101
|
Inoue Y, Ohtsuka Y, Oguni H, Tohyama J, Baba H, Fukushima K, Ohtani H, Takahashi Y, Ikeda S. Stiripentol open study in Japanese patients with Dravet syndrome. Epilepsia 2009; 50:2362-8. [DOI: 10.1111/j.1528-1167.2009.02179.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
102
|
|
103
|
Łuszczki JJ. Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions. Pharmacol Rep 2009; 61:197-216. [DOI: 10.1016/s1734-1140(09)70024-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 02/13/2009] [Indexed: 01/23/2023]
|
104
|
Johannessen Landmark C, Johannessen SI. Pharmacological management of epilepsy: recent advances and future prospects. Drugs 2009; 68:1925-39. [PMID: 18778117 DOI: 10.2165/00003495-200868140-00001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is still a need for new antiepileptic drugs (AEDs) as the clinical efficacy, tolerability, toxicity or pharmacokinetic properties of existing AEDs may not be satisfactory. One new AED has recently been approved (rufinamide in 2007) and six others are in late-stage development (phase III and onwards) [brivaracetam, carisbamate, eslicarbazepine, lacosamide, retigabine and stiripentol]. The purpose of this review is to provide updated data on proposed mechanisms of action, efficacy and tolerability on these new AEDs, and to discuss the rationale for their development and possible advantages compared with existing treatment, based on recent publications and MEDLINE searches.Rufinamide, brivaracetam and stiripentol have been given the status of orphan drugs. Rufinamide was approved in Europe in 2007 for the use in Lennox-Gastaut syndrome. Brivaracetam has gained orphan status for development in progressive and symptomatic myoclonic seizures in Europe and the US, respectively. Stiripentol has gained orphan status in children with Dravet's syndrome and pharmaco-resistant epilepsy. All of these drugs demonstrate efficacy as adjunctive therapy in partial seizures. Three of the drugs are derivatives of existing AEDs: brivaracetam is a derivative of levetiracetam with improved affinity for the target molecule; carisbamate is a derivative of felbamate with improved tolerability; and eslicarbazepine is a derivative of carbamazepine with less interaction potential and no auto-induction. Lacosamide, retigabine, rufinamide and stiripentol are new compounds, unrelated to other AEDs.Further investigation and development of new broad-spectrum drugs is important for improved treatment of patients with epilepsy and other neurological and psychiatric disorders.
Collapse
|
105
|
Abstract
Lennox-Gastaut syndrome (LGS) is a rare, age-related syndrome, characterized by multiple seizure types, a specific electro-encephalographic pattern, and mental regression. However, published data on the etiology, evolution, and therapeutic approach of LGS are contradictory, partly because the precise definition of LGS used in the literature varies. In the most recent classification, LGS belongs to the epileptic encephalopathies and is highly refractory to all antiepileptic drugs. Numerous treatments, medical and non-medical, have been proposed and results mostly from open studies or case series have been published. Sometimes, patients with LGS are included in a more global group of patients with refractory epilepsy. Only 6 randomized double-blind controlled trials of medical treatments, which included patients with LGS, have been published. Overall, treatment is rarely effective and the final prognosis remains poor in spite of new therapeutic strategies. Co-morbidities need specific treatment. This paper summarizes the definition, diagnosis and therapeutic approach to LGS, including not only recognized antiepileptic drugs, but also "off label" medications, immune therapy, diet, surgery and some perspectives for the future.
