101
|
Li C, Yang Y, Liang H, Wu B. Transfer learning for establishment of recognition of COVID-19 on CT imaging using small-sized training datasets. Knowl Based Syst 2021; 218:106849. [PMID: 33584016 PMCID: PMC7866884 DOI: 10.1016/j.knosys.2021.106849] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus disease, called COVID-19, which is spreading fast worldwide since the end of 2019, and has become a global challenging pandemic. Until 27th May 2020, it caused more than 5.6 million individuals infected throughout the world and resulted in greater than 348,145 deaths. CT images-based classification technique has been tried to use the identification of COVID-19 with CT imaging by hospitals, which aims to minimize the possibility of virus transmission and alleviate the burden of clinicians and radiologists. Early diagnosis of COVID-19, which not only prevents the disease from spreading further but allows more reasonable allocation of limited medical resources. Therefore, CT images play an essential role in identifying cases of COVID-19 that are in great need of intensive clinical care. Unfortunately, the current public health emergency, which has caused great difficulties in collecting a large set of precise data for training neural networks. To tackle this challenge, our first thought is transfer learning, which is a technique that aims to transfer the knowledge from one or more source tasks to a target task when the latter has fewer training data. Since the training data is relatively limited, so a transfer learning-based DensNet-121 approach for the identification of COVID-19 is established. The proposed method is inspired by the precious work of predecessors such as CheXNet for identifying common Pneumonia, which was trained using the large Chest X-ray14 dataset, and the dataset contains 112,120 frontal chest X-rays of 14 different chest diseases (including Pneumonia) that are individually labeled and achieved good performance. Therefore, CheXNet as the pre-trained network was used for the target task (COVID-19 classification) by fine-tuning the network weights on the small-sized dataset in the target task. Finally, we evaluated our proposed method on the COVID-19-CT dataset. Experimentally, our method achieves state-of-the-art performance for the accuracy (ACC) and F1-score. The quantitative indicators show that the proposed method only uses a GPU can reach the best performance, up to 0.87 and 0.86, respectively, compared with some widely used and recent deep learning methods, which are helpful for COVID-19 diagnosis and patient triage. The codes used in this manuscript are publicly available on GitHub at (https://github.com/lichun0503/CT-Classification).
Collapse
Affiliation(s)
- Chun Li
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yunyun Yang
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Hui Liang
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Boying Wu
- Department of Mathematics, Harbin Institute of Technology, Harbin, 150006, China
| |
Collapse
|
102
|
LR-cGAN: Latent representation based conditional generative adversarial network for multi-modality MRI synthesis. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
103
|
Liang L, Zhou P, Lu W, Guo X, Ye C, Lv H, Wang T, Ma T. An anatomical knowledge-based MRI deep learning pipeline for white matter hyperintensity quantification associated with cognitive impairment. Comput Med Imaging Graph 2021; 89:101873. [PMID: 33610084 DOI: 10.1016/j.compmedimag.2021.101873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/29/2020] [Accepted: 01/27/2021] [Indexed: 11/29/2022]
Abstract
Recent studies have confirmed that white matter hyperintensities (WMHs) accumulated in strategic brain regions can predict cognitive impairments associated with Alzheimer's disease (AD). The knowledge of white matter anatomy facilitates lesion-symptom mapping associated with cognition, and provides important spatial information for lesion segmentation algorithms. However, deep learning-based methods in the white matter hyperintensity (WMH) segmentation realm do not take full advantage of anatomical knowledge in decision-making and lesion localization processes. In this paper, we proposed an anatomical knowledge-based MRI deep learning pipeline (AU-Net), handcrafted anatomical-based spatial features developed from brain atlas were integrated with a well-designed U-Net configuration to simultaneously segment and locate WMHs. Manually annotated data from WMH segmentation challenge were used for the evaluation. We then applied this pipeline to investigate the association between WMH burden and cognition within another publicly available database. The results showed that AU-Net significantly improved segmentation performance compared with methods that did not incorporate anatomical knowledge (p < 0.05), and achieved a 14-17% increase based on area under the curve (AUC) in the cohort with mild WMH burden. Different configurations for incorporating anatomical knowledge were evaluated, the proposed stage-wise AU-Net-two-step method achieved the best performance (Dice: 0.86, modified Hausdorff distance: 3.06 mm), which was comparable with the state-of-the-art method (Dice: 0.87, modified Hausdorff distance: 3.62 mm). We observed different WMH accumulation patterns associated with normal aging and cognitive impairments. Furthermore, the characteristics of individual WMH lesions located in strategic regions (frontal and parietal subcortical white matter, as well as corpus callosum) were significantly correlated with cognition after adjusting for total lesion volumes. Our findings suggest that AU-Net is a reliable method to segment and quantify brain WMHs in elderly cohorts, and is valuable in individual cognition evaluation.
