101
|
Veeramah KR, Gutenkunst RN, Woerner AE, Watkins JC, Hammer MF. Evidence for increased levels of positive and negative selection on the X chromosome versus autosomes in humans. Mol Biol Evol 2014; 31:2267-82. [PMID: 24830675 DOI: 10.1093/molbev/msu166] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Partially recessive variants under positive selection are expected to go to fixation more quickly on the X chromosome as a result of hemizygosity, an effect known as faster-X. Conversely, purifying selection is expected to reduce substitution rates more effectively on the X chromosome. Previous work in humans contrasted divergence on the autosomes and X chromosome, with results tending to support the faster-X effect. However, no study has yet incorporated both divergence and polymorphism to quantify the effects of both purifying and positive selection, which are opposing forces with respect to divergence. In this study, we develop a framework that integrates previously developed theory addressing differential rates of X and autosomal evolution with methods that jointly estimate the level of purifying and positive selection via modeling of the distribution of fitness effects (DFE). We then utilize this framework to estimate the proportion of nonsynonymous substitutions fixed by positive selection (α) using exome sequence data from a West African population. We find that varying the female to male breeding ratio (β) has minimal impact on the DFE for the X chromosome, especially when compared with the effect of varying the dominance coefficient of deleterious alleles (h). Estimates of α range from 46% to 51% and from 4% to 24% for the X chromosome and autosomes, respectively. While dependent on h, the magnitude of the difference between α values estimated for these two systems is highly statistically significant over a range of biologically realistic parameter values, suggesting faster-X has been operating in humans.
Collapse
Affiliation(s)
- Krishna R Veeramah
- Arizona Research Laboratories Division of Biotechnology, University of ArizonaDepartment of Ecology and Evolution, Stony Brook University
| | | | - August E Woerner
- Arizona Research Laboratories Division of Biotechnology, University of Arizona
| | | | - Michael F Hammer
- Arizona Research Laboratories Division of Biotechnology, University of Arizona
| |
Collapse
|
102
|
Gokhman D, Lavi E, Prüfer K, Fraga MF, Riancho JA, Kelso J, Pääbo S, Meshorer E, Carmel L. Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science 2014; 344:523-7. [PMID: 24786081 DOI: 10.1126/science.1250368] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ancient DNA sequencing has recently provided high-coverage archaic human genomes. However, the evolution of epigenetic regulation along the human lineage remains largely unexplored. We reconstructed the full DNA methylation maps of the Neandertal and the Denisovan by harnessing the natural degradation processes of methylated and unmethylated cytosines. Comparing these ancient methylation maps to those of present-day humans, we identified ~2000 differentially methylated regions (DMRs). Particularly, we found substantial methylation changes in the HOXD cluster that may explain anatomical differences between archaic and present-day humans. Additionally, we found that DMRs are significantly more likely to be associated with diseases. This study provides insight into the epigenetic landscape of our closest evolutionary relatives and opens a window to explore the epigenomes of extinct species.
Collapse
Affiliation(s)
- David Gokhman
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Wang B, Ekblom R, Bunikis I, Siitari H, Höglund J. Whole genome sequencing of the black grouse (Tetrao tetrix): reference guided assembly suggests faster-Z and MHC evolution. BMC Genomics 2014; 15:180. [PMID: 24602261 PMCID: PMC4022176 DOI: 10.1186/1471-2164-15-180] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 02/26/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The different regions of a genome do not evolve at the same rate. For example, comparative genomic studies have suggested that the sex chromosomes and the regions harbouring the immune defence genes in the Major Histocompatability Complex (MHC) may evolve faster than other genomic regions. The advent of the next generation sequencing technologies has made it possible to study which genomic regions are evolutionary liable to change and which are static, as well as enabling an increasing number of genome studies of non-model species. However, de novo sequencing of the whole genome of an organism remains non-trivial. In this study, we present the draft genome of the black grouse, which was developed using a reference-guided assembly strategy. RESULTS We generated 133 Gbp of sequence data from one black grouse individual by the SOLiD platform and used a combination of de novo assembly and chicken reference genome mapping to assemble the reads into 4572 scaffolds with a total length of 1022 Mb. The draft genome well covers the main chicken chromosomes 1 ~ 28 and Z which have a total length of 1001 Mb. The draft genome is fragmented, but has a good coverage of the homologous chicken genes. Especially, 33.0% of the coding regions of the homologous genes have more than 90% proportion of their sequences covered. In addition, we identified ~1 M SNPs from the genome and identified 106 genomic regions which had a high nucleotide divergence between black grouse and chicken or between black grouse and turkey. CONCLUSIONS Our results support the hypothesis that the chromosome X (Z) evolves faster than the autosomes and our data are consistent with the MHC regions being more liable to change than the genome average. Our study demonstrates how a moderate sequencing effort can be combined with existing genome references to generate a draft genome for a non-model species.
Collapse
Affiliation(s)
- Biao Wang
- />Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Robert Ekblom
- />Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Ignas Bunikis
- />Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-75237 Uppsala, Sweden
| | - Heli Siitari
- />Department of Biological and Environmental Science, University of Jyväskylä, P. O. Box 35, FI-40014 Jyväskylä, Finland
| | - Jacob Höglund
- />Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| |
Collapse
|
104
|
Yoshida K, Makino T, Yamaguchi K, Shigenobu S, Hasebe M, Kawata M, Kume M, Mori S, Peichel CL, Toyoda A, Fujiyama A, Kitano J. Sex chromosome turnover contributes to genomic divergence between incipient stickleback species. PLoS Genet 2014; 10:e1004223. [PMID: 24625862 PMCID: PMC3953013 DOI: 10.1371/journal.pgen.1004223] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/22/2014] [Indexed: 12/30/2022] Open
Abstract
Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration.