Collapse
Affiliation(s)
- Kenou van Rijckevorsel
- Reference Centre of Refractory Epilepsy, Cliniques Universitaires St Luc, Université Catholique de Louvain, Avenue Hippocrate, 10, B-1200 Brussels, Belgium.
| |
Collapse
|
106
|
Qu L, Leung LS. Mechanisms of hyperthermia-induced depression of GABAergic synaptic transmission in the immature rat hippocampus. J Neurochem 2008; 106:2158-69. [DOI: 10.1111/j.1471-4159.2008.05576.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
107
|
Stiripentol (Diacomit®) – eine neue Therapieoption zur Behandlung des Dravet-Syndroms (SMEI). ZEITSCHRIFT FUR EPILEPTOLOGIE 2008. [DOI: 10.1007/s10309-008-0320-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
108
|
Fisher JL. The anti-convulsant stiripentol acts directly on the GABA(A) receptor as a positive allosteric modulator. Neuropharmacology 2008; 56:190-7. [PMID: 18585399 DOI: 10.1016/j.neuropharm.2008.06.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/26/2008] [Accepted: 06/04/2008] [Indexed: 01/13/2023]
Abstract
Stiripentol (STP) has been used as co-therapy for treatment of epilepsy for many years. Its mechanism of action has long been considered to be indirect, as it inhibits the enzymes responsible for metabolism of other anti-convulsant agents. However, a recent report suggested that STP might also act at the neuronal level, increasing inhibitory GABAergic neurotransmission. We examined the effect of STP on the functional properties of recombinant GABA(A) receptors (GABARs) and found that it was a positive allosteric modulator of these ion channels. Its activity showed some dependence on subunit composition, with greater potentiation of alpha3-containing receptors and reduced potentiation when the beta1 or epsilon subunits were present. STP caused a leftward shift in the GABA concentration-response relationship, but did not increase the peak response of the receptors to a maximal GABA concentration. Although STP shares some functional characteristics with the neurosteroids, its activity was not inhibited by a neurosteroid site antagonist and was unaffected by a mutation in the alpha3 subunit that reduced positive modulation by neurosteroids. The differential effect of STP on beta1- and beta2/beta3-containing receptors was not altered by mutations within the second transmembrane domain that affect modulation by loreclezole. These findings suggest that STP acts as a direct allosteric modulator of the GABAR at a site distinct from many commonly used anti-convulsant, sedative and anxiolytic drugs. Its higher activity at alpha3-containing receptors as well as its activity at delta-containing receptors may provide a unique opportunity to target selected populations of GABARs.
Collapse
Affiliation(s)
- Janet L Fisher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| |
Collapse
|
109
|
Czuczwar SJ, Trojnar MK, Gergont A, Kroczka S, Kacinski M. Stiripentol – characteristic of a new antiepileptic drug. Expert Opin Drug Discov 2008; 3:453-60. [DOI: 10.1517/17460441.3.4.453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
110
|
Weitlauf C, Woodward JJ. Ethanol selectively attenuates NMDAR-mediated synaptic transmission in the prefrontal cortex. Alcohol Clin Exp Res 2008; 32:690-8. [PMID: 18341645 DOI: 10.1111/j.1530-0277.2008.00625.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Brain imaging studies have revealed abnormal function in the prefrontal cortex (PFC) of alcoholics that may contribute to the impulsive behavior and lack of control over drinking that characterizes this disorder. Understanding how ethanol affects the physiology of PFC neurons may help explain this loss of control and lead to better treatments for alcohol addiction. In a previous study from this laboratory, we showed that ethanol inhibits complex patterns of persistent activity (known as "up-states") in medial PFC (mPFC) neurons in a reversible and concentration-dependent manner. METHODS In the current study, whole-cell patch clamp recordings were used to directly examine the effects of ethanol on the glutamatergic and GABAergic components that underlie persistent activity. RESULTS In deep-layer mPFC pyramidal neurons, ethanol reversibly attenuated electrically evoked N-methyl-D-aspartate-type glutamate receptor (NMDAR)-mediated EPSCs. Significant inhibition was observed at concentrations as low as 22 mM, equivalent to a blood ethanol concentration (0.1%) typically associated with legal limits for intoxication. In contrast to NMDA responses, neither evoked nor spontaneous EPSCs mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-type glutamate receptor were affected by ethanol at concentrations as high as 88 mM, a concentration that can be fatal to non-tolerant individuals. At similar concentrations, ethanol also had little effect on spontaneous or evoked IPSCs mediated by a-type gamma-aminobutyric acid receptor. Finally, mPFC neurons showed little evidence of GABAR-mediated tonic current and this was unaffected by ethanol. CONCLUSIONS Together, these results suggest that NMDAR-mediated processes in the mPFC may be particularly susceptible to disruption following the acute ingestion of ethanol.