Collapse
Affiliation(s)
- Li Liang
- School of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong, China; Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | | | - Wanxin Lu
- School of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong, China
| | - Xutao Guo
- School of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong, China; Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Chenfei Ye
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Haiyan Lv
- Mindsgo Life Science Shenzhen Ltd, Shenzhen, Guangdong, China
| | - Tong Wang
- School of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong, China
| | - Ting Ma
- School of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong, China; Peng Cheng Laboratory, Shenzhen, Guangdong, China; National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
104
|
Guan Q, Huang Y, Luo Y, Liu P, Xu M, Yang Y. Discriminative Feature Learning for Thorax Disease Classification in Chest X-ray Images. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:2476-2487. [PMID: 33497335 DOI: 10.1109/tip.2021.3052711] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper focuses on the thorax disease classification problem in chest X-ray (CXR) images. Different from the generic image classification task, a robust and stable CXR image analysis system should consider the unique characteristics of CXR images. Particularly, it should be able to: 1) automatically focus on the disease-critical regions, which usually are of small sizes; 2) adaptively capture the intrinsic relationships among different disease features and utilize them to boost the multi-label disease recognition rates jointly. In this paper, we propose to learn discriminative features with a two-branch architecture, named ConsultNet, to achieve those two purposes simultaneously. ConsultNet consists of two components. First, an information bottleneck constrained feature selector extracts critical disease-specific features according to the feature importance. Second, a spatial-and-channel encoding based feature integrator enhances the latent semantic dependencies in the feature space. ConsultNet fuses these discriminative features to improve the performance of thorax disease classification in CXRs. Experiments conducted on the ChestX-ray14 and CheXpert dataset demonstrate the effectiveness of the proposed method.
Collapse
|
105
|
Jiao Y, Zhou T, Yao L, Zhou G, Wang X, Zhang Y. Multi-View Multi-Scale Optimization of Feature Representation for EEG Classification Improvement. IEEE Trans Neural Syst Rehabil Eng 2021; 28:2589-2597. [PMID: 33245696 DOI: 10.1109/tnsre.2020.3040984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Effectively extracting common space pattern (CSP) features from motor imagery (MI) EEG signals is often highly dependent on the filter band selection. At the same time, optimizing the EEG channel combinations is another key issue that substantially affects the SMR feature representations. Although numerous algorithms have been developed to find channels that record important characteristics of MI, most of them select channels in a cumbersome way with low computational efficiency, thereby limiting the practicality of MI-based BCI systems. In this study, we propose the multi-scale optimization (MSO) of spatial patterns, optimizing filter bands over multiple channel sets within CSPs to further improve the performance of MI-based BCI. Specifically, several channel subsets are first heuristically predefined, and then raw EEG data specific to each of these subsets bandpass-filtered at the overlap between a set of filter bands. Further, instead of solving learning problems for each channel subset independently, we propose a multi-view learning based sparse optimization to jointly extract robust CSP features with L2,1 -norm regularization, aiming to capture the shared salient information across multiple related spatial patterns for enhanced classification performance. A support vector machine (SVM) classifier is then trained on these optimized EEG features for accurate recognition of MI tasks. Experimental results on three public EEG datasets validate the effectiveness of MSO compared to several other competing methods and their variants. These superior experimental results demonstrate that the proposed MSO method has promising potential in MI-based BCIs.
