, Younger WR. Interactive Image Segmentation of MARS Datasets Using Bag of Features. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
135
|
Kim BN, Dolz J, Jodoin PM, Desrosiers C. Privacy-Net: An Adversarial Approach for Identity-Obfuscated Segmentation of Medical Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1737-1749. [PMID: 33710953 DOI: 10.1109/tmi.2021.3065727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper presents a client/server privacy-preserving network in the context of multicentric medical image analysis. Our approach is based on adversarial learning which encodes images to obfuscate the patient identity while preserving enough information for a target task. Our novel architecture is composed of three components: 1) an encoder network which removes identity-specific features from input medical images, 2) a discriminator network that attempts to identify the subject from the encoded images, 3) a medical image analysis network which analyzes the content of the encoded images (segmentation in our case). By simultaneously fooling the discriminator and optimizing the medical analysis network, the encoder learns to remove privacy-specific features while keeping those essentials for the target task. Our approach is illustrated on the problem of segmenting brain MRI from the large-scale Parkinson Progression Marker Initiative (PPMI) dataset. Using longitudinal data from PPMI, we show that the discriminator learns to heavily distort input images while allowing for highly accurate segmentation results. Our results also demonstrate that an encoder trained on the PPMI dataset can be used for segmenting other datasets, without the need for retraining. The code is made available at: https://github.com/bachkimn/Privacy-Net-An-Adversarial-Approach-forIdentity-Obfuscated-Segmentation-of-MedicalImages.
Collapse
|
136
|
Zhuang Y, Liu H, Song E, Ma G, Xu X, Hung CC. APRNet: A 3D Anisotropic Pyramidal Reversible Network with Multi-modal Cross-Dimension Attention for Brain Tissue Segmentation in MR Images. IEEE J Biomed Health Inform 2021; 26:749-761. [PMID: 34197331 DOI: 10.1109/jbhi.2021.3093932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Brain tissue segmentation in multi-modal magnetic resonance (MR) images is significant for the clinical diagnosis of brain diseases. Due to blurred boundaries, low contrast, and intricate anatomical relationships between brain tissue regions, automatic brain tissue segmentation without prior knowledge is still challenging. This paper presents a novel 3D fully convolutional network (FCN) for brain tissue segmentation, called APRNet. In this network, we first propose a 3D anisotropic pyramidal convolutional reversible residual sequence (3DAPC-RRS) module to integrate the intra-slice information with the inter-slice information without significant memory consumption; secondly, we design a multi-modal cross-dimension attention (MCDA) module to automatically capture the effective information in each dimension of multi-modal images; then, we apply 3DAPC-RRS modules and MCDA modules to a 3D FCN with multiple encoded streams and one decoded stream for constituting the overall architecture of APRNet. We evaluated APRNet on two benchmark challenges, namely MRBrainS13 and iSeg-2017. The experimental results show that APRNet yields state-of-the-art segmentation results on both benchmark challenge datasets and achieves the best segmentation performance on the cerebrospinal fluid region. Compared with other methods, our proposed approach exploits the complementary information of different modalities to segment brain tissue regions in both adult and infant MR images, and it achieves the average Dice coefficient of 87.22% and 93.03% on the MRBrainS13 and iSeg-2017 testing data, respectively. The proposed method is beneficial for quantitative brain analysis in the clinical study, and our code is made publicly available.
