101
|
Wang G, Luo T, Nielsen JF, Noll DC, Fessler JA. B-Spline Parameterized Joint Optimization of Reconstruction and K-Space Trajectories (BJORK) for Accelerated 2D MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2318-2330. [PMID: 35320096 PMCID: PMC9437126 DOI: 10.1109/tmi.2022.3161875] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Optimizing k-space sampling trajectories is a promising yet challenging topic for fast magnetic resonance imaging (MRI). This work proposes to optimize a reconstruction method and sampling trajectories jointly concerning image reconstruction quality in a supervised learning manner. We parameterize trajectories with quadratic B-spline kernels to reduce the number of parameters and apply multi-scale optimization, which may help to avoid sub-optimal local minima. The algorithm includes an efficient non-Cartesian unrolled neural network-based reconstruction and an accurate approximation for backpropagation through the non-uniform fast Fourier transform (NUFFT) operator to accurately reconstruct and back-propagate multi-coil non-Cartesian data. Penalties on slew rate and gradient amplitude enforce hardware constraints. Sampling and reconstruction are trained jointly using large public datasets. To correct for possible eddy-current effects introduced by the curved trajectory, we use a pencil-beam trajectory mapping technique. In both simulations and in- vivo experiments, the learned trajectory demonstrates significantly improved image quality compared to previous model-based and learning-based trajectory optimization methods for 10× acceleration factors. Though trained with neural network-based reconstruction, the proposed trajectory also leads to improved image quality with compressed sensing-based reconstruction.
Collapse
|
102
|
Gu H, Yaman B, Moeller S, Ellermann J, Ugurbil K, Akçakaya M. Revisiting [Formula: see text]-wavelet compressed-sensing MRI in the era of deep learning. Proc Natl Acad Sci U S A 2022; 119:e2201062119. [PMID: 35939712 PMCID: PMC9388129 DOI: 10.1073/pnas.2201062119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Following their success in numerous imaging and computer vision applications, deep-learning (DL) techniques have emerged as one of the most prominent strategies for accelerated MRI reconstruction. These methods have been shown to outperform conventional regularized methods based on compressed sensing (CS). However, in most comparisons, CS is implemented with two or three hand-tuned parameters, while DL methods enjoy a plethora of advanced data science tools. In this work, we revisit [Formula: see text]-wavelet CS reconstruction using these modern tools. Using ideas such as algorithm unrolling and advanced optimization methods over large databases that DL algorithms utilize, along with conventional insights from wavelet representations and CS theory, we show that [Formula: see text]-wavelet CS can be fine-tuned to a level close to DL reconstruction for accelerated MRI. The optimized [Formula: see text]-wavelet CS method uses only 128 parameters compared to >500,000 for DL, employs a convex reconstruction at inference time, and performs within <1% of a DL approach that has been used in multiple studies in terms of quantitative quality metrics.
Collapse
Affiliation(s)
- Hongyi Gu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455
| | - Burhaneddin Yaman
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455
| | - Jutta Ellermann
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
103
|
Chen EZ, Wang P, Chen X, Chen T, Sun S. Pyramid Convolutional RNN for MRI Image Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2033-2047. [PMID: 35192462 DOI: 10.1109/tmi.2022.3153849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fast and accurate MRI image reconstruction from undersampled data is crucial in clinical practice. Deep learning based reconstruction methods have shown promising advances in recent years. However, recovering fine details from undersampled data is still challenging. In this paper, we introduce a novel deep learning based method, Pyramid Convolutional RNN (PC-RNN), to reconstruct images from multiple scales. Based on the formulation of MRI reconstruction as an inverse problem, we design the PC-RNN model with three convolutional RNN (ConvRNN) modules to iteratively learn the features in multiple scales. Each ConvRNN module reconstructs images at different scales and the reconstructed images are combined by a final CNN module in a pyramid fashion. The multi-scale ConvRNN modules learn a coarse-to-fine image reconstruction. Unlike other common reconstruction methods for parallel imaging, PC-RNN does not employ coil sensitive maps for multi-coil data and directly model the multiple coils as multi-channel inputs. The coil compression technique is applied to standardize data with various coil numbers, leading to more efficient training. We evaluate our model on the fastMRI knee and brain datasets and the results show that the proposed model outperforms other methods and can recover more details. The proposed method is one of the winner solutions in the 2019 fastMRI competition.