Collapse
|
106
|
Zhou T, Fan DP, Cheng MM, Shen J, Shao L. RGB-D salient object detection: A survey. COMPUTATIONAL VISUAL MEDIA 2021; 7:37-69. [PMID: 33432275 PMCID: PMC7788385 DOI: 10.1007/s41095-020-0199-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Salient object detection, which simulates human visual perception in locating the most significant object(s) in a scene, has been widely applied to various computer vision tasks. Now, the advent of depth sensors means that depth maps can easily be captured; this additional spatial information can boost the performance of salient object detection. Although various RGB-D based salient object detection models with promising performance have been proposed over the past several years, an in-depth understanding of these models and the challenges in this field remains lacking. In this paper, we provide a comprehensive survey of RGB-D based salient object detection models from various perspectives, and review related benchmark datasets in detail. Further, as light fields can also provide depth maps, we review salient object detection models and popular benchmark datasets from this domain too. Moreover, to investigate the ability of existing models to detect salient objects, we have carried out a comprehensive attribute-based evaluation of several representative RGB-D based salient object detection models. Finally, we discuss several challenges and open directions of RGB-D based salient object detection for future research. All collected models, benchmark datasets, datasets constructed for attribute-based evaluation, and related code are publicly available at https://github.com/taozh2017/RGBD-SODsurvey.
Collapse
Affiliation(s)
- Tao Zhou
- Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, United Arab Emirates
| | - Deng-Ping Fan
- Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, United Arab Emirates
| | | | - Jianbing Shen
- Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, United Arab Emirates
| | - Ling Shao
- Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, United Arab Emirates
| |
Collapse
|
107
|
Pan X, Phan TL, Adel M, Fossati C, Gaidon T, Wojak J, Guedj E. Multi-View Separable Pyramid Network for AD Prediction at MCI Stage by 18F-FDG Brain PET Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:81-92. [PMID: 32894711 DOI: 10.1109/tmi.2020.3022591] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Alzheimer's Disease (AD), one of the main causes of death in elderly people, is characterized by Mild Cognitive Impairment (MCI) at prodromal stage. Nevertheless, only part of MCI subjects could progress to AD. The main objective of this paper is thus to identify those who will develop a dementia of AD type among MCI patients. 18F-FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) serves as a neuroimaging modality for early diagnosis as it can reflect neural activity via measuring glucose uptake at resting-state. In this paper, we design a deep network on 18F-FDG PET modality to address the problem of AD identification at early MCI stage. To this end, a Multi-view Separable Pyramid Network (MiSePyNet) is proposed, in which representations are learned from axial, coronal and sagittal views of PET scans so as to offer complementary information and then combined to make a decision jointly. Different from the widely and naturally used 3D convolution operations for 3D images, the proposed architecture is deployed with separable convolution from slice-wise to spatial-wise successively, which can retain the spatial information and reduce training parameters compared to 2D and 3D networks, respectively. Experiments on ADNI dataset show that the proposed method can yield better performance than both traditional and deep learning-based algorithms for predicting the progression of Mild Cognitive Impairment, with a classification accuracy of 83.05%.
Collapse
|
108
|
Zhou Y, Wang B, He X, Cui S, Shao L. DR-GAN: Conditional Generative Adversarial Network for Fine-Grained Lesion Synthesis on Diabetic Retinopathy Images. IEEE J Biomed Health Inform 2020; 26:56-66. [PMID: 33332280 DOI: 10.1109/jbhi.2020.3045475] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetic retinopathy (DR) is a complication of diabetes that severely affects eyes. It can be graded into five levels of severity according to international protocol. However, optimizing a grading model to have strong generalizability requires a large amount of balanced training data, which is difficult to collect, particularly for the high severity levels. Typical data augmentation methods, including random flipping and rotation, cannot generate data with high diversity. In this paper, we propose a diabetic retinopathy generative adversarial network (DR-GAN) to synthesize high-resolution fundus images which can be manipulated with arbitrary grading and lesion information. Thus, large-scale generated data can be used for more meaningful augmentation to train a DR grading and lesion segmentation model. The proposed retina generator is conditioned on the structural and lesion masks, as well as adaptive grading vectors sampled from the latent grading space, which can be adopted to control the synthesized grading severity. Moreover, a multi-scale spatial and channel attention module is devised to improve the generation ability to synthesize small details. Multi-scale discriminators are designed to operate from large to small receptive fields, and joint adversarial losses are adopted to optimize the whole network in an end-to-end manner. With extensive experiments evaluated on the EyePACS dataset connected to Kaggle, as well as the FGADR dataset, we validate the effectiveness of our method, which can both synthesize highly realistic (1280 × 1280) controllable fundus images and contribute to the DR grading task.