Collapse
|
137
|
Zhang Z, Li J, Tian C, Zhong Z, Jiao Z, Gao X. Quality-driven deep active learning method for 3D brain MRI segmentation. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.03.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
138
|
Shi T, Jiang H, Zheng B. C 2MA-Net: Cross-Modal Cross-Attention Network for Acute Ischemic Stroke Lesion Segmentation Based on CT Perfusion Scans. IEEE Trans Biomed Eng 2021; 69:108-118. [PMID: 34101581 DOI: 10.1109/tbme.2021.3087612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Based on the hypothesis that adding a cross-modal and cross-attention (C2MA) mechanism into a deep learning network improves accuracy and efficacy of medical image segmentation, we propose to test a novel network to segment acute ischemic stroke (AIS) lesions from four CT perfusion (CTP) maps. METHODS The proposed network uses a C2MA module directly to establish a spatial-wise relationship by using the multigroup non-local attention operation between two modal features and performs dynamic group-wise recalibration through group attention block. This C2MA-Net has a multipath encoder-decoder architecture, in which each modality is processed in different streams on the encoding path, and the pair related parameter modalities are used to bridge attention across multimodal information through the C2MA module. A public dataset involving 94 training and 62 test cases are used to build and evaluate the C2MA-Net. AIS segmentation results on testing cases are analyzed and compared with other state-of-the-art models reported in the literature. RESULTS By calculating several average evaluation scores, C2MA-network improves Recall and F2 scores by 6% and 1%, respectively. In the ablation experiment, the F1 score of C2MA-Net is at least 7.8% higher than that of single-input single-modal self-attention networks. CONCLUSION This study demonstrates advantages of applying C2MA-network to segment AIS lesions, which yields promising segmentation accuracy, and achieves semantic decoupling by processing different parameter modalities separately. SIGNIFICANCE Proving the potential of cross-modal interactions in attention to assist identifying new imaging biomarkers for more accurately predicting AIS prognosis in future studies.
Collapse
|
139
|
A deep cascade of ensemble of dual domain networks with gradient-based T1 assistance and perceptual refinement for fast MRI reconstruction. Comput Med Imaging Graph 2021; 91:101942. [PMID: 34087612 DOI: 10.1016/j.compmedimag.2021.101942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022]
Abstract
Deep learning networks have shown promising results in fast magnetic resonance imaging (MRI) reconstruction. In our work, we develop deep networks to further improve the quantitative and the perceptual quality of reconstruction. To begin with, we propose reconsynergynet (RSN), a network that combines the complementary benefits of independently operating on both the image and the Fourier domain. For a single-coil acquisition, we introduce deep cascade RSN (DC-RSN), a cascade of RSN blocks interleaved with data fidelity (DF) units. Secondly, we improve the structure recovery of DC-RSN for T2 weighted Imaging (T2WI) through assistance of T1 weighted imaging (T1WI), a sequence with short acquisition time. T1 assistance is provided to DC-RSN through a gradient of log feature (GOLF) fusion. Furthermore, we propose perceptual refinement network (PRN) to refine the reconstructions for better visual information fidelity (VIF), a metric highly correlated to radiologist's opinion on the image quality. Lastly, for multi-coil acquisition, we propose variable splitting RSN (VS-RSN), a deep cascade of blocks, each block containing RSN, multi-coil DF unit, and a weighted average module. We extensively validate our models DC-RSN and VS-RSN for single-coil and multi-coil acquisitions and report the state-of-the-art performance. We obtain a SSIM of 0.768, 0.923, and 0.878 for knee single-coil-4x, multi-coil-4x, and multi-coil-8x in fastMRI, respectively. We also conduct experiments to demonstrate the efficacy of GOLF based T1 assistance and PRN.
Collapse
|
140
|
Shaari H, Kevrić J, Jukić S, Bešić L, Jokić D, Ahmed N, Rajs V. Deep Learning-Based Studies on Pediatric Brain Tumors Imaging: Narrative Review of Techniques and Challenges. Brain Sci 2021; 11:brainsci11060716. [PMID: 34071202 PMCID: PMC8230188 DOI: 10.3390/brainsci11060716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Brain tumors diagnosis in children is a scientific concern due to rapid anatomical, metabolic, and functional changes arising in the brain and non-specific or conflicting imaging results. Pediatric brain tumors diagnosis is typically centralized in clinical practice on the basis of diagnostic clues such as, child age, tumor location and incidence, clinical history, and imaging (Magnetic resonance imaging MRI / computed tomography CT) findings. The implementation of deep learning has rapidly propagated in almost every field in recent years, particularly in the medical images’ evaluation. This review would only address critical deep learning issues specific to pediatric brain tumor imaging research in view of the vast spectrum of other applications of deep learning. The purpose of this review paper is to include a detailed summary by first providing a succinct guide to the types of pediatric brain tumors and pediatric brain tumor imaging techniques. Then, we will present the research carried out by summarizing the scientific contributions to the field of pediatric brain tumor imaging processing and analysis. Finally, to establish open research issues and guidance for potential study in this emerging area, the medical and technical limitations of the deep learning-based approach were included.