Collapse
Affiliation(s)
- Kohta Yoshida
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Takashi Makino
- Division of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Mitsuyasu Hasebe
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
- Division of Evolutionary Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| | - Masakado Kawata
- Division of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Manabu Kume
- Biological Laboratories, Gifu-keizai-University, Gifu, Japan
| | - Seiichi Mori
- Biological Laboratories, Gifu-keizai-University, Gifu, Japan
| | - Catherine L. Peichel
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
105
|
Turelli M, Lipkowitz JR, Brandvain Y. On the Coyne and Orr-igin of species: effects of intrinsic postzygotic isolation, ecological differentiation, x chromosome size, and sympatry on Drosophila speciation. Evolution 2014; 68:1176-87. [PMID: 24325145 DOI: 10.1111/evo.12330] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/27/2013] [Indexed: 12/30/2022]
Abstract
Coyne and Orr found that mating discrimination (premating isolation) evolves much faster between sympatric than allopatric Drosophila species pairs. Their meta-analyses established that this pattern, expected under reinforcement, is common and that Haldane's rule is ubiquitous in Drosophila species divergence. We examine three possible contributors to the reinforcement pattern: intrinsic postzygotic isolation, dichotomized as to whether hybrid males show complete inviability/sterility; host-plant divergence, as a surrogate for extrinsic postzygotic isolation; and X chromosome size, whether roughly 20% or 40% of the genome is X-linked. We focus on "young" species pairs with overlapping ranges, contrasted with allopatric pairs. Using alternative criteria for "sympatry" and tests that compare either level of prezygotic isolation in sympatry or frequency of sympatry, we find no statistically significant effects associated with X chromosome size or our coarse quantifications of intrinsic postzygotic isolation or ecological differentiation. Although sympatric speciation seems very rare in animals, the pervasiveness of the reinforcement pattern and the commonness of range overlap for close relatives indicate that speciation in Drosophila is often not purely allopatric. It remains to determine whether increased premating isolation with sympatry results from secondary contact versus parapatric speciation and what drives this pattern.
Collapse
Affiliation(s)
- Michael Turelli
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, 95616.
| | | | | |
Collapse
|
106
|
Abstract
The causes of the large effect of the X chromosome in reproductive isolation and speciation have long been debated. The faster-X hypothesis predicts that X-linked loci are expected to have higher rates of adaptive evolution than autosomal loci if new beneficial mutations are on average recessive. Reproductive isolation should therefore evolve faster when contributing loci are located on the X chromosome. In this study, we have analyzed genome-wide nucleotide polymorphism data from the house mouse subspecies Mus musculus castaneus and nucleotide divergence from Mus famulus and Rattus norvegicus to compare rates of adaptive evolution for autosomal and X-linked protein-coding genes. We found significantly faster adaptive evolution for X-linked loci, particularly for genes with expression in male-specific tissues, but autosomal and X-linked genes with expression in female-specific tissues evolve at similar rates. We also estimated rates of adaptive evolution for genes expressed during spermatogenesis and found that X-linked genes that escape meiotic sex chromosome inactivation (MSCI) show rapid adaptive evolution. Our results suggest that faster-X adaptive evolution is either due to net recessivity of new advantageous mutations or due to a special gene content of the X chromosome, which regulates male function and spermatogenesis. We discuss how our results help to explain the large effect of the X chromosome in speciation.
Collapse
|
107
|
Abstract
Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access.
Collapse
|
108
|
Mank JE. Sex chromosome dosage compensation: definitely not for everyone. Trends Genet 2013; 29:677-83. [DOI: 10.1016/j.tig.2013.07.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/03/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
|
109
|
Gossmann TI, Schmid MW, Grossniklaus U, Schmid KJ. Selection-driven evolution of sex-biased genes is consistent with sexual selection in Arabidopsis thaliana. Mol Biol Evol 2013; 31:574-83. [PMID: 24273323 DOI: 10.1093/molbev/mst226] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sex-biased genes are genes with a preferential or specific expression in one sex and tend to show an accelerated rate of evolution in animals. Various hypotheses--which are not mutually exclusive--have been put forth to explain observed patterns of rapid evolution. One possible explanation is positive selection, but this has been shown only in few animal species and mostly for male-specific genes. Here, we present a large-scale study that investigates evolutionary patterns of sex-biased genes in the predominantly self-fertilizing plant Arabidopsis thaliana. Unlike most animal species, A. thaliana does not possess sex chromosomes, its flowers develop both male and female sexual organs, and it is characterized by low outcrossing rates. Using cell-specific gene expression data, we identified genes whose expression is enriched in comparison with all other tissues in the male and female gametes (sperm, egg, and central cell), as well as in synergids, pollen, and pollen tubes, which also play an important role in reproduction. Genes specifically expressed in gametes and synergids show higher rates of protein evolution compared with the genome-wide average and no evidence for positive selection. In contrast, pollen- and pollen tube-specific genes not only have lower rates of protein evolution but also exhibit a higher proportion of adaptive amino acid substitutions. We show that this is the result of increased levels of purifying and positive selection among genes with pollen- and pollen tube-specific expression. The increased proportion of adaptive substitutions cannot be explained by the fact that pollen- and pollen tube-expressed genes are enriched in segmental duplications, are on average older, or have a larger effective population size. Our observations are consistent with prezygotic sexual selection as a result of interactions during pollination and pollen tube growth such as pollen tube competition.