Collapse
Affiliation(s)
- Carl Weitlauf
- Department of Neurosciences and Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
111
|
Galanopoulou AS. GABA(A) receptors in normal development and seizures: friends or foes? Curr Neuropharmacol 2008; 6:1-20. [PMID: 19305785 PMCID: PMC2645547 DOI: 10.2174/157015908783769653] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/24/2007] [Accepted: 08/05/2007] [Indexed: 12/26/2022] Open
Abstract
GABA(A) receptors have an age-adapted function in the brain. During early development, they mediate excitatory effects resulting in activation of calcium sensitive signaling processes that are important for the differentiation of the brain. In more mature stages of development and in adults, GABA(A) receptors transmit inhibitory signals. The maturation of GABA(A) signaling follows sex-specific patterns, which appear to also be important for the sexual differentiation of the brain. The inhibitory effects of GABA(A) receptor activation have been widely exploited in the treatment of conditions where neuronal silencing is necessary. For instance, drugs that target GABA(A) receptors are the mainstay of treatment of seizures. Recent evidence suggests however that the physiology and function of GABA(A) receptors changes in the brain of a subject that has epilepsy or status epilepticus.This review will summarize the physiology of and the developmental factors regulating the signaling and function of GABA(A) receptors; how these may change in the brain that has experienced prior seizures; what are the implications for the age and sex specific treatment of seizures and status epilepticus. Finally, the implications of these changes for the treatment of certain forms of medically refractory epilepsies and status epilepticus will be discussed.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Albert Einstein College of Medicine, Saul R Korey Department of Neurology & Dominick P Purpura, Department of Neuroscience, Bronx NY, USA.
| |
Collapse
|
112
|
Kassaï B, Chiron C, Augier S, Cucherat M, Rey E, Gueyffier F, Guerrini R, Vincent J, Dulac O, Pons G. Severe myoclonic epilepsy in infancy: A systematic review and a meta-analysis of individual patient data. Epilepsia 2008; 49:343-8. [DOI: 10.1111/j.1528-1167.2007.01423.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
113
|
Abstract
Epilepsy affects < or = 1% of the world's population. Antiepileptic drugs (AEDs) are the mainstay of treatment, although more than a third of patients are not rendered seizure free with existing medications. Uncontrolled epilepsy is associated with increased mortality and physical injuries, and a range of psychosocial morbidities, posing a substantial economic burden on individuals and society. Limitations of the present AEDs include suboptimal efficacy and their association with a host of adverse reactions. Continued efforts are being made in drug development to overcome these shortcomings employing a range of strategies, including modification of the structure of existing drugs, targeting novel molecular substrates and non-mechanism-based drug screening of compounds in traditional and newer animal models. This article reviews the need for new treatments and discusses some of the emerging compounds that have entered clinical development. The ultimate goal is to develop novel agents that can prevent the occurrence of seizures and the progression of epilepsy in at risk individuals.
Collapse
Affiliation(s)
- Patrick Kwan
- The Chinese University of Hong Kong, Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China.
| | | |
Collapse
|
114
|
Perucca E, French J, Bialer M. Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol 2007; 6:793-804. [PMID: 17706563 DOI: 10.1016/s1474-4422(07)70215-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Despite the introduction of many second-generation antiepileptic drugs (AEDs) in the past 15 years, a third of patients with epilepsy remain refractory to available treatments, and newer and more effective therapies are needed. Although our understanding of the mechanisms of drug resistance is fragmented, novel AED targets have been identified, and models of refractory epilepsy have been developed that can help to select candidate compounds for development. There are more than 20 compounds with potential antiepileptic activity in various stages of clinical development, and for many of these promising clinical trial results are already available. Several incentives justify further investment into the discovery of newer and more effective AEDs. Moreover, developments in clinical trial methodology enable easier completion of proof-of-concept studies, earlier definition of the therapeutic potential of candidate compounds, and more efficient completion of trials for various epilepsy indications.