Collapse
Affiliation(s)
- Hala Shaari
- Department of Information Technologies, Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Jasmin Kevrić
- Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina; (J.K.); (S.J.); (L.B.); (D.J.)
| | - Samed Jukić
- Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina; (J.K.); (S.J.); (L.B.); (D.J.)
| | - Larisa Bešić
- Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina; (J.K.); (S.J.); (L.B.); (D.J.)
| | - Dejan Jokić
- Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina; (J.K.); (S.J.); (L.B.); (D.J.)
| | - Nuredin Ahmed
- Control Department, Technical Computer College Tripoli, Tripoli 00218, Libya;
| | - Vladimir Rajs
- Department of Power, Electronics and Telecommunication Engineering, Faculty of Technical Science, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence:
| |
Collapse
|
141
|
Bandyk MG, Gopireddy DR, Lall C, Balaji KC, Dolz J. MRI and CT bladder segmentation from classical to deep learning based approaches: Current limitations and lessons. Comput Biol Med 2021; 134:104472. [PMID: 34023696 DOI: 10.1016/j.compbiomed.2021.104472] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Precise determination and assessment of bladder cancer (BC) extent of muscle invasion involvement guides proper risk stratification and personalized therapy selection. In this context, segmentation of both bladder walls and cancer are of pivotal importance, as it provides invaluable information to stage the primary tumor. Hence, multiregion segmentation on patients presenting with symptoms of bladder tumors using deep learning heralds a new level of staging accuracy and prediction of the biologic behavior of the tumor. Nevertheless, despite the success of these models in other medical problems, progress in multiregion bladder segmentation, particularly in MRI and CT modalities, is still at a nascent stage, with just a handful of works tackling a multiregion scenario. Furthermore, most existing approaches systematically follow prior literature in other clinical problems, without casting a doubt on the validity of these methods on bladder segmentation, which may present different challenges. Inspired by this, we provide an in-depth look at bladder cancer segmentation using deep learning models. The critical determinants for accurate differentiation of muscle invasive disease, current status of deep learning based bladder segmentation, lessons and limitations of prior work are highlighted.
Collapse
Affiliation(s)
- Mark G Bandyk
- Department of Urology, University of Florida, Jacksonville, FL, USA.
| | | | - Chandana Lall
- Department of Radiology, University of Florida, Jacksonville, FL, USA
| | - K C Balaji
- Department of Urology, University of Florida, Jacksonville, FL, USA
| | | |
Collapse
|
142
|
Al-Masni MA, Kim DH. CMM-Net: Contextual multi-scale multi-level network for efficient biomedical image segmentation. Sci Rep 2021; 11:10191. [PMID: 33986375 PMCID: PMC8119726 DOI: 10.1038/s41598-021-89686-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/26/2021] [Indexed: 01/20/2023] Open
Abstract
Medical image segmentation of tissue abnormalities, key organs, or blood vascular system is of great significance for any computerized diagnostic system. However, automatic segmentation in medical image analysis is a challenging task since it requires sophisticated knowledge of the target organ anatomy. This paper develops an end-to-end deep learning segmentation method called Contextual Multi-Scale Multi-Level Network (CMM-Net). The main idea is to fuse the global contextual features of multiple spatial scales at every contracting convolutional network level in the U-Net. Also, we re-exploit the dilated convolution module that enables an expansion of the receptive field with different rates depending on the size of feature maps throughout the networks. In addition, an augmented testing scheme referred to as Inversion Recovery (IR) which uses logical "OR" and "AND" operators is developed. The proposed segmentation network is evaluated on three medical imaging datasets, namely ISIC 2017 for skin lesions segmentation from dermoscopy images, DRIVE for retinal blood vessels segmentation from fundus images, and BraTS 2018 for brain gliomas segmentation from MR scans. The experimental results showed superior state-of-the-art performance with overall dice similarity coefficients of 85.78%, 80.27%, and 88.96% on the segmentation of skin lesions, retinal blood vessels, and brain tumors, respectively. The proposed CMM-Net is inherently general and could be efficiently applied as a robust tool for various medical image segmentations.