Collapse
|
104
|
Beauferris Y, Teuwen J, Karkalousos D, Moriakov N, Caan M, Yiasemis G, Rodrigues L, Lopes A, Pedrini H, Rittner L, Dannecker M, Studenyak V, Gröger F, Vyas D, Faghih-Roohi S, Kumar Jethi A, Chandra Raju J, Sivaprakasam M, Lasby M, Nogovitsyn N, Loos W, Frayne R, Souza R. Multi-Coil MRI Reconstruction Challenge-Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Front Neurosci 2022; 16:919186. [PMID: 35873808 PMCID: PMC9298878 DOI: 10.3389/fnins.2022.919186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess the MRI reconstruction quality of high-resolution brain images, and evaluate how these proposed algorithms will behave in the presence of small, but expected data distribution shifts. The multi-coil MRI (MC-MRI) reconstruction challenge provides a benchmark that aims at addressing these issues, using a large dataset of high-resolution, three-dimensional, T1-weighted MRI scans. The challenge has two primary goals: (1) to compare different MRI reconstruction models on this dataset and (2) to assess the generalizability of these models to data acquired with a different number of receiver coils. In this paper, we describe the challenge experimental design and summarize the results of a set of baseline and state-of-the-art brain MRI reconstruction models. We provide relevant comparative information on the current MRI reconstruction state-of-the-art and highlight the challenges of obtaining generalizable models that are required prior to broader clinical adoption. The MC-MRI benchmark data, evaluation code, and current challenge leaderboard are publicly available. They provide an objective performance assessment for future developments in the field of brain MRI reconstruction.
Collapse
Affiliation(s)
- Youssef Beauferris
- (AI) Lab, Electrical and Software Engineering, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jonas Teuwen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Innovation Centre for Artificial Intelligence – Artificial Intelligence for Oncology, University of Amsterdam, Amsterdam, Netherlands
| | - Dimitrios Karkalousos
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Nikita Moriakov
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Matthan Caan
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - George Yiasemis
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Innovation Centre for Artificial Intelligence – Artificial Intelligence for Oncology, University of Amsterdam, Amsterdam, Netherlands
| | - Lívia Rodrigues
- Medical Image Computing Lab, School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | - Alexandre Lopes
- Institute of Computing, University of Campinas, Campinas, Brazil
| | - Helio Pedrini
- Institute of Computing, University of Campinas, Campinas, Brazil
| | - Letícia Rittner
- Medical Image Computing Lab, School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | - Maik Dannecker
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany
| | - Viktor Studenyak
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany
| | - Fabian Gröger
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany
| | - Devendra Vyas
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany
| | | | - Amrit Kumar Jethi
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Jaya Chandra Raju
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Mohanasankar Sivaprakasam
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, India
| | - Mike Lasby
- (AI) Lab, Electrical and Software Engineering, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Nikita Nogovitsyn
- Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto, ON, Canada
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Wallace Loos
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Radiology and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, Foothills Medical Center, Calgary, AB, Canada
| | - Richard Frayne
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Radiology and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, Foothills Medical Center, Calgary, AB, Canada
| | - Roberto Souza
- (AI) Lab, Electrical and Software Engineering, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
105
|
Ramzi Z, G R C, Starck JL, Ciuciu P. NC-PDNet: A Density-Compensated Unrolled Network for 2D and 3D Non-Cartesian MRI Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1625-1638. [PMID: 35041598 DOI: 10.1109/tmi.2022.3144619] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deep Learning has become a very promising avenue for magnetic resonance image (MRI) reconstruction. In this work, we explore the potential of unrolled networks for non-Cartesian acquisition settings. We design the NC-PDNet (Non-Cartesian Primal Dual Netwok), the first density-compensated (DCp) unrolled neural network, and validate the need for its key components via an ablation study. Moreover, we conduct some generalizability experiments to test this network in out-of-distribution settings, for example training on knee data and validating on brain data. The results show that NC-PDNet outperforms baseline (U-Net, Deep image prior) models both visually and quantitatively in all settings. In particular, in the 2D multi-coil acquisition scenario, the NC-PDNet provides up to a 1.2 dB improvement in peak signal-to-noise ratio (PSNR) over baseline networks, while also allowing a gain of at least 1dB in PSNR in generalization settings. We provide the open-source implementation of NC-PDNet, and in particular the Non-uniform Fourier Transform in TensorFlow, tested on 2D multi-coil and 3D single-coil k-space data.