Collapse
Affiliation(s)
- Toni I Gossmann
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | | | | | | |
Collapse
|
110
|
Jovelin R. Pleiotropic constraints, expression level, and the evolution of miRNA sequences. J Mol Evol 2013; 77:206-20. [PMID: 24100521 DOI: 10.1007/s00239-013-9588-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022]
Abstract
Post-transcriptional gene regulation mediated by microRNAs (miRNAs) plays critical roles during development by modulating gene expression and conferring robustness to stochastic errors. Phylogenetic analyses suggest that miRNA acquisition could play a role in phenotypic innovation. Moreover, miRNA-induced regulation strongly impacts genome evolution, increasing selective constraints on 3'UTRs, protein sequences, and expression level divergence. Thus, it is essential to understand the factors governing sequence evolution for this important class of regulatory molecules. Investigation of the patterns of molecular evolution at miRNA loci have been limited in Caenorhabditis elegans because of the lack of a close outgroup. Instead, I used Caenorhabditis briggsae as the focus point of this study because of its close relationship to Caenorhabditis sp. 9. I also corroborated the patterns of sequence evolution in Caenorhabditis using published orthologous relationships among miRNAs in Drosophila. In nematodes and in flies, miRNA sequence divergence is not influenced by the genomic neighborhood (i.e., intronic or intergenic) but is nevertheless affected by the genomic context because X-linked miRNAs evolve faster than autosomal miRNAs. However, this effect of chromosomal linkage can be explained by differential expression levels rather than a fast-X effect. The results presented here support a universal negative relationship between rates of molecular evolution and expression level, and suggest that mutations in highly expressed miRNAs are more likely to be deleterious because they potentially affect a larger number of target genes. Finally, I show that many single family member miRNAs evolve faster than miRNAs from multigene families and have limited functional scope, suggesting that they are not strongly integrated in gene regulatory networks.
Collapse
Affiliation(s)
- Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada,
| |
Collapse
|
111
|
Ometto L, Cestaro A, Ramasamy S, Grassi A, Revadi S, Siozios S, Moretto M, Fontana P, Varotto C, Pisani D, Dekker T, Wrobel N, Viola R, Pertot I, Cavalieri D, Blaxter M, Anfora G, Rota-Stabelli O. Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 2013; 5:745-57. [PMID: 23501831 PMCID: PMC3641628 DOI: 10.1093/gbe/evt034] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drosophilid fruit flies have provided science with striking cases of behavioral adaptation and genetic innovation. A recent example is the invasive pest Drosophila suzukii, which, unlike most other Drosophila, lays eggs and feeds on undamaged, ripening fruits. This not only poses a serious threat for fruit cultivation but also offers an interesting model to study evolution of behavioral innovation. We developed genome and transcriptome resources for D. suzukii. Coupling analyses of these data with field observations, we propose a hypothesis of the origin of its peculiar ecology. Using nuclear and mitochondrial phylogenetic analyses, we confirm its Asian origin and reveal a surprising sister relationship between the eugracilis and the melanogaster subgroups. Although the D. suzukii genome is comparable in size and repeat content to other Drosophila species, it has the lowest nucleotide substitution rate among the species analyzed in this study. This finding is compatible with the overwintering diapause of D. suzukii, which results in a reduced number of generations per year compared with its sister species. Genome-scale relaxed clock analyses support a late Miocene origin of D. suzukii, concomitant with paleogeological and climatic conditions that suggest an adaptation to temperate montane forests, a hypothesis confirmed by field trapping. We propose a causal link between the ecological adaptations of D. suzukii in its native habitat and its invasive success in Europe and North America.
Collapse
Affiliation(s)
- Lino Ometto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Meisel RP, Connallon T. The faster-X effect: integrating theory and data. Trends Genet 2013; 29:537-44. [PMID: 23790324 PMCID: PMC3755111 DOI: 10.1016/j.tig.2013.05.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/02/2013] [Accepted: 05/20/2013] [Indexed: 11/30/2022]
Abstract
Population genetics theory predicts that X (or Z) chromosomes could play disproportionate roles in speciation and evolutionary divergence, and recent genome-wide analyses have identified situations in which X or Z-linked divergence exceeds that on the autosomes (the so-called 'faster-X effect'). Here, we summarize the current state of both the theory and data surrounding the study of faster-X evolution. Our survey indicates that the faster-X effect is pervasive across a taxonomically diverse array of evolutionary lineages. These patterns could be informative of the dominance or recessivity of beneficial mutations and the nature of genetic variation acted upon by natural selection. We also identify several aspects of disagreement between these empirical results and the population genetic models used to interpret them. However, there are clearly delineated aspects of the problem for which additional modeling and collection of genomic data will address these discrepancies and provide novel insights into the population genetics of adaptation.
Collapse
|
113
|
Wright AE, Mank JE. The scope and strength of sex-specific selection in genome evolution. J Evol Biol 2013; 26:1841-53. [PMID: 23848139 PMCID: PMC4352339 DOI: 10.1111/jeb.12201] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/11/2022]
Abstract
Males and females share the vast majority of their genomes and yet are often subject to different, even conflicting, selection. Genomic and transcriptomic developments have made it possible to assess sex-specific selection at the molecular level, and it is clear that sex-specific selection shapes the evolutionary properties of several genomic characteristics, including transcription, post-transcriptional regulation, imprinting, genome structure and gene sequence. Sex-specific selection is strongly influenced by mating system, which also causes neutral evolutionary changes that affect different regions of the genome in different ways. Here, we synthesize theoretical and molecular work in order to provide a cohesive view of the role of sex-specific selection and mating system in genome evolution. We also highlight the need for a combined approach, incorporating both genomic data and experimental phenotypic studies, in order to understand precisely how sex-specific selection drives evolutionary change across the genome.