Collapse
Affiliation(s)
- Mohammed A Al-Masni
- Department of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
143
|
Multi-Scale Squeeze U-SegNet with Multi Global Attention for Brain MRI Segmentation. SENSORS 2021; 21:s21103363. [PMID: 34066042 PMCID: PMC8151599 DOI: 10.3390/s21103363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
In this paper, we propose a multi-scale feature extraction with novel attention-based convolutional learning using the U-SegNet architecture to achieve segmentation of brain tissue from a magnetic resonance image (MRI). Although convolutional neural networks (CNNs) show enormous growth in medical image segmentation, there are some drawbacks with the conventional CNN models. In particular, the conventional use of encoder-decoder approaches leads to the extraction of similar low-level features multiple times, causing redundant use of information. Moreover, due to inefficient modeling of long-range dependencies, each semantic class is likely to be associated with non-accurate discriminative feature representations, resulting in low accuracy of segmentation. The proposed global attention module refines the feature extraction and improves the representational power of the convolutional neural network. Moreover, the attention-based multi-scale fusion strategy can integrate local features with their corresponding global dependencies. The integration of fire modules in both the encoder and decoder paths can significantly reduce the computational complexity owing to fewer model parameters. The proposed method was evaluated on publicly accessible datasets for brain tissue segmentation. The experimental results show that our proposed model achieves segmentation accuracies of 94.81% for cerebrospinal fluid (CSF), 95.54% for gray matter (GM), and 96.33% for white matter (WM) with a noticeably reduced number of learnable parameters. Our study shows better segmentation performance, improving the prediction accuracy by 2.5% in terms of dice similarity index while achieving a 4.5 times reduction in the number of learnable parameters compared to previously developed U-SegNet based segmentation approaches. This demonstrates that the proposed approach can achieve reliable and precise automatic segmentation of brain MRI images.
Collapse
|
144
|
Learning U-Net Based Multi-Scale Features in Encoding-Decoding for MR Image Brain Tissue Segmentation. SENSORS 2021; 21:s21093232. [PMID: 34067101 PMCID: PMC8124734 DOI: 10.3390/s21093232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022]
Abstract
Accurate brain tissue segmentation of MRI is vital to diagnosis aiding, treatment planning, and neurologic condition monitoring. As an excellent convolutional neural network (CNN), U-Net is widely used in MR image segmentation as it usually generates high-precision features. However, the performance of U-Net is considerably restricted due to the variable shapes of the segmented targets in MRI and the information loss of down-sampling and up-sampling operations. Therefore, we propose a novel network by introducing spatial and channel dimensions-based multi-scale feature information extractors into its encoding-decoding framework, which is helpful in extracting rich multi-scale features while highlighting the details of higher-level features in the encoding part, and recovering the corresponding localization to a higher resolution layer in the decoding part. Concretely, we propose two information extractors, multi-branch pooling, called MP, in the encoding part, and multi-branch dense prediction, called MDP, in the decoding part, to extract multi-scale features. Additionally, we designed a new multi-branch output structure with MDP in the decoding part to form more accurate edge-preserving predicting maps by integrating the dense adjacent prediction features at different scales. Finally, the proposed method is tested on datasets MRbrainS13, IBSR18, and ISeg2017. We find that the proposed network performs higher accuracy in segmenting MRI brain tissues and it is better than the leading method of 2018 at the segmentation of GM and CSF. Therefore, it can be a useful tool for diagnostic applications, such as brain MRI segmentation and diagnosing.
Collapse
|
145
|
Sun Y, Gao K, Wu Z, Li G, Zong X, Lei Z, Wei Y, Ma J, Yang X, Feng X, Zhao L, Le Phan T, Shin J, Zhong T, Zhang Y, Yu L, Li C, Basnet R, Ahmad MO, Swamy MNS, Ma W, Dou Q, Bui TD, Noguera CB, Landman B, Gotlib IH, Humphreys KL, Shultz S, Li L, Niu S, Lin W, Jewells V, Shen D, Li G, Wang L. Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1363-1376. [PMID: 33507867 PMCID: PMC8246057 DOI: 10.1109/tmi.2021.3055428] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To better understand early brain development in health and disorder, it is critical to accurately segment infant brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). Deep learning-based methods have achieved state-of-the-art performance; h owever, one of the major limitations is that the learning-based methods may suffer from the multi-site issue, that is, the models trained on a dataset from one site may not be applicable to the datasets acquired from other sites with different imaging protocols/scanners. To promote methodological development in the community, the iSeg-2019 challenge (http://iseg2019.web.unc.edu) provides a set of 6-month infant subjects from multiple sites with different protocols/scanners for the participating methods. T raining/validation subjects are from UNC (MAP) and testing subjects are from UNC/UMN (BCP), Stanford University, and Emory University. By the time of writing, there are 30 automatic segmentation methods participated in the iSeg-2019. In this article, 8 top-ranked methods were reviewed by detailing their pipelines/implementations, presenting experimental results, and evaluating performance across different sites in terms of whole brain, regions of interest, and gyral landmark curves. We further pointed out their limitations and possible directions for addressing the multi-site issue. We find that multi-site consistency is still an open issue. We hope that the multi-site dataset in the iSeg-2019 and this review article will attract more researchers to address the challenging and critical multi-site issue in practice.