Collapse
|
109
|
Li X, Jia M, Islam MT, Yu L, Xing L. Self-Supervised Feature Learning via Exploiting Multi-Modal Data for Retinal Disease Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4023-4033. [PMID: 32746140 DOI: 10.1109/tmi.2020.3008871] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The automatic diagnosis of various retinal diseases from fundus images is important to support clinical decision-making. However, developing such automatic solutions is challenging due to the requirement of a large amount of human-annotated data. Recently, unsupervised/self-supervised feature learning techniques receive a lot of attention, as they do not need massive annotations. Most of the current self-supervised methods are analyzed with single imaging modality and there is no method currently utilize multi-modal images for better results. Considering that the diagnostics of various vitreoretinal diseases can greatly benefit from another imaging modality, e.g., FFA, this paper presents a novel self-supervised feature learning method by effectively exploiting multi-modal data for retinal disease diagnosis. To achieve this, we first synthesize the corresponding FFA modality and then formulate a patient feature-based softmax embedding objective. Our objective learns both modality-invariant features and patient-similarity features. Through this mechanism, the neural network captures the semantically shared information across different modalities and the apparent visual similarity between patients. We evaluate our method on two public benchmark datasets for retinal disease diagnosis. The experimental results demonstrate that our method clearly outperforms other self-supervised feature learning methods and is comparable to the supervised baseline. Our code is available at GitHub.
Collapse
|
110
|
Qian X, Fu H, Shi W, Chen T, Fu Y, Shan F, Xue X. M 3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia Screening From CT Imaging. IEEE J Biomed Health Inform 2020; 24:3539-3550. [PMID: 33048773 PMCID: PMC8545176 DOI: 10.1109/jbhi.2020.3030853] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 11/10/2022]
Abstract
To counter the outbreak of COVID-19, the accurate diagnosis of suspected cases plays a crucial role in timely quarantine, medical treatment, and preventing the spread of the pandemic. Considering the limited training cases and resources (e.g, time and budget), we propose a Multi-task Multi-slice Deep Learning System (M 3Lung-Sys) for multi-class lung pneumonia screening from CT imaging, which only consists of two 2D CNN networks, i.e., slice- and patient-level classification networks. The former aims to seek the feature representations from abundant CT slices instead of limited CT volumes, and for the overall pneumonia screening, the latter one could recover the temporal information by feature refinement and aggregation between different slices. In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3Lung-Sys also be able to locate the areas of relevant lesions, without any pixel-level annotation. To further demonstrate the effectiveness of our model, we conduct extensive experiments on a chest CT imaging dataset with a total of 734 patients (251 healthy people, 245 COVID-19 patients, 105 H1N1 patients, and 133 CAP patients). The quantitative results with plenty of metrics indicate the superiority of our proposed model on both slice- and patient-level classification tasks. More importantly, the generated lesion location maps make our system interpretable and more valuable to clinicians.