Collapse
Affiliation(s)
- A E Wright
- Department of Zoology, University of Oxford, Edward Grey Institute, Oxford, UK.
| | | |
Collapse
|
114
|
Vicoso B, Emerson JJ, Zektser Y, Mahajan S, Bachtrog D. Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol 2013; 11:e1001643. [PMID: 24015111 PMCID: PMC3754893 DOI: 10.1371/journal.pbio.1001643] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/19/2013] [Indexed: 01/06/2023] Open
Abstract
Snakes exhibit genetic sex determination, with female heterogametic sex chromosomes (ZZ males, ZW females). Extensive cytogenetic work has suggested that the level of sex chromosome heteromorphism varies among species, with Boidae having entirely homomorphic sex chromosomes, Viperidae having completely heteromorphic sex chromosomes, and Colubridae showing partial differentiation. Here, we take a genomic approach to compare sex chromosome differentiation in these three snake families. We identify homomorphic sex chromosomes in boas (Boidae), but completely heteromorphic sex chromosomes in both garter snakes (Colubridae) and pygmy rattlesnake (Viperidae). Detection of W-linked gametologs enables us to establish the presence of evolutionary strata on garter and pygmy rattlesnake sex chromosomes where recombination was abolished at different time points. Sequence analysis shows that all strata are shared between pygmy rattlesnake and garter snake, i.e., recombination was abolished between the sex chromosomes before the two lineages diverged. The sex-biased transmission of the Z and its hemizygosity in females can impact patterns of molecular evolution, and we show that rates of evolution for Z-linked genes are increased relative to their pseudoautosomal homologs, both at synonymous and amino acid sites (even after controlling for mutational biases). This demonstrates that mutation rates are male-biased in snakes (male-driven evolution), but also supports faster-Z evolution due to differential selective effects on the Z. Finally, we perform a transcriptome analysis in boa and pygmy rattlesnake to establish baseline levels of sex-biased expression in homomorphic sex chromosomes, and show that heteromorphic ZW chromosomes in rattlesnakes lack chromosome-wide dosage compensation. Our study provides the first full scale overview of the evolution of snake sex chromosomes at the genomic level, thus greatly expanding our knowledge of reptilian and vertebrate sex chromosomes evolution.
Collapse
Affiliation(s)
- Beatriz Vicoso
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | | | | | | | | |
Collapse
|
115
|
Connallon T, Clark AG. Sex-differential selection and the evolution of X inactivation strategies. PLoS Genet 2013; 9:e1003440. [PMID: 23637618 PMCID: PMC3630082 DOI: 10.1371/journal.pgen.1003440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/24/2013] [Indexed: 11/25/2022] Open
Abstract
X inactivation—the transcriptional silencing of one X chromosome copy per female somatic cell—is universal among therian mammals, yet the choice of which X to silence exhibits considerable variation among species. X inactivation strategies can range from strict paternally inherited X inactivation (PXI), which renders females haploid for all maternally inherited alleles, to unbiased random X inactivation (RXI), which equalizes expression of maternally and paternally inherited alleles in each female tissue. However, the underlying evolutionary processes that might account for this observed diversity of X inactivation strategies remain unclear. We present a theoretical population genetic analysis of X inactivation evolution and specifically consider how conditions of dominance, linkage, recombination, and sex-differential selection each influence evolutionary trajectories of X inactivation. The results indicate that a single, critical interaction between allelic dominance and sex-differential selection can select for a broad and continuous range of X inactivation strategies, including unequal rates of inactivation between maternally and paternally inherited X chromosomes. RXI is favored over complete PXI as long as alleles deleterious to female fitness are sufficiently recessive, and the criteria for RXI evolution is considerably more restrictive when fitness variation is sexually antagonistic (i.e., alleles deleterious to females are beneficial to males) relative to variation that is deleterious to both sexes. Evolutionary transitions from PXI to RXI also generally increase mean relative female fitness at the expense of decreased male fitness. These results provide a theoretical framework for predicting and interpreting the evolution of chromosome-wide expression of X-linked genes and lead to several useful predictions that could motivate future studies of allele-specific gene expression variation. With the exception of its most primitive members, mammal species practice X inactivation, where one copy of each X chromosome pair is silenced in each cell of the female body. The particular copy of the X that is silenced nevertheless shows considerable variability among species, and the evolutionary causes for this variability remain unclear. Here, we show that X inactivation strategies are likely to evolve in response to the sex-differential fitness properties of X-linked genetic variation. Genetic variation with similar effects on male and female fitness will generally favor the evolution of random X inactivation, potentially including preferential inactivation of the maternally inherited X chromosome. Variation with opposing fitness effects in each sex (“sexually antagonistic” variation, which includes mutations that both decrease female fitness and enhance male fitness) selects for preferential or complete inactivation of the paternally inherited X. Paternally biased X inactivation patterns appear to be common in nature, which suggests that sexually antagonistic genetic variation might be an important factor underlying the evolution of X inactivation. The theory provides a conceptual framework for understanding the evolution of X inactivation strategies and generates several novel predictions that may soon be tested with modern genome sequencing technologies.