Collapse
|
146
|
Qi Y, Li J, Chen H, Guo Y, Yin Y, Gong G, Wang L. Computer-aided diagnosis and regional segmentation of nasopharyngeal carcinoma based on multi-modality medical images. Int J Comput Assist Radiol Surg 2021; 16:871-882. [PMID: 33782844 DOI: 10.1007/s11548-021-02351-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Nasopharyngeal carcinoma (NPC) is a category of tumors with high incidence in head-and-neck (H&N) body region, and the diagnosis and treatment planning are usually conducted by radiologists manually, which is tedious, time-consuming and unrepeatable. In this paper, we integrated different stages of this process and proposed a computer-aided framework to realize automatic detection, tumor region and sub-region segmentation, and visualization of NPC, which are usually investigated separately in literatures. METHODS Multi-modality images are utilized in the framework. Firstly, NPC is detected by a convolutional neural network (CNN) on computed tomography (CT) scans. Then, NPC area is segmented from magnetic resonance imaging (MRI) images by using a multi-modality MRI fusion network. Thirdly, NPC sub-regions with different metabolic activities are divided on CT images of the same patient via an adaptive threshold algorithm. Finally, 3D surface model of NPC is generated for observing its shape, size, and location in the head region. The proposed method is compared with other algorithms by evaluation on the volumes and shapes of detected NPCs. RESULTS Experiments are conducted on CT images of 130 NPC patients and 102 subjects without NPC and MRI images of 149 NPC patients, among which 52 subjects are overlapped with both CT and MRI images. The reference for evaluation is generated by three experienced radiologists. The results demonstrated that our utilized models outperform other strategies with detection accuracy 0.882 and Dice similarity coefficient 0.719 for NPC segmentation. Sub-region division and the 3D visualized models show great acceptability in clinical usage. CONCLUSION The remarkable performance indicated the potential of our framework in alleviating workload of radiologist. Furthermore, the combined usage of multi-modality images is able to generate reliable segmentations of NPC area and sub-regions, which provide evidence to judge the heterogeneity among patients and guide the dose painting for radiation therapy.
Collapse
Affiliation(s)
- Yuxiao Qi
- Institute of Image Processing and Pattern Recognition, Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jieyu Li
- Institute of Image Processing and Pattern Recognition, Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Huai Chen
- Institute of Image Processing and Pattern Recognition, Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yujie Guo
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People's Republic of China
| | - Yong Yin
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People's Republic of China
| | - Guanzhong Gong
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People's Republic of China.
| | - Lisheng Wang
- Institute of Image Processing and Pattern Recognition, Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
147
|
Iantsen A, Ferreira M, Lucia F, Jaouen V, Reinhold C, Bonaffini P, Alfieri J, Rovira R, Masson I, Robin P, Mervoyer A, Rousseau C, Kridelka F, Decuypere M, Lovinfosse P, Pradier O, Hustinx R, Schick U, Visvikis D, Hatt M. Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting. Eur J Nucl Med Mol Imaging 2021; 48:3444-3456. [PMID: 33772335 PMCID: PMC8440243 DOI: 10.1007/s00259-021-05244-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/07/2021] [Indexed: 11/12/2022]
Abstract
Purpose In this work, we addressed fully automatic determination of tumor functional uptake from positron emission tomography (PET) images without relying on other image modalities or additional prior constraints, in the context of multicenter images with heterogeneous characteristics. Methods In cervical cancer, an additional challenge is the location of the tumor uptake near or even stuck to the bladder. PET datasets of 232 patients from five institutions were exploited. To avoid unreliable manual delineations, the ground truth was generated with a semi-automated approach: a volume containing the tumor and excluding the bladder was first manually determined, then a well-validated, semi-automated approach relying on the Fuzzy locally Adaptive Bayesian (FLAB) algorithm was applied to generate the ground truth. Our model built on the U-Net architecture incorporates residual blocks with concurrent spatial squeeze and excitation modules, as well as learnable non-linear downsampling and upsampling blocks. Experiments relied on cross-validation (four institutions for training and validation, and the fifth for testing). Results The model achieved good Dice similarity coefficient (DSC) with little variability across institutions (0.80 ± 0.03), with higher recall (0.90 ± 0.05) than precision (0.75 ± 0.05) and improved results over the standard U-Net (DSC 0.77 ± 0.05, recall 0.87 ± 0.02, precision 0.74 ± 0.08). Both vastly outperformed a fixed threshold at 40% of SUVmax (DSC 0.33 ± 0.15, recall 0.52 ± 0.17, precision 0.30 ± 0.16). In all cases, the model could determine the tumor uptake without including the bladder. Neither shape priors nor anatomical information was required to achieve efficient training. Conclusion The proposed method could facilitate the deployment of a fully automated radiomics pipeline in such a challenging multicenter context. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05244-z.