Collapse
Affiliation(s)
- Xuelin Qian
- Shanghai Key Lab of Intelligent Information Processing, School of Computer ScienceFudan UniversityShanghai200433China
| | - Huazhu Fu
- Inception Institute of Artificial IntelligenceAbu DhabiUAE
| | - Weiya Shi
- Department of Radiology, Shanghai Public Health Clinical CenterFudan UniversityShanghai201508China
| | - Tao Chen
- School of Information Science and TechnologyFudan UniversityShanghai200433China
| | - Yanwei Fu
- School of Data Science, MOE Frontiers Center for Brain Science, Shanghai Key Lab of Intelligent Information ProcessingFudan UniversityShanghai200433China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical CenterFudan UniversityShanghai201508China
| | - Xiangyang Xue
- Shanghai Key Lab of Intelligent Information Processing, School of Computer ScienceFudan UniversityShanghai200433China
| |
Collapse
|
111
|
Dai X, Lei Y, Fu Y, Curran WJ, Liu T, Mao H, Yang X. Multimodal MRI synthesis using unified generative adversarial networks. Med Phys 2020; 47:6343-6354. [PMID: 33053202 PMCID: PMC7796974 DOI: 10.1002/mp.14539] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/27/2020] [Accepted: 10/01/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Complementary information obtained from multiple contrasts of tissue facilitates physicians assessing, diagnosing and planning treatment of a variety of diseases. However, acquiring multiple contrasts magnetic resonance images (MRI) for every patient using multiple pulse sequences is time-consuming and expensive, where, medical image synthesis has been demonstrated as an effective alternative. The purpose of this study is to develop a unified framework for multimodal MR image synthesis. METHODS A unified generative adversarial network consisting of only a single generator and a single discriminator was developed to learn the mappings among images of four different modalities. The generator took an image and its modality label as inputs and learned to synthesize the image in the target modality, while the discriminator was trained to distinguish between real and synthesized images and classify them to their corresponding modalities. The network was trained and tested using multimodal brain MRI consisting of four different contrasts which are T1-weighted (T1), T1-weighted and contrast-enhanced (T1c), T2-weighted (T2), and fluid-attenuated inversion recovery (Flair). Quantitative assessments of our proposed method were made through computing normalized mean absolute error (NMAE), peak signal-to-noise ratio (PSNR), structural similarity index measurement (SSIM), visual information fidelity (VIF), and naturalness image quality evaluator (NIQE). RESULTS The proposed model was trained and tested on a cohort of 274 glioma patients with well-aligned multi-types of MRI scans. After the model was trained, tests were conducted by using each of T1, T1c, T2, Flair as a single input modality to generate its respective rest modalities. Our proposed method shows high accuracy and robustness for image synthesis with arbitrary MRI modality that is available in the database as input. For example, with T1 as input modality, the NMAEs for the generated T1c, T2, Flair respectively are 0.034 ± 0.005, 0.041 ± 0.006, and 0.041 ± 0.006, the PSNRs respectively are 32.353 ± 2.525 dB, 30.016 ± 2.577 dB, and 29.091 ± 2.795 dB, the SSIMs are 0.974 ± 0.059, 0.969 ± 0.059, and 0.959 ± 0.059, the VIF are 0.750 ± 0.087, 0.706 ± 0.097, and 0.654 ± 0.062, and NIQE are 1.396 ± 0.401, 1.511 ± 0.460, and 1.259 ± 0.358, respectively. CONCLUSIONS We proposed a novel multimodal MR image synthesis method based on a unified generative adversarial network. The network takes an image and its modality label as inputs and synthesizes multimodal images in a single forward pass. The results demonstrate that the proposed method is able to accurately synthesize multimodal MR images from a single MR image.
Collapse
Affiliation(s)
- Xianjin Dai
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Yabo Fu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Walter J. Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Hui Mao
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
112
|
Wang J, Zhang L, Wang Q, Chen L, Shi J, Chen X, Li Z, Shen D. Multi-Class ASD Classification Based on Functional Connectivity and Functional Correlation Tensor via Multi-Source Domain Adaptation and Multi-View Sparse Representation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3137-3147. [PMID: 32305905 DOI: 10.1109/tmi.2020.2987817] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The resting-state functional magnetic resonance imaging (rs-fMRI) reflects functional activity of brain regions by blood-oxygen-level dependent (BOLD) signals. Up to now, many computer-aided diagnosis methods based on rs-fMRI have been developed for Autism Spectrum Disorder (ASD). These methods are mostly the binary classification approaches to determine whether a subject is an ASD patient or not. However, the disease often consists of several sub-categories, which are complex and thus still confusing to many automatic classification methods. Besides, existing methods usually focus on the functional connectivity (FC) features in grey matter regions, which only account for a small portion of the rs-fMRI data. Recently, the possibility to reveal the connectivity information in the white matter regions of rs-fMRI has drawn high attention. To this end, we propose to use the patch-based functional correlation tensor (PBFCT) features extracted from rs-fMRI in white matter, in addition to the traditional FC features from gray matter, to develop a novel multi-class ASD diagnosis method in this work. Our method has two stages. Specifically, in the first stage of multi-source domain adaptation (MSDA), the source subjects belonging to multiple clinical centers (thus called as source domains) are all transformed into the same target feature space. Thus each subject in the target domain can be linearly reconstructed by the transformed subjects. In the second stage of multi-view sparse representation (MVSR), a multi-view classifier for multi-class ASD diagnosis is developed by jointly using both views of the FC and PBFCT features. The experimental results using the ABIDE dataset verify the effectiveness of our method, which is capable of accurately classifying each subject into a respective ASD sub-category.
