101
|
Grigoryan G, Moore DT, DeGrado WF. Transmembrane communication: general principles and lessons from the structure and function of the M2 proton channel, K⁺ channels, and integrin receptors. Annu Rev Biochem 2011; 80:211-37. [PMID: 21548783 DOI: 10.1146/annurev-biochem-091008-152423] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Signal transduction across biological membranes is central to life. This process generally happens through communication between different domains and hierarchical coupling of information. Here, we review structural and thermodynamic principles behind transmembrane (TM) signal transduction and discuss common themes. Communication between signaling domains can be understood in terms of thermodynamic and kinetic principles, and complex signaling patterns can arise from simple wiring of thermodynamically coupled domains. We relate this to functions of several signal transduction systems: the M2 proton channel from influenza A virus, potassium channels, integrin receptors, and bacterial kinases. We also discuss key features in the structural rearrangements responsible for signal transduction in these systems.
Collapse
Affiliation(s)
- Gevorg Grigoryan
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
102
|
Affiliation(s)
| | - Jeffrey J.D. Henry
- Department of Bioengineering, University of California, Berkeley, California 94720;
| |
Collapse
|
103
|
Multiscale simulations suggest a mechanism for integrin inside-out activation. Proc Natl Acad Sci U S A 2011; 108:11890-5. [PMID: 21730166 DOI: 10.1073/pnas.1104505108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Integrins are large cell-surface adhesion receptors that can be activated to a high affinity state by the formation of an intracellular complex between the integrin β-subunit tail, the membrane, and talin. The F2 and F3 subdomains of the talin head play a key role in formation of this complex. Here, activation of the integrin αIIb/β3 dimer by the talin head domain was probed using multiscale molecular dynamics simulations. A number of novel insights emerge from these studies, including (i) the importance of the integrin αIIb subunit F992 and F993 residues in stabilizing the "off" state of the αIIb/β3 dimer, (ii) a crucial role for negatively charged groups in the F2-F3/membrane interaction, (iii) binding of the talin F2-F3 domain to negatively charged lipid headgroups in the membrane induces a reorientation of the β transmembrane (TM) domain, (iv) an increase in the tilt angle of the β TM domain relative to the bilayer normal helps to destabilize the α/β TM interaction and promote a scissor-like movement of the integrin TM helices. These results, combined with various published experimental observations, suggest a model for the mechanism of inside-out activation of integrins by talin.
Collapse
|
104
|
Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY. Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 2011; 51:99-115. [PMID: 20868274 DOI: 10.1146/annurev-pharmtox-010510-100512] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasma membrane integrin αvβ3 is a cell surface receptor for thyroid hormone at which nongenomic actions are initiated. L-thyroxine (T₄) and 3,3',5-triiodo-L-thyronine (T₃) promote angiogenesis and tumor cell proliferation via the receptor. Tetraiodothyroacetic acid (tetrac), a deaminated T₄ derivative, blocks the nongenomic proliferative and proangiogenic actions of T₄ and T₃. Acting at the integrin independently of T₄ and T₃, tetrac and a novel nanoparticulate formulation of tetrac that acts exclusively at the cell surface have oncologically desirable antiproliferative actions on multiple tumor cell survival pathway genes. These agents also block the angiogenic activity of vascular growth factors. Volume and vascular support of xenografts of human pancreatic, kidney, lung, and breast cancers are downregulated by tetrac formulations. The integrin αvβ3 receptor site for thyroid hormone selectively regulates signal transduction pathways and distinguishes between unmodified tetrac and the nanoparticulate formulation. The receptor also mediates nongenomic thyroid hormone effects on plasma membrane ion transporters and on intracellular protein trafficking.
Collapse
Affiliation(s)
- Paul J Davis
- Ordway Research Institute, Albany, New York 12208, USA.