Collapse
|
106
|
Karkalousos D, Noteboom S, Hulst HE, Vos FM, Caan MWA. Assessment of data consistency through cascades of independently recurrent inference machines for fast and robust accelerated MRI reconstruction. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6cc2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Machine Learning methods can learn how to reconstruct magnetic resonance images (MRI) and thereby accelerate acquisition, which is of paramount importance to the clinical workflow. Physics-informed networks incorporate the forward model of accelerated MRI reconstruction in the learning process. With increasing network complexity, robustness is not ensured when reconstructing data unseen during training. We aim to embed data consistency (DC) in deep networks while balancing the degree of network complexity. While doing so, we will assess whether either explicit or implicit enforcement of DC in varying network architectures is preferred to optimize performance. Approach. We propose a scheme called Cascades of Independently Recurrent Inference Machines (CIRIM) to assess DC through unrolled optimization. Herein we assess DC both implicitly by gradient descent and explicitly by a designed term. Extensive comparison of the CIRIM to compressed sensing as well as other Machine Learning methods is performed: the End-to-End Variational Network (E2EVN), CascadeNet, KIKINet, LPDNet, RIM, IRIM, and UNet. Models were trained and evaluated on T1-weighted and FLAIR contrast brain data, and T2-weighted knee data. Both 1D and 2D undersampling patterns were evaluated. Robustness was tested by reconstructing 7.5× prospectively undersampled 3D FLAIR MRI data of multiple sclerosis (MS) patients with white matter lesions. Main results. The CIRIM performed best when implicitly enforcing DC, while the E2EVN required an explicit DC formulation. Through its cascades, the CIRIM was able to score higher on structural similarity and PSNR compared to other methods, in particular under heterogeneous imaging conditions. In reconstructing MS patient data, prospectively acquired with a sampling pattern unseen during model training, the CIRIM maintained lesion contrast while efficiently denoising the images. Significance. The CIRIM showed highly promising generalization capabilities maintaining a very fair trade-off between reconstructed image quality and fast reconstruction times, which is crucial in the clinical workflow.
Collapse
|
107
|
Kleineisel J, Heidenreich JF, Eirich P, Petri N, Köstler H, Petritsch B, Bley TA, Wech T. Real-time cardiac MRI using an undersampled spiral k-space trajectory and a reconstruction based on a variational network. Magn Reson Med 2022; 88:2167-2178. [PMID: 35692042 DOI: 10.1002/mrm.29357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Cardiac MRI represents the gold standard to determine myocardial function. However, the current clinical standard protocol, a segmented Cartesian acquisition, is time-consuming and can lead to compromised image quality in the case of arrhythmia or dyspnea. In this article, a machine learning-based reconstruction of undersampled spiral k-space data is presented to enable free breathing real-time cardiac MRI with good image quality and short reconstruction times. METHODS Data were acquired in free breathing with a 2D spiral trajectory corrected by the gradient system transfer function. Undersampled data were reconstructed by a variational network (VN), which was specifically adapted to the non-Cartesian sampling pattern. The network was trained with data from 11 subjects. Subsequently, the imaging technique was validated in 14 subjects by quantifying the difference to a segmented reference acquisition, an expert reader study, and by comparing derived volumes and functional parameters with values obtained using the current clinical gold standard. RESULTS The scan time for the entire heart was below 1 min. The VN reconstructed data in about 0.9 s per image, which is considerably shorter than conventional model-based approaches. The VN furthermore performed better than a U-Net and not inferior to a low-rank plus sparse model in terms of achieved image quality. Functional parameters agreed, on average, with reference data. CONCLUSIONS The proposed VN method enables real-time cardiac imaging with both high spatial and temporal resolution in free breathing and with short reconstruction time.