Collapse
Affiliation(s)
- Tim Connallon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.
| | | |
Collapse
|
116
|
|
117
|
Campos JL, Zeng K, Parker DJ, Charlesworth B, Haddrill PR. Codon usage bias and effective population sizes on the X chromosome versus the autosomes in Drosophila melanogaster. Mol Biol Evol 2012. [PMID: 23204387 PMCID: PMC3603305 DOI: 10.1093/molbev/mss222] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Codon usage bias (CUB) in Drosophila is higher for X-linked genes than for autosomal genes. One possible explanation is that the higher effective recombination rate for genes on the X chromosome compared with the autosomes reduces their susceptibility to Hill–Robertson effects, and thus enhances the efficacy of selection on codon usage. The genome sequence of D. melanogaster was used to test this hypothesis. Contrary to expectation, it was found that, after correcting for the effective recombination rate, CUB remained higher on the X than on the autosomes. In contrast, an analysis of polymorphism data from a Rwandan population showed that mean nucleotide site diversity at 4-fold degenerate sites for genes on the X is approximately three-quarters of the autosomal value after correcting for the effective recombination rate, compared with approximate equality before correction. In addition, these data show that selection for preferred versus unpreferred synonymous variants is stronger on the X than the autosomes, which accounts for the higher CUB of genes on the X chromosome. This difference in the strength of selection does not appear to reflect the effects of dominance of mutations affecting codon usage, differences in gene expression levels between X and autosomes, or differences in mutational bias. Its cause therefore remains unexplained. The stronger selection on CUB on the X chromosome leads to a lower rate of synonymous site divergence compared with the autosomes; this will cause a stronger upward bias for X than A in estimates of the proportion of nonsynonymous mutations fixed by positive selection, for methods based on the McDonald–Kreitman test.
Collapse
Affiliation(s)
- Jose L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
118
|
Dyer KA, Bray MJ, Lopez SJ. Genomic conflict drives patterns of X-linked population structure in Drosophila neotestacea. Mol Ecol 2012; 22:157-69. [PMID: 23121224 DOI: 10.1111/mec.12097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 12/12/2022]
Abstract
Intragenomic conflict has the potential to cause widespread changes in patterns of genetic diversity and genome evolution. In this study, we investigate the consequences of sex-ratio (SR) drive on the population genetic patterns of the X-chromosome in Drosophila neotestacea. An SR X-chromosome prevents the maturation of Y-bearing sperm during male spermatogenesis and thus is transmitted to ~100% of the offspring, nearly all of which are daughters. Selection on the rest of the genome to suppress SR can be strong, and the resulting conflict over the offspring sex ratio can result in the accumulation of multiple loci on the X-chromosome that are necessary for the expression of drive. We surveyed variation at 12 random X-linked microsatellites across 16 populations of D. neotestacea that range in SR frequency from 0% to 30%. First, every locus was differentiated between SR and wild-type chromosomes, and this drives genetic structure at the X-chromosome. Once the association with SR is accounted for, the patterns of differentiation among populations are similar to the autosomes. Second, within wild-type chromosomes, the relative heterozygosity is reduced in populations with an increased prevalence of drive, and the heterozygosity of SR chromosomes is higher than expected based on its prevalence. The combination of the relatively high prevalence of SR drive and the structuring of polymorphism between the SR and wild-type chromosomes suggests that genetic conflict because of SR drive has had significant consequences on the patterns of X-linked polymorphism and thus also probably affects the tempo of X-chromosome evolution in D. neotestacea.
Collapse
Affiliation(s)
- Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
119
|
Meisel RP, Malone JH, Clark AG. Faster-X evolution of gene expression in Drosophila. PLoS Genet 2012; 8:e1003013. [PMID: 23071459 PMCID: PMC3469423 DOI: 10.1371/journal.pgen.1003013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/22/2012] [Indexed: 01/01/2023] Open
Abstract
DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA-seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the "faster-X" effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| | | | | |
Collapse
|
120
|
Genomic imprinting leads to less selectively maintained polymorphism on X chromosomes. Genetics 2012; 192:1455-64. [PMID: 23023005 DOI: 10.1534/genetics.112.145607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Population-genetic models are developed to investigate the consequences of viability selection at a diallelic X-linked locus subject to genomic imprinting. Under complete paternal-X inactivation, a stable polymorphism is possible under the same conditions as for paternal-autosome inactivation with differential selection on males and females. A necessary but not sufficient condition is that there is sexual conflict, with selection acting in opposite directions in males and females. In contrast, models of complete maternal-X inactivation never admit a stable polymorphism and alleles will either be fixed or lost from the population. Models of complete paternal-X inactivation are more complex than corresponding models of maternal-X inactivation, as inactivation of paternally derived X chromosomes in females screens these chromosomes from selection for a generation. We also demonstrate that polymorphism is possible for incomplete X inactivation, but that the parameter conditions are more restrictive than for complete paternal-X inactivation. Finally, we investigate the effects of recurrent mutation in our models and show that deleterious alleles in mutation-selection balance at imprinted X-linked loci are at frequencies rather similar to those with corresponding selection pressures and mutation rates at unimprinted loci. Overall, our results add to the reasons for expecting less selectively maintained allelic variation on X chromosomes.
Collapse
|
121
|
Hu TT, Eisen MB, Thornton KR, Andolfatto P. A second-generation assembly of the Drosophila simulans genome provides new insights into patterns of lineage-specific divergence. Genome Res 2012; 23:89-98. [PMID: 22936249 PMCID: PMC3530686 DOI: 10.1101/gr.141689.112] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We create a new assembly of the Drosophila simulans genome using 142 million paired short-read sequences and previously published data for strain w501. Our assembly represents a higher-quality genomic sequence with greater coverage, fewer misassemblies, and, by several indexes, fewer sequence errors. Evolutionary analysis of this genome reference sequence reveals interesting patterns of lineage-specific divergence that are different from those previously reported. Specifically, we find that Drosophila melanogaster evolves faster than D. simulans at all annotated classes of sites, including putatively neutrally evolving sites found in minimal introns. While this may be partly explained by a higher mutation rate in D. melanogaster, we also find significant heterogeneity in rates of evolution across classes of sites, consistent with historical differences in the effective population size for the two species. Also contrary to previous findings, we find that the X chromosome is evolving significantly faster than autosomes for nonsynonymous and most noncoding DNA sites and significantly slower for synonymous sites. The absence of a X/A difference for putatively neutral sites and the robustness of the pattern to Gene Ontology and sex-biased expression suggest that partly recessive beneficial mutations may comprise a substantial fraction of noncoding DNA divergence observed between species. Our results have more general implications for the interpretation of evolutionary analyses of genomes of different quality.