| | | | | | | | | |
Collapse
|
105
|
Litvinov RI, Barsegov V, Schissler AJ, Fisher AR, Bennett JS, Weisel JW, Shuman H. Dissociation of bimolecular αIIbβ3-fibrinogen complex under a constant tensile force. Biophys J 2011; 100:165-73. [PMID: 21190668 DOI: 10.1016/j.bpj.2010.11.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/08/2010] [Accepted: 11/16/2010] [Indexed: 02/07/2023] Open
Abstract
The regulated ability of integrin αIIbβ3 to bind fibrinogen plays a crucial role in platelet aggregation, adhesion, and hemostasis. Employing an optical-trap-based electronic force clamp, we studied the thermodynamics and kinetics of αIIbβ3-fibrinogen bond formation and dissociation under constant unbinding forces, mimicking the forces of physiologic blood shear on a thrombus. The distribution of bond lifetimes was bimodal, indicating that the αIIbβ3-fibrinogen complex exists in two bound states with different mechanical stability. The αIIbβ3 antagonist, abciximab, inhibited binding without affecting the unbinding kinetics, whereas Mn²(+) biased the αIIbβ3-fibrinogen complex to the strong bound state with reduced off-rate. The average bond lifetimes decreased exponentially with increasing pulling force from ∼5 pN to 50 pN, suggesting that in this force range the αIIbβ3-fibrinogen interactions are classical slip bonds. We found no evidence for catch bonds, which is consistent with the known lack of shear-enhanced platelet adhesion on fibrinogen-coated surfaces. Taken together, these data provide important quantitative and qualitative characteristics of αIIbβ3-fibrinogen binding and unbinding that underlie the dynamics of platelet adhesion and aggregation in blood flow.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
106
|
Fat tissue morphology of long-term sex steroid deficiency and estrogen treatment in female rats. Fertil Steril 2011; 95:1478-81. [PMID: 21315340 DOI: 10.1016/j.fertnstert.2011.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/09/2010] [Accepted: 01/06/2011] [Indexed: 01/15/2023]
Abstract
After long-term estradiol deficiency, female rats displayed body mass gain accompanied by an increase in the size of adipocytes, an increase in hyperglycemia, and a decrease in insulinemia. The effects were reversed by daily estradiol treatment. Adiposity was suggested by the increased vascular endothelial growth factor expression in castrated rats, whereas the proliferative effect of estradiol was suggested by the increased fibronectin expression in treated rats.
Collapse
|
107
|
Samama MM. Use of Low-Molecular-Weight Heparins and New Anticoagulants in Elderly Patients with Renal Impairment. Drugs Aging 2011; 28:177-93. [DOI: 10.2165/11586730-000000000-00000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
108
|
Abstract
Integrins are large, membrane-spanning, heterodimeric proteins that are essential for a metazoan existence. All members of the integrin family adopt a shape that resembles a large "head" on two "legs," with the head containing the sites for ligand binding and subunit association. Most of the receptor dimer is extracellular, but both subunits traverse the plasma membrane and terminate in short cytoplasmic domains. These domains initiate the assembly of large signaling complexes and thereby bridge the extracellular matrix to the intracellular cytoskeleton. To allow cells to sample and respond to a dynamic pericellular environment, integrins have evolved a highly responsive receptor activation mechanism that is regulated primarily by changes in tertiary and quaternary structure. This review summarizes recent progress in the structural and molecular functional studies of this important class of adhesion receptor.
Collapse
Affiliation(s)
- Iain D Campbell
- Department of Biochemistry, University of Oxford, United Kingdom.
| | | |
Collapse
|
109
|
Waterhouse A, Wise SG, Ng MKC, Weiss AS. Elastin as a nonthrombogenic biomaterial. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:93-9. [PMID: 21166482 DOI: 10.1089/ten.teb.2010.0432] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Surface-induced thrombosis is a significant issue for artificial blood-contacting materials used in the treatment of cardiovascular diseases. The development of biomaterials and tissue-engineered constructs that mimic the vasculature represents a way to overcome this problem. Elastin is an extracellular matrix macromolecule that imparts arterial elasticity where it comprises up to 50% of the nonhydrated mass of the vessel. In addition to its critical role in maintaining vessel integrity and elastic properties under pulsatile flow, elastin plays an important role in signaling and regulating luminal endothelial cells and smooth muscle cells in the arterial wall. Despite its well-established significance in the vasculature and its growing use as a biomaterial in tissue engineering, the hemocompatibility of elastin is often overlooked. Past studies pointing to the potential of arterial elastin and decellularized elastin as nonthrombogenic materials have begun to be realized, with elastin scaffolds and coatings displaying increased hemocomptibility. This review explores the mechanisms of elastin's nonthrombogenicity and highlights the current problems limiting its wider application as a biomaterial. We discuss the benefits of constructing biomaterials encompassing the relevant mechanical and biological features of elastin to provide enhanced hemocompatibility to biomaterials.