Collapse
Affiliation(s)
- Jonas Kleineisel
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Julius F Heidenreich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Eirich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Nils Petri
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Tobias Wech
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
108
|
Jung W, Kim EH, Ko J, Jeong G, Choi MH. Convolutional neural network-based reconstruction for acceleration of prostate T 2 weighted MR imaging: a retro- and prospective study. Br J Radiol 2022; 95:20211378. [PMID: 35148172 PMCID: PMC10993971 DOI: 10.1259/bjr.20211378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The aim of this study was to develop a deep neural network (DNN)-based parallel imaging reconstruction for highly accelerated 2D turbo spin echo (TSE) data in prostate MRI without quality degradation compared to conventional scans. METHODS 155 participant data were acquired for training and testing. Two DNN models were generated according to the number of acquisitions (NAQ) of input images: DNN-N1 for NAQ = 1 and DNN-N2 for NAQ = 2. In the test data, DNN and TSE images were compared by quantitative error metrics. The visual appropriateness of DNN reconstructions on accelerated scans (DNN-N1 and DNN-N2) and conventional scans (TSE-Conv) was assessed for nine parameters by two radiologists. The lesion detection was evaluated at DNNs and TES-Conv by prostate imaging-reporting and data system. RESULTS The scan time was reduced by 71% at NAQ = 1, and 42% at NAQ = 2. Quantitative evaluation demonstrated the better error metrics of DNN images (29-43% lower NRMSE, 4-13% higher structure similarity index, and 2.8-4.8 dB higher peak signal-to-noise ratio; p < 0.001) than TSE images. In the assessment of the visual appropriateness, both radiologists evaluated that DNN-N2 showed better or comparable performance in all parameters compared to TSE-Conv. In the lesion detection, DNN images showed almost perfect agreement (κ > 0.9) scores with TSE-Conv. CONCLUSIONS DNN-based reconstruction in highly accelerated prostate TSE imaging showed comparable quality to conventional TSE. ADVANCES IN KNOWLEDGE Our framework reduces the scan time by 42% of conventional prostate TSE imaging without sequence modification, revealing great potential for clinical application.
Collapse
Affiliation(s)
| | - Eu Hyun Kim
- Department of Radiology, St.Vincent’s Hospital, College
of Medicine, The Catholic University of Korea, Suwon,
Gyeonggi-do, Republic of Korea
| | - Jingyu Ko
- AIRS Medical, Seoul,
Republic of Korea
| | | | - Moon Hyung Choi
- Department of Radiology, Eunpyeong St. Mary’s Hospital,
College of Medicine, The Catholic University of Korea,
Seoul, Republic of Korea
| |
Collapse
|
109
|
Zhang Z, Cho J, Wang L, Liao C, Shin HG, Cao X, Lee J, Xu J, Zhang T, Ye H, Setsompop K, Liu H, Bilgic B. Blip up-down acquisition for spin- and gradient-echo imaging (BUDA-SAGE) with self-supervised denoising enables efficient T 2 , T 2 *, para- and dia-magnetic susceptibility mapping. Magn Reson Med 2022; 88:633-650. [PMID: 35436357 DOI: 10.1002/mrm.29219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To rapidly obtain high resolution T2 , T2 *, and quantitative susceptibility mapping (QSM) source separation maps with whole-brain coverage and high geometric fidelity. METHODS We propose Blip Up-Down Acquisition for Spin And Gradient Echo imaging (BUDA-SAGE), an efficient EPI sequence for quantitative mapping. The acquisition includes multiple T2 *-, T2 '-, and T2 -weighted contrasts. We alternate the phase-encoding polarities across the interleaved shots in this multi-shot navigator-free acquisition. A field map estimated from interim reconstructions was incorporated into the joint multi-shot EPI reconstruction with a structured low rank constraint to eliminate distortion. A self-supervised neural network (NN), MR-Self2Self (MR-S2S), was used to perform denoising to boost SNR. Using Slider encoding allowed us to reach 1 mm isotropic resolution by performing super-resolution reconstruction on volumes acquired with 2 mm slice thickness. Quantitative T2 (=1/R2 ) and T2 * (=1/R2 *) maps were obtained using Bloch dictionary matching on the reconstructed echoes. QSM was estimated using nonlinear dipole inversion on the gradient echoes. Starting from the estimated R2 /R2 * maps, R2 ' information was derived and used in source separation QSM reconstruction, which provided additional para- and dia-magnetic susceptibility maps. RESULTS In vivo results demonstrate the ability of BUDA-SAGE to provide whole-brain, distortion-free, high-resolution, multi-contrast images and quantitative T2 /T2 * maps, as well as yielding para- and dia-magnetic susceptibility maps. Estimated quantitative maps showed comparable values to conventional mapping methods in phantom and in vivo measurements. CONCLUSION BUDA-SAGE acquisition with self-supervised denoising and Slider encoding enables rapid, distortion-free, whole-brain T2 /T2 * mapping at 1 mm isotropic resolution under 90 s.