Collapse
Affiliation(s)
- Tina T Hu
- Department of Ecology and Evolutionary Biology and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | |
Collapse
|
122
|
Mullon C, Pomiankowski A, Reuter M. The effects of selection and genetic drift on the genomic distribution of sexually antagonistic alleles. Evolution 2012. [PMID: 23206133 DOI: 10.1111/j.1558-5646.2012.01728.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sexual antagonism (SA) occurs when an allele that is beneficial to one sex, is detrimental to the other. This conflict can result in balancing, directional, or disruptive selection acting on SA alleles. A body of theory predicts the conditions under which sexually antagonistic mutants will invade and be maintained in stable polymorphism under balancing selection. There remains, however, considerable debate over the distribution of SA genetic variation across autosomes and sex chromosomes, with contradictory evidence coming from data and theory. In this article, we investigate how the interplay between selection and genetic drift will affect the genomic distribution of sexually antagonistic alleles. The effective population sizes can differ between the autosomes and the sex chromosomes due to a number of ecological factors and, consequently, the distribution of SA genetic variation in genomes. In general, we predict the interplay of SA selection and genetic drift should lead to the accumulation of SA alleles on the X in male heterogametic (XY) species and, on the autosomes in female heterogametic (ZW) species, especially when sexual competition is strong among males.
Collapse
Affiliation(s)
- Charles Mullon
- CoMPLEX, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
123
|
Llopart A. The Rapid Evolution of X-linked Male-Biased Gene Expression and the Large-X Effect in Drosophila yakuba, D. santomea, and Their Hybrids. Mol Biol Evol 2012; 29:3873-86. [DOI: 10.1093/molbev/mss190] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
124
|
Johnson NA, Lachance J. The genetics of sex chromosomes: evolution and implications for hybrid incompatibility. Ann N Y Acad Sci 2012; 1256:E1-22. [PMID: 23025408 PMCID: PMC3509754 DOI: 10.1111/j.1749-6632.2012.06748.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heteromorphic sex chromosomes, where one sex has two different types of sex chromosomes, face very different evolutionary consequences than do autosomes. Two important features of sex chromosomes arise from being present in only one copy in one of the sexes: dosage compensation and the meiotic silencing of sex chromosomes. Other differences arise because sex chromosomes spend unequal amounts of time in each sex. Thus, the impact of evolutionary processes (mutation, selection, genetic drift, and meiotic drive) differs substantially between each sex chromosome, and between the sex chromosomes and the autosomes. Sex chromosomes also play a disproportionate role in Haldane's rule and other important patterns related to hybrid incompatibility, and thus speciation. We review the consequences of sex chromosomes on hybrid incompatibility. A theme running through this review is that epigenetic processes, notably those related to chromatin, may be more important to the evolution of sex chromosomes and the evolution of hybrid incompatibility than previously recognized.
Collapse
Affiliation(s)
- Norman A Johnson
- Department of Plant, Soil, and Insect Sciences, and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
125
|
Grath S, Parsch J. Rate of amino acid substitution is influenced by the degree and conservation of male-biased transcription over 50 myr of Drosophila evolution. Genome Biol Evol 2012; 4:346-59. [PMID: 22321769 PMCID: PMC3318448 DOI: 10.1093/gbe/evs012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2012] [Indexed: 12/18/2022] Open
Abstract
Sex-biased gene expression (i.e., the differential expression of genes between males and females) is common among sexually reproducing species. However, genes often differ in their sex-bias classification or degree of sex bias between species. There is also an unequal distribution of sex-biased genes (especially male-biased genes) between the X chromosome and the autosomes. We used whole-genome expression data and evolutionary rate estimates for two different Drosophilid lineages, melanogaster and obscura, spanning an evolutionary time scale of around 50 Myr to investigate the influence of sex-biased gene expression and chromosomal location on the rate of molecular evolution. In both lineages, the rate of protein evolution correlated positively with the male/female expression ratio. Genes with highly male-biased expression, genes expressed specifically in male reproductive tissues, and genes with conserved male-biased expression over long evolutionary time scales showed the fastest rates of evolution. An analysis of sex-biased gene evolution in both lineages revealed evidence for a "fast-X" effect in which the rate of evolution was greater for X-linked than for autosomal genes. This pattern was particularly pronounced for male-biased genes. Genes located on the obscura "neo-X" chromosome, which originated from a recent X-autosome fusion, showed rates of evolution that were intermediate between genes located on the ancestral X-chromosome and the autosomes. This suggests that the shift to X-linkage led to an increase in the rate of molecular evolution.