Collapse
Affiliation(s)
- Emilio Perucca
- Institute of Neurology, IRCCS C Mondino Foundation, Pavia, Italy
| | | | | |
Collapse
|
115
|
Sisodiya S. Etiology and management of refractory epilepsies. ACTA ACUST UNITED AC 2007; 3:320-30. [PMID: 17549058 DOI: 10.1038/ncpneuro0521] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 02/16/2007] [Indexed: 01/16/2023]
Abstract
The epilepsies are an important, common and diverse group of symptom complexes characterized by recurrent spontaneous seizures. Although many patients with epilepsy have their seizures controlled effectively by antiepileptic drugs (AEDs), about one-third of patients continue to have seizures, despite trying a range of AEDs. Such patients bear the heaviest burden of epilepsy, with increased morbidity and risk of premature mortality. Our current understanding of the refractory epilepsies--the most common of which are focal--is limited; even their definition is problematic. Standard treatments for refractory epilepsies include optimization of existing AED regimens, trials of further AEDs, and, for some patients, therapeutic resective neurosurgery. Recent basic research has explored possible underlying causes of refractory epilepsy, and two main hypotheses have emerged to account for the failure of AED treatment. According to one hypothesis, AEDs might fail because of alterations in the properties of their usual targets. Alternatively, they might fail because multidrug transporter mechanisms limit concentrations of the drugs at their targets. The refractory epilepsies can be viewed as offering remarkable insights into biological processes in the epilepsies, and their effective treatment remains an important aim; treatment would potentially bring much-needed relief to hundreds of thousands of patients across the world.
Collapse
Affiliation(s)
- Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
116
|
Abstract
Stiripentol (STP) is a new antiepileptic compound made by Biocodex. It recently proved to increase the GABAergic transmission in vitro in an experimental model of immature rat. Clinical studies were based on the fact that STP also acts as an inhibitor of CYP3A4, CYP1A2, and CYP2C19 in vivo in epileptic patients. Whereas the studies in adult patients were disappointing, the trials conducted in pediatric populations demonstrated a specific efficacy of STP in severe myoclonic epilepsy in infancy, Dravet syndrome, when combined with valproate and clobazam. Based on these results, STP was granted orphan drug status in the European Union for the treatment of Dravet syndrome. The French experience in compassionate use suggests that STP might also be of benefit when combined with carbamazepine in pediatric patients with pharmacoresistant partial epilepsy. The interactions of STP with a large number of drugs need to be carefully taken into account, with doses of the combined antiepileptic drugs adjusted to improve the tolerability of the therapeutic association.
Collapse
Affiliation(s)
- Catherine Chiron
- INSERM, U663, Service de Neurologie et Métabolisme, Hôpital Necker, 149 rue de Sèvres, 75015 Paris, France.
| |
Collapse
|
117
|
Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Perucca E, Tomson T. Progress report on new antiepileptic drugs: a summary of the Eigth Eilat Conference (EILAT VIII). Epilepsy Res 2006; 73:1-52. [PMID: 17158031 DOI: 10.1016/j.eplepsyres.2006.10.008] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Accepted: 10/30/2006] [Indexed: 12/15/2022]
Abstract
The Eigth Eilat Conference on New Antiepileptic Drugs (AEDs)-EILAT VII, took place in Sitges, Barcelona from the 10th to 14th September, 2006. Basic scientists, clinical pharmacologists and neurologists from 24 countries attended the conference, whose main themes included a focus on status epilepticus (epidemiology, current and future treatments), evidence-based treatment guidelines and the potential of neurostimulation in refractory epilepsy. Consistent with previous formats of this conference, the central part of the conference was devoted to a review of AEDs in development, as well as updates on marketed AEDs introduced since 1989. This article summarizes the information presented on drugs in development, including brivaracetam, eslicarbazepine acetate (BIA-2-093), fluorofelbamate, ganaxolone, huperzine, lacosamide, retigabine, rufinamide, seletracetam, stiripentol, talampanel, valrocemide, JZP-4, NS1209, PID and RWJ-333369. Updates on felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine and new extended release oxcarbazepine formulations, pregabalin, tiagabine, topiramate, vigabatrin, zonisamide and new extended release valproic acid formulations, and the antiepileptic vagal stimulator device are also presented.