Collapse
Affiliation(s)
- Anna Waterhouse
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
110
|
Zhou Y, Chakraborty S, Liu S. Radiolabeled Cyclic RGD Peptides as Radiotracers for Imaging Tumors and Thrombosis by SPECT. Theranostics 2011; 1:58-82. [PMID: 21547153 PMCID: PMC3086616 DOI: 10.7150/thno/v01p0058] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The integrin family is a group of transmembrane glycoprotein comprised of 19 α- and 8 β-subunits that are expressed in 25 different α/β heterodimeric combinations on the cell surface. Integrins play critical roles in many physiological processes, including cell attachment, proliferation, bone remodeling, and wound healing. Integrins also contribute to pathological events such as thrombosis, atherosclerosis, tumor invasion, angiogenesis and metastasis, infection by pathogenic microorganisms, and immune dysfunction. Among 25 members of the integrin family, the α(v)β(3) is studied most extensively for its role of tumor growth, progression and angiogenesis. In contrast, the α(IIb)β(3 )is expressed exclusively on platelets, facilitates the intercellular bidirectional signaling ("inside-out" and "outside-in") and allows the aggregation of platelets during vascular injury. The α(IIb)β(3) plays an important role in thrombosis by its activation and binding to fibrinogen especially in arterial thrombosis due to the high blood flow rate. In the resting state, the α(IIb)β(3) on platelets does not bind to fibrinogen; on activation, the conformation of platelet is altered and the binding sites of α(IIb)β(3 )are exposed for fibrinogen to crosslink platelets. Over the last two decades, integrins have been proposed as the molecular targets for diagnosis and therapy of cancer, thrombosis and other diseases. Several excellent review articles have appeared recently to cover a broad range of topics related to the integrin-targeted radiotracers and their nuclear medicine applications in tumor imaging by single photon emission computed tomography (SPECT) or a positron-emitting radionuclide for positron emission tomography (PET). This review will focus on recent developments of α(v)β(3)-targeted radiotracers for imaging tumors and the use of α(IIb)β(3)-targeted radiotracers for thrombosis imaging, and discuss different approaches to maximize the targeting capability of cyclic RGD peptides and improve the radiotracer excretion kinetics from non-cancerous organs. Improvement of target uptake and target-to-background ratios is critically important for target-specific radiotracers.
Collapse
Affiliation(s)
| | | | - Shuang Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
111
|
Magallon J, Chen J, Rabbani L, Dangas G, Yang J, Bussel J, Diacovo T. Humanized mouse model of thrombosis is predictive of the clinical efficacy of antiplatelet agents. Circulation 2011; 123:319-26. [PMID: 21220740 DOI: 10.1161/circulationaha.110.951970] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In vivo testing of novel antiplatelet agents requires informative biomarkers. By genetically modifying mouse von Willebrand factor (VWF(R1326H)), we have developed a small animal model that supports human but not mouse platelet-mediated thrombosis. Here, we evaluate the use of this biological platform as a pharmacodynamic biomarker for antithrombotic therapies. METHODS AND RESULTS The antithrombotic effects of several αIIbβ3 inhibitors were determined in VWF(R1326H) mutant mice infused with human platelets. Administration of abciximab, eptifibatide, or tirofiban at doses recommended for percutaneous coronary intervention (per 1 kg of body weight) significantly reduced human platelet-mediated thrombus formation in laser-injured arterioles by > 75% (P < 0.001). In contrast, clot size in wild-type control animals remained essentially unchanged (P > 0.05), results consistent with observed species differences in IC₅₀ values obtained by aggregometry. To further demonstrate that our biological platform is unique among standard mouse models, we evaluated the thrombogenic potential of platelets from healthy volunteers before and after clopidogrel therapy. Consistent with the antithrombotic effect of this agent, platelets postdrug administration formed smaller thrombi than cells before therapy and were less responsive to ADP-induced aggregation (P < 0.001). CONCLUSIONS The ability of αIIbβ3 and P2Y₁₂ inhibitors to limit human platelet clot formation at doses recommended by the American College of Cardiology/American Heart Association suggests that VWF(R1326H) mutant mice can serve as both a pharmacodynamic and a functional response biomarker, attributes essential for not only expediting drug development but also designing clinical studies.