Collapse
Affiliation(s)
- Andrei Iantsen
- LaTIM, INSERM, UMR 1101, University Brest, Brest, France.
| | - Marta Ferreira
- GIGA-CRC in vivo Imaging, University of Liège, Liège, Belgium
| | - Francois Lucia
- LaTIM, INSERM, UMR 1101, University Brest, Brest, France
| | - Vincent Jaouen
- LaTIM, INSERM, UMR 1101, University Brest, Brest, France
| | - Caroline Reinhold
- Department of Radiology, McGill University Health Centre (MUHC), Montreal, Canada
| | - Pietro Bonaffini
- Department of Radiology, McGill University Health Centre (MUHC), Montreal, Canada
| | - Joanne Alfieri
- Department of Radiation Oncology, McGill University Health Centre (MUHC), Montreal, Canada
| | - Ramon Rovira
- Gynecology Oncology and Laparoscopy Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ingrid Masson
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest (ICO), Nantes, France
| | - Philippe Robin
- Nuclear Medicine Department, University Hospital, Brest, France
| | - Augustin Mervoyer
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest (ICO), Nantes, France
| | - Caroline Rousseau
- Nuclear Medicine Department, Institut de Cancérologie de l'Ouest (ICO), Nantes, France
| | - Frédéric Kridelka
- Division of Oncological Gynecology, University Hospital of Liège, Liège, Belgium
| | - Marjolein Decuypere
- Division of Oncological Gynecology, University Hospital of Liège, Liège, Belgium
| | - Pierre Lovinfosse
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium
| | | | - Roland Hustinx
- GIGA-CRC in vivo Imaging, University of Liège, Liège, Belgium
| | - Ulrike Schick
- LaTIM, INSERM, UMR 1101, University Brest, Brest, France
| | | | - Mathieu Hatt
- LaTIM, INSERM, UMR 1101, University Brest, Brest, France
| |
Collapse
|
148
|
Ghosal P, Chowdhury T, Kumar A, Bhadra AK, Chakraborty J, Nandi D. MhURI:A Supervised Segmentation Approach to Leverage Salient Brain Tissues in Magnetic Resonance Images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105841. [PMID: 33221057 PMCID: PMC9096474 DOI: 10.1016/j.cmpb.2020.105841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/07/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Accurate segmentation of critical tissues from a brain MRI is pivotal for characterization and quantitative pattern analysis of the human brain and thereby, identifies the earliest signs of various neurodegenerative diseases. To date, in most cases, it is done manually by the radiologists. The overwhelming workload in some of the thickly populated nations may cause exhaustion leading to interruption for the doctors, which may pose a continuing threat to patient safety. A novel fusion method called U-Net inception based on 3D convolutions and transition layers is proposed to address this issue. METHODS A 3D deep learning method called Multi headed U-Net with Residual Inception (MhURI) accompanied by Morphological Gradient channel for brain tissue segmentation is proposed, which incorporates Residual Inception 2-Residual (RI2R) module as the basic building block. The model exploits the benefits of morphological pre-processing for structural enhancement of MR images. A multi-path data encoding pipeline is introduced on top of the U-Net backbone, which encapsulates initial global features and captures the information from each MRI modality. RESULTS The proposed model has accomplished encouraging outcomes, which appreciates the adequacy in terms of some of the established quality metrices when compared with some of the state-of-the-art methods while evaluating with respect to two popular publicly available data sets. CONCLUSION The model is entirely automatic and able to segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) from brain MRI effectively with sufficient accuracy. Hence, it may be considered to be a potential computer-aided diagnostic (CAD) tool for radiologists and other medical practitioners in their clinical diagnosis workflow.