Collapse
Affiliation(s)
- Meir Bialer
- Department of Pharmaceutics, School of Pharmacy, David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
118
|
Luszczki JJ, Ratnaraj N, Patsalos PN, Czuczwar SJ. Characterization of the Anticonvulsant, Behavioral and Pharmacokinetic Interaction Profiles of Stiripentol in Combination with Clonazepam, Ethosuximide, Phenobarbital, and Valproate Using Isobolographic Analysis. Epilepsia 2006; 47:1841-54. [PMID: 17116023 DOI: 10.1111/j.1528-1167.2006.00825.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Isobolographic analysis was used to characterize the interactions between stiripentol (STP) and clonazepam (CZP), ethosuximide (ETS), phenobarbital (PB), and valproate (VPA) in suppressing pentylenetetrazole (PTZ)-induced clonic seizures in mice. METHODS The anticonvulsant and acute adverse (neurotoxic) effects of STP in combination with the various conventional antiepileptic drugs (AEDs), at fixed ratios of 1:3, 1:1, and 3:1, were evaluated in the PTZ and chimney tests in mice using the isobolographic analysis. Additionally, protective indices (PI) and benefit indices (BI) were calculated to identify their pharmacological profiles so that a ranking in relation to advantageous combination could be established. Moreover, adverse-effect paradigms were determined by use of the step-through passive avoidance task (long-term memory), threshold for the first pain reaction, grip-strength test (neuromuscular tone), and the hot plate test (acute thermal pain). Brain AED concentrations were also measured so as to ascertain any pharmacokinetic contribution to the pharmacodynamic interactions. RESULTS All AED combinations comprising of STP and CZP, ETS, PB, and VPA (at the fixed ratios of 1:3, 1:1 and 3:1) were additive in terms of clonic seizure suppression in the PTZ test. However, these interactions were complicated by changes in brain AED concentrations consequent to pharmacokinetic interactions. Thus STP significantly increased total brain ETS and PB concentrations, and decreased VPA concentrations, but was without effect on CZP concentrations. In contrast, PB significantly decreased and VPA increased total brain STP concentrations while CZP and ETS were without effect. Furthermore, while isobolographic analysis revealed that STP and CZP in combination, at the fixed ratios of 1:1 and 3:1, were supraadditive (synergistic; p < 0.05), the combinations of STP with CZP (1:3), ETS, PB, or VPA (at all fixed ratios of 1:3, 1:1, and 3:1) were barely additivity in terms of acute neurotoxic adverse effects in the chimney test. Additionally, none of the examined combinations of STP with conventional AEDs (CZP, ETS, PB, VPA--at their median effective doses from the PTZ-test) affected long-term memory, threshold for the first pain reaction, neuromuscular tone, and acute thermal pain. CONCLUSIONS Based on BI values, the combination of STP with PB at the fixed ratio of 1:3 appears to be a particularly favourable combination. In contrast, STP and CZP or ETS (at the fixed ratios of 1:1 and 3:1) were unfavorable combinations. However, these conclusions are confounded by the fact that STP is associated with significant pharmacokinetic interactions. The remaining combinations of STP with PB (1:1 and 3:1), CZP (1:3), ETS (1:3), and VPA (at all fixed ratios of 1:3, 1:1, and 3:1) do not appear to be potential favorable AED combinations.
Collapse
|