Collapse
Affiliation(s)
- Jorge Magallon
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Stem cell integrins: Implications for ex-vivo culture and cellular therapies. Stem Cell Res 2011; 6:1-12. [DOI: 10.1016/j.scr.2010.09.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 12/15/2022] Open
|
113
|
Atai NA, Bansal M, Lo C, Bosman J, Tigchelaar W, Bosch KS, Jonker A, De Witt Hamer PC, Troost D, McCulloch CA, Everts V, Van Noorden CJF, Sodek J. Osteopontin is up-regulated and associated with neutrophil and macrophage infiltration in glioblastoma. Immunology 2010; 132:39-48. [PMID: 20722758 DOI: 10.1111/j.1365-2567.2010.03335.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteopontin (OPN) is a glycophosphoprotein with multiple intracellular and extracellular functions. In vitro, OPN enhances migration of mouse neutrophils and macrophages. In cancer, extracellular OPN facilitates migration of cancer cells via its RGD sequence. The present study was designed to investigate whether osteopontin is responsible for neutrophil and macrophage infiltration in human cancer and in particular in glioblastoma. We found that in vitro mouse neutrophil migration was RGD-dependent. In silico, we found that the OPN gene was one of the 5% most highly expressed genes in 20 out of 35 cancer microarray data sets in comparison with normal tissue in at least 30% of cancer patients. In some types of cancer, such as ovarian cancer, lung cancer and melanoma, the OPN gene was one of those with the highest expression levels in at least 90% of cancer patients. In glioblastoma, the most invasive type of brain tumours/glioma, but not in lower grades of glioma it was one of the 5% highest expressed genes in 90% of patients. In situ, we found increased protein levels of OPN in human glioblastoma versus normal human brain confirming in silico results. OPN protein expression was co-localized with neutrophils and macrophages. In conclusion, OPN in tumours not only induces migration of cancer cells but also of leucocytes.
Collapse
Affiliation(s)
- Nadia A Atai
- Department of Cell Biology and Histology, Academic Medical Centre, University of Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Arterial and venous thromboembolism account for significant morbidity and mortality worldwide. Warfarin, and other vitamin K antagonists (VKAs), have been the only class of oral anticoagulants currently in clinical use and have been so for over 50 years. Although warfarin is effective in preventing thromboembolism, its use is limited by its narrow therapeutic index that necessitates frequent monitoring and dose adjustments resulting in considerable inconvenience to patients and clinicians. There are now several orally administered anticoagulants in late stages of clinical development that may offer effective, safer, and more convenient anticoagulation. This review summarizes and compares data on novel anticoagulants in the prophylaxis and treatment of venous thromboembolism, acute coronary syndromes, and the prevention of stroke in patients with atrial fibrillation.
Collapse
Affiliation(s)
- Christian T Ruff
- TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
115
|
Chegini N. Proinflammatory and profibrotic mediators: principal effectors of leiomyoma development as a fibrotic disorder. Semin Reprod Med 2010; 28:180-203. [PMID: 20414842 DOI: 10.1055/s-0030-1251476] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leiomyomas are believed to derive from the transformation of myometrial smooth muscle cells/connective tissue fibroblasts. Although the identity of the molecule(s) that initiate such cellular transformation and orchestrate subsequent growth is still unknown, conventional evidence indicates that ovarian steroids are essential for leiomyoma growth. Ovarian steroid action in their target cell/tissue is mediated in part through local expression of various growth factors, cytokines, and chemokines. These autocrine/paracrine molecules with proinflammatory and profibrotic activities serve as major contributing factors in regulating cellular transformation, cell growth and apoptosis, angiogenesis, cellular hypertrophy, and excess tissue turnover, events central to leiomyoma growth. This review addresses the key regulatory functions of proinflammatory and profibrotic mediators and their molecular mechanisms, downstream signaling that regulates cellular events that result in transformation, and commitments of specific cells into forming a cellular environment with a possible role in development and subsequent growth of leiomyomas.
Collapse
Affiliation(s)
- Nasser Chegini
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida 32610, USA.
| |
Collapse
|
116
|
Ulmer TS. Structural basis of transmembrane domain interactions in integrin signaling. Cell Adh Migr 2010; 4:243-8. [PMID: 20168080 DOI: 10.4161/cam.4.2.10592] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric alphabeta integrins is correlated to the association state of the single-pass alpha and beta transmembrane domains. The association of integrin alphaIIbbeta3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (alphaIIb) and tilted (beta3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual alphaIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the beta3 transmembrane helix, enabling alphaIIb(D723)beta3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/beta complex that overlap with the alphabeta transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.
Collapse
Affiliation(s)
- Tobias S Ulmer
- Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
117
|
|