Collapse
|
113
|
An Attention-Based Network for Textured Surface Anomaly Detection. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Textured surface anomaly detection is a significant task in industrial scenarios. In order to further improve the detection performance, we proposed a novel two-stage approach with an attention mechanism. Firstly, in the segmentation network, the feature extraction and anomaly attention modules are designed to capture the detail information as much as possible and focus on the anomalies, respectively. To strike dynamic balances between these two parts, an adaptive scheme where learnable parameters are gradually optimized is introduced. Subsequently, the weights of the segmentation network are frozen, and the outputs are fed into the classification network, which is trained independently in this stage. Finally, we evaluate the proposed approach on DAGM 2007 dataset which consists of diverse textured surfaces with weakly-labeled anomalies, and the experiments demonstrate that our method can achieve 100% detection rates in terms of TPR (True Positive Rate) and TNR (True Negative Rate).
Collapse
|
114
|
Shi Y, Yang W, Thung KH, Wang H, Gao Y, Pan Y, Zhang L, Shen D. Learning-Based Computer-Aided Prescription Model for Parkinson's Disease: A Data-Driven Perspective. IEEE J Biomed Health Inform 2020; 25:3258-3269. [PMID: 32750966 DOI: 10.1109/jbhi.2020.3010946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this article, we study a novel problem: "automatic prescription recommendation for PD patients." To realize this goal, we first build a dataset by collecting 1) symptoms of PD patients, and 2) their prescription drug provided by neurologists. Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug. Finally, for the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model. From the methodology part, our proposed model, namely Prescription viA Learning lAtent Symptoms (PALAS), could recommend prescription using the multi-modality representation of the data. In PALAS, a latent symptom space is learned to better model the relationship between symptoms and prescription drug, as there is a large semantic gap between them. Moreover, we present an efficient alternating optimization method for PALAS. We evaluated our method using the data collected from 136 PD patients at Nanjing Brain Hospital, which can be regarded as a large dataset in PD research community. The experimental results demonstrate the effectiveness and clinical potential of our method in this recommendation task, if compared with other competing methods.
Collapse
|
115
|
Fan DP, Zhou T, Ji GP, Zhou Y, Chen G, Fu H, Shen J, Shao L. Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2626-2637. [PMID: 32730213 DOI: 10.1101/2020.04.22.20074948] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) spread globally in early 2020, causing the world to face an existential health crisis. Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19. However, segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues. Further, collecting a large amount of data is impractical within a short time period, inhibiting the training of a deep model. To address these challenges, a novel COVID-19 Lung Infection Segmentation Deep Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices. In our Inf-Net, a parallel partial decoder is used to aggregate the high-level features and generate a global map. Then, the implicit reverse attention and explicit edge-attention are utilized to model the boundaries and enhance the representations. Moreover, to alleviate the shortage of labeled data, we present a semi-supervised segmentation framework based on a randomly selected propagation strategy, which only requires a few labeled images and leverages primarily unlabeled data. Our semi-supervised framework can improve the learning ability and achieve a higher performance. Extensive experiments on our COVID-SemiSeg and real CT volumes demonstrate that the proposed Inf-Net outperforms most cutting-edge segmentation models and advances the state-of-the-art performance.
Collapse
|
116
|
Munawar F, Azmat S, Iqbal T, Gronlund C, Ali H. Segmentation of Lungs in Chest X-Ray Image Using Generative Adversarial Networks. IEEE ACCESS 2020; 8:153535-153545. [DOI: 10.1109/access.2020.3017915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|