Collapse
Affiliation(s)
- Sonja Grath
- Institute for Evolution and Biodiversity, University of Muenster (WWU), Germany.
| | | |
Collapse
|
126
|
Xu K, Oh S, Park T, Presgraves DC, Yi SV. Lineage-specific variation in slow- and fast-X evolution in primates. Evolution 2012; 66:1751-61. [PMID: 22671544 DOI: 10.1111/j.1558-5646.2011.01556.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Theories predict that the evolutionary rates of X-linked regions can differ from those of autosomal regions. The male-biased mutation theory predicts a slower rate of neutral substitution on the X chromosome (slow-X evolution), as the X spends less time in male germlines, where more mutations originate per generation than in female germlines. The fast-X theory, however, predicts a faster rate of adaptive substitution on the X chromosome when newly arising beneficial mutations are, on average, partially recessive (fast-X evolution), as the X enjoys a greater efficacy of positive selection. The slow- and fast-X processes are expected to interact as the degree of male-biased mutation can in turn influence the relative rate of adaptive evolution on the X. Here, we investigate lineage-specific variation in, and the interaction of, slow- and fast-X processes using genomic data from four primates. We find consistent evidence for slow-X evolution in all lineages. In contrast, evidence for fast-X evolution exists in only a subset of lineages. In particular, the marmoset lineage, which shows the strongest evidence of fast-X, exhibits the lowest male mutation bias. We discuss the possible interaction between slow- and fast-X evolution and other factors that influence the degrees of slow- and fast-X evolution.
Collapse
Affiliation(s)
- Ke Xu
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, Georgia 30332, USA
| | | | | | | | | |
Collapse
|
127
|
Connallon T, Singh ND, Clark AG. Impact of genetic architecture on the relative rates of X versus autosomal adaptive substitution. Mol Biol Evol 2012; 29:1933-42. [PMID: 22319138 DOI: 10.1093/molbev/mss057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Molecular evolutionary theory predicts that the ratio of autosomal to X-linked adaptive substitution (K(A)/K(x)) is primarily determined by the average dominance coefficient of beneficial mutations. Although this theory has profoundly influenced analysis and interpretation of comparative genomic data, its predictions are based upon two unverified assumptions about the genetic basis of adaptation. The theory assumes that 1) the rate of adaptively driven molecular evolution is limited by the availability of beneficial mutations, and 2) the scaling of evolutionary parameters between the X and the autosomes (e.g., the beneficial mutation rate, and the fitness effect distribution of beneficial alleles, per X-linked versus autosomal locus) is constant across molecular evolutionary timescales. Here, we show that the genetic architecture underlying bouts of adaptive substitution can influence both assumptions, and consequently, the theoretical relationship between K(A)/K(x) and mean dominance. Quantitative predictions of prior theory apply when 1) many genomically dispersed genes potentially contribute beneficial substitutions during individual steps of adaptive walks, and 2) the population beneficial mutation rate, summed across the set of potentially contributing genes, is sufficiently small to ensure that adaptive substitutions are drawn from new mutations rather than standing genetic variation. Current research into the genetic basis of adaptation suggests that both assumptions are plausibly violated. We find that the qualitative positive relationship between mean dominance and K(A)/K(x) is relatively robust to the specific conditions underlying adaptive substitution, yet the quantitative relationship between dominance and K(A)/K(x) is quite flexible and context dependent. This flexibility may partially account for the puzzlingly variable X versus autosome substitution patterns reported in the empirical evolutionary genomics literature. The new theory unites the previously separate analysis of adaptation using new mutations versus standing genetic variation and makes several useful predictions about the interaction between genetic architecture, evolutionary genetic constraints, and effective population size in determining the ratio of adaptive substitution between autosomal and X-linked genes.
Collapse
Affiliation(s)
- Tim Connallon
- Department of Molecular Biology and Genetics, Cornell University, USA.
| | | | | |
Collapse
|
128
|
Carneiro M, Albert FW, Melo-Ferreira J, Galtier N, Gayral P, Blanco-Aguiar JA, Villafuerte R, Nachman MW, Ferrand N. Evidence for widespread positive and purifying selection across the European rabbit (Oryctolagus cuniculus) genome. Mol Biol Evol 2012; 29:1837-49. [PMID: 22319161 DOI: 10.1093/molbev/mss025] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nearly neutral theory of molecular evolution predicts that the efficacy of both positive and purifying selection is a function of the long-term effective population size (N(e)) of a species. Under this theory, the efficacy of natural selection should increase with N(e). Here, we tested this simple prediction by surveying ~1.5 to 1.8 Mb of protein coding sequence in the two subspecies of the European rabbit (Oryctolagus cuniculus algirus and O. c. cuniculus), a mammal species characterized by high levels of nucleotide diversity and N(e) estimates for each subspecies on the order of 1 × 10(6). When the segregation of slightly deleterious mutations and demographic effects were taken into account, we inferred that >60% of amino acid substitutions on the autosomes were driven to fixation by positive selection. Moreover, we inferred that a small fraction of new amino acid mutations (<4%) are effectively neutral (defined as 0 < N(e)s < 1) and that this fraction was negatively correlated with a gene's expression level. Consistent with models of recurrent adaptive evolution, we detected a negative correlation between levels of synonymous site polymorphism and the rate of protein evolution, although the correlation was weak and nonsignificant. No systematic X chromosome-autosome difference was found in the efficacy of selection. For example, the proportion of adaptive substitutions was significantly higher on the X chromosome compared with the autosomes in O. c. algirus but not in O. c. cuniculus. Our findings support widespread positive and purifying selection in rabbits and add to a growing list of examples suggesting that differences in N(e) among taxa play a substantial role in determining rates and patterns of protein evolution.