Collapse
Affiliation(s)
- Palash Ghosal
- Department of Computer Science and Engineering, National Institute of Technology Durgapur-713209, West Bengal, India.
| | - Tamal Chowdhury
- Department of Electronics and Communication Engineering, National Institute of Technology Durgapur-713209, West Bengal, India.
| | - Amish Kumar
- Department of Computer Science and Engineering, National Institute of Technology Durgapur-713209, West Bengal, India.
| | - Ashok Kumar Bhadra
- Department of Radiology, KPC Medical College and Hospital, Jadavpur, 700032, West Bengal, India.
| | - Jayasree Chakraborty
- Department of Hepatopancreatobiliary Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Debashis Nandi
- Department of Computer Science and Engineering, National Institute of Technology Durgapur-713209, West Bengal, India.
| |
Collapse
|
149
|
Chartsias A, Papanastasiou G, Wang C, Semple S, Newby DE, Dharmakumar R, Tsaftaris SA. Disentangle, Align and Fuse for Multimodal and Semi-Supervised Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:781-792. [PMID: 33156786 PMCID: PMC8011298 DOI: 10.1109/tmi.2020.3036584] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Magnetic resonance (MR) protocols rely on several sequences to assess pathology and organ status properly. Despite advances in image analysis, we tend to treat each sequence, here termed modality, in isolation. Taking advantage of the common information shared between modalities (an organ's anatomy) is beneficial for multi-modality processing and learning. However, we must overcome inherent anatomical misregistrations and disparities in signal intensity across the modalities to obtain this benefit. We present a method that offers improved segmentation accuracy of the modality of interest (over a single input model), by learning to leverage information present in other modalities, even if few (semi-supervised) or no (unsupervised) annotations are available for this specific modality. Core to our method is learning a disentangled decomposition into anatomical and imaging factors. Shared anatomical factors from the different inputs are jointly processed and fused to extract more accurate segmentation masks. Image misregistrations are corrected with a Spatial Transformer Network, which non-linearly aligns the anatomical factors. The imaging factor captures signal intensity characteristics across different modality data and is used for image reconstruction, enabling semi-supervised learning. Temporal and slice pairing between inputs are learned dynamically. We demonstrate applications in Late Gadolinium Enhanced (LGE) and Blood Oxygenation Level Dependent (BOLD) cardiac segmentation, as well as in T2 abdominal segmentation. Code is available at https://github.com/vios-s/multimodal_segmentation.
Collapse
|
150
|
Abstract
Even though convolutional neural networks (CNNs) are driving progress in medical image segmentation, standard models still have some drawbacks. First, the use of multi-scale approaches, i.e., encoder-decoder architectures, leads to a redundant use of information, where similar low-level features are extracted multiple times at multiple scales. Second, long-range feature dependencies are not efficiently modeled, resulting in non-optimal discriminative feature representations associated with each semantic class. In this paper we attempt to overcome these limitations with the proposed architecture, by capturing richer contextual dependencies based on the use of guided self-attention mechanisms. This approach is able to integrate local features with their corresponding global dependencies, as well as highlight interdependent channel maps in an adaptive manner. Further, the additional loss between different modules guides the attention mechanisms to neglect irrelevant information and focus on more discriminant regions of the image by emphasizing relevant feature associations. We evaluate the proposed model in the context of semantic segmentation on three different datasets: abdominal organs, cardiovascular structures and brain tumors. A series of ablation experiments support the importance of these attention modules in the proposed architecture. In addition, compared to other state-of-the-art segmentation networks our model yields better segmentation performance, increasing the accuracy of the predictions while reducing the standard deviation. This demonstrates the efficiency of our approach to generate precise and reliable automatic segmentations of medical images. Our code is made publicly available at: https://github.com/sinAshish/Multi-Scale-Attention.
Collapse
|