Collapse
Affiliation(s)
- Zijing Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jaejin Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Long Wang
- Subtle Medical Inc, Menlo Park, CA, USA
| | - Congyu Liao
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Hyeong-Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Xiaozhi Cao
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jinmin Xu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Tao Zhang
- Subtle Medical Inc, Menlo Park, CA, USA
| | - Huihui Ye
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kawin Setsompop
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Charlestown, MA, USA.,Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
110
|
Wang K, Tamir JI, De Goyeneche A, Wollner U, Brada R, Yu SX, Lustig M. High fidelity deep learning‐based MRI reconstruction with instance‐wise discriminative feature matching loss. Magn Reson Med 2022; 88:476-491. [DOI: 10.1002/mrm.29227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Ke Wang
- Electrical Engineering and Computer Sciences University of California at Berkeley Berkeley California USA
- International Computer Science Institute University of California at Berkeley Berkeley California USA
| | - Jonathan I. Tamir
- Electrical and Computer Engineering The University of Texas at Austin Austin Texas USA
| | - Alfredo De Goyeneche
- Electrical Engineering and Computer Sciences University of California at Berkeley Berkeley California USA
| | | | | | - Stella X. Yu
- Electrical Engineering and Computer Sciences University of California at Berkeley Berkeley California USA
- International Computer Science Institute University of California at Berkeley Berkeley California USA
| | - Michael Lustig
- Electrical Engineering and Computer Sciences University of California at Berkeley Berkeley California USA
| |
Collapse
|
111
|
Shimron E, Tamir JI, Wang K, Lustig M. Implicit data crimes: Machine learning bias arising from misuse of public data. Proc Natl Acad Sci U S A 2022; 119:e2117203119. [PMID: 35312366 PMCID: PMC9060447 DOI: 10.1073/pnas.2117203119] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
SignificancePublic databases are an important resource for machine learning research, but their growing availability sometimes leads to "off-label" usage, where data published for one task are used for another. This work reveals that such off-label usage could lead to biased, overly optimistic results of machine-learning algorithms. The underlying cause is that public data are processed with hidden processing pipelines that alter the data features. Here we study three well-known algorithms developed for image reconstruction from magnetic resonance imaging measurements and show they could produce biased results with up to 48% artificial improvement when applied to public databases. We relate to the publication of such results as implicit "data crimes" to raise community awareness of this growing big data problem.
Collapse
Affiliation(s)
- Efrat Shimron
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
| | - Jonathan I. Tamir
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
- Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78712
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712
| | - Ke Wang
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
| | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
| |
Collapse
|
112
|
Highly accelerated 3D MPRAGE using deep neural network-based reconstruction for brain imaging in children and young adults. Eur Radiol 2022; 32:5468-5479. [PMID: 35319078 DOI: 10.1007/s00330-022-08687-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 02/20/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVES This study aimed to accelerate the 3D magnetization-prepared rapid gradient-echo (MPRAGE) sequence for brain imaging through the deep neural network (DNN). METHODS This retrospective study used the k-space data of 240 scans (160 for the training set, mean ± standard deviation age, 93 ± 80 months, 94 males; 80 for the test set, 106 ± 83 months, 44 males) of conventional MPRAGE (C-MPRAGE) and 102 scans (77 ± 74 months, 52 males) of both C-MPRAGE and accelerated MPRAGE. All scans were acquired with 3T scanners. DNN was developed with simulated-acceleration data generated by under-sampling. Quantitative error metrics were compared between images reconstructed with DNN, GRAPPA, and E-SPIRIT using the paired t-test. Qualitative image quality was compared between C-MPRAGE and accelerated MPRAGE reconstructed with DNN (DNN-MPRAGE) by two readers. Lesions were segmented and the agreement between C-MPRAGE and DNN-MPRAGE was assessed using linear regression. RESULTS Accelerated MPRAGE reduced scan times by 38% compared to C-MPRAGE (142 s vs. 320 s). For quantitative error metrics, DNN showed better performance than GRAPPA and E-SPIRIT (p < 0.001). For qualitative evaluation, overall image quality of DNN-MPRAGE was comparable (p > 0.999) or better (p = 0.025) than C-MPRAGE, depending on the reader. Pixelation was reduced in DNN-MPRAGE (p < 0.001). Other qualitative parameters were comparable (p > 0.05). Lesions in C-MPRAGE and DNN-MPRAGE showed good agreement for the dice similarity coefficient (= 0.68) and linear regression (R2 = 0.97; p < 0.001). CONCLUSIONS DNN-MPRAGE reduced acquisition time by 38% and revealed comparable image quality to C-MPRAGE. KEY POINTS • DNN-MPRAGE reduced acquisition times by 38%. • DNN-MPRAGE outperformed conventional reconstruction on accelerated scans (SSIM of DNN-MPRAGE = 0.96, GRAPPA = 0.43, E-SPIRIT = 0.88; p < 0.001). • Compared to C-MPRAGE scans, DNN-MPRAGE showed improved mean scores for overall image quality (2.46 vs. 2.52; p < 0.001) or comparable perceived SNR (2.56 vs. 2.58; p = 0.08).
Collapse
|
113
|
The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale's 18th problem. Proc Natl Acad Sci U S A 2022; 119:e2107151119. [PMID: 35294283 PMCID: PMC8944871 DOI: 10.1073/pnas.2107151119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Instability is the Achilles’ heel of modern artificial intelligence (AI) and a paradox, with training algorithms finding unstable neural networks (NNs) despite the existence of stable ones. This foundational issue relates to Smale’s 18th mathematical problem for the 21st century on the limits of AI. By expanding methodologies initiated by Gödel and Turing, we demonstrate limitations on the existence of (even randomized) algorithms for computing NNs. Despite numerous existence results of NNs with great approximation properties, only in specific cases do there also exist algorithms that can compute them. We initiate a classification theory on which NNs can be trained and introduce NNs that—under suitable conditions—are robust to perturbations and exponentially accurate in the number of hidden layers. Deep learning (DL) has had unprecedented success and is now entering scientific computing with full force. However, current DL methods typically suffer from instability, even when universal approximation properties guarantee the existence of stable neural networks (NNs). We address this paradox by demonstrating basic well-conditioned problems in scientific computing where one can prove the existence of NNs with great approximation qualities; however, there does not exist any algorithm, even randomized, that can train (or compute) such a NN. For any positive integers K>2 and L, there are cases where simultaneously 1) no randomized training algorithm can compute a NN correct to K digits with probability greater than 1/2; 2) there exists a deterministic training algorithm that computes a NN with K –1 correct digits, but any such (even randomized) algorithm needs arbitrarily many training data; and 3) there exists a deterministic training algorithm that computes a NN with K –2 correct digits using no more than L training samples. These results imply a classification theory describing conditions under which (stable) NNs with a given accuracy can be computed by an algorithm. We begin this theory by establishing sufficient conditions for the existence of algorithms that compute stable NNs in inverse problems. We introduce fast iterative restarted networks (FIRENETs), which we both prove and numerically verify are stable. Moreover, we prove that only O(|log (ϵ)|) layers are needed for an ϵ-accurate solution to the inverse problem.
Collapse
|
114
|
Lim Y, Toutios A, Bliesener Y, Tian Y, Lingala SG, Vaz C, Sorensen T, Oh M, Harper S, Chen W, Lee Y, Töger J, Monteserin ML, Smith C, Godinez B, Goldstein L, Byrd D, Nayak KS, Narayanan SS. A multispeaker dataset of raw and reconstructed speech production real-time MRI video and 3D volumetric images. Sci Data 2021; 8:187. [PMID: 34285240 PMCID: PMC8292336 DOI: 10.1038/s41597-021-00976-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Real-time magnetic resonance imaging (RT-MRI) of human speech production is enabling significant advances in speech science, linguistics, bio-inspired speech technology development, and clinical applications. Easy access to RT-MRI is however limited, and comprehensive datasets with broad access are needed to catalyze research across numerous domains. The imaging of the rapidly moving articulators and dynamic airway shaping during speech demands high spatio-temporal resolution and robust reconstruction methods. Further, while reconstructed images have been published, to-date there is no open dataset providing raw multi-coil RT-MRI data from an optimized speech production experimental setup. Such datasets could enable new and improved methods for dynamic image reconstruction, artifact correction, feature extraction, and direct extraction of linguistically-relevant biomarkers. The present dataset offers a unique corpus of 2D sagittal-view RT-MRI videos along with synchronized audio for 75 participants performing linguistically motivated speech tasks, alongside the corresponding public domain raw RT-MRI data. The dataset also includes 3D volumetric vocal tract MRI during sustained speech sounds and high-resolution static anatomical T2-weighted upper airway MRI for each participant.
Collapse
Affiliation(s)
- Yongwan Lim
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Asterios Toutios
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Yannick Bliesener
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Ye Tian
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Sajan Goud Lingala
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Colin Vaz
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Tanner Sorensen
- Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Miran Oh
- Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Sarah Harper
- Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Weiyi Chen
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Yoonjeong Lee
- Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Johannes Töger
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Mairym Lloréns Monteserin
- Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Caitlin Smith
- Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Bianca Godinez
- Department of Linguistics, California State University Long Beach, Long Beach, California, USA
| | - Louis Goldstein
- Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Dani Byrd
- Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Shrikanth S Narayanan
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA.
- Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|