Collapse
Affiliation(s)
- Miguel Carneiro
- Centro de Investigação em Biodiversidade e Recursos Genéticos, Vairão, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Surveying genome-wide coding variation within and among species gives unprecedented power to study the genetics of adaptation, in particular the proportion of amino acid substitutions fixed by positive selection. Additionally, contrasting the autosomes and the X chromosome holds information on the dominance of beneficial (adaptive) and deleterious mutations. Here we capture and sequence the complete exomes of 12 chimpanzees and present the largest set of protein-coding polymorphism to date. We report extensive adaptive evolution specifically targeting the X chromosome of chimpanzees with as much as 30% of all amino acid replacements being adaptive. Adaptive evolution is barely detectable on the autosomes except for a few striking cases of recent selective sweeps associated with immunity gene clusters. We also find much stronger purifying selection than observed in humans, and in contrast to humans, we find that purifying selection is stronger on the X chromosome than on the autosomes in chimpanzees. We therefore conclude that most adaptive mutations are recessive. We also document dramatically reduced synonymous diversity in the chimpanzee X chromosome relative to autosomes and stronger purifying selection than for the human X chromosome. If similar processes were operating in the human-chimpanzee ancestor as in central chimpanzees today, our results therefore provide an explanation for the much-discussed reduction in the human-chimpanzee divergence at the X chromosome.
Collapse
|
130
|
Inter- and intraspecific variation in Drosophila genes with sex-biased expression. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:963976. [PMID: 22315698 PMCID: PMC3270394 DOI: 10.1155/2012/963976] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/06/2011] [Accepted: 10/06/2011] [Indexed: 02/04/2023]
Abstract
Genes with sexually dimorphic expression (sex-biased genes) often evolve rapidly and are thought to make an important contribution to reproductive isolation between species. We examined the molecular evolution of sex-biased genes in Drosophila melanogaster and D. ananassae, which represent two independent lineages within the melanogaster group. We find that strong purifying selection limits protein sequence variation within species, but that a considerable fraction of divergence between species can be attributed to positive selection. In D. melanogaster, the proportion of adaptive substitutions between species is greatest for male-biased genes and is especially high for those on the X chromosome. In contrast, male-biased genes do not show unusually high variation within or between populations. A similar pattern is seen at the level of gene expression, where sex-biased genes show high expression divergence between species, but low divergence between populations. In D. ananassae, there is no increased rate of adaptation of male-biased genes, suggesting that the type or strength of selection acting on sex-biased genes differs between lineages.
Collapse
|
131
|
Abstract
Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Edward Grey Institute, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
132
|
|
133
|
Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, Pires JC, Rice W, Valenzuela N. Are all sex chromosomes created equal? Trends Genet 2011; 27:350-7. [DOI: 10.1016/j.tig.2011.05.005] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 11/17/2022]
|
134
|
Elgvin TO, Hermansen JS, Fijarczyk A, Bonnet T, Borge T, Saether SA, Voje KL, Saetre GP. Hybrid speciation in sparrows II: a role for sex chromosomes? Mol Ecol 2011; 20:3823-37. [PMID: 21762432 DOI: 10.1111/j.1365-294x.2011.05182.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Homoploid hybrid speciation in animals is poorly understood, mainly because of the scarcity of well-documented cases. Here, we present the results of a multilocus sequence analysis on the house sparrow (Passer domesticus), Spanish sparrow (P. hispaniolensis) and their proposed hybrid descendant, the Italian sparrow (P. italiae). The Italian sparrow is shown to be genetically intermediate between the house sparrow and Spanish sparrow, exhibiting genealogical discordance and a mosaic pattern of alleles derived from either of the putative parental species. The average variation on the Z chromosome was significantly reduced compared with autosomal variation in the putative parental species, the house sparrow and Spanish sparrow. Additionally, divergence between the two species was elevated on the Z chromosome relative to the autosomes. This pattern of variation and divergence is consistent with reduced introgression of Z-linked genes and/or a faster-Z effect (increased rate of adaptive divergence on the Z). F(ST) -outlier tests were consistent with the faster-Z hypothesis: two of five Z-linked loci (CHD1Z and PLAA) were identified as candidates for being subject to positive, divergent selection in the putative parental species. Interestingly, the two latter genes showed a mosaic pattern in the (hybrid) Italian sparrow; that is, the Italian sparrow was found to be fixed for Spanish sparrow alleles at CHD1Z and to mainly have house sparrow alleles at PLAA. Preliminary evidence presented in this study thus suggests that sex chromosomes may play a significant role in this case of homoploid hybrid speciation.
Collapse
Affiliation(s)
- Tore O Elgvin
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO Box 1066, Blindern, N-0316 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Piskol R, Stephan W. The role of the effective population size in compensatory evolution. Genome Biol Evol 2011; 3:528-38. [PMID: 21680889 PMCID: PMC3140890 DOI: 10.1093/gbe/evr057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The impact of the effective population size (Ne) on the efficacy of selection has been the focus of many theoretical and empirical studies over the recent years. Yet, the effect of Ne on evolution under epistatic fitness interactions is not well understood. In this study, we compare selective constraints at independently evolving (unpaired) and coevolving (paired) sites in orthologous transfer RNAs (tRNA molecules for vertebrate and drosophilid species pairs of different Ne. We show that patterns of nucleotide variation for the two classes of sites are explained well by Kimura's one- and two-locus models of sequence evolution under mutational pressure. We find that constraints in orthologous tRNAs increase with increasing Ne of the investigated species pair. Thereby, the effect of Ne on the efficacy of selection is stronger at unpaired sites than at paired sites. Furthermore, we identify a “core” set of tRNAs with high structural similarity to tRNAs from all major kingdoms of life and a “peripheral” set with lower similarity. We observe that tRNAs in the former set are subject to higher constraints and less prone to the effect of Ne, whereas constraints in tRNAs of the latter set show a large influence of Ne. Finally, we are able to demonstrate that constraints are relaxed in X-linked drosophilid tRNAs compared with autosomal tRNAs and suggest that Ne is responsible for this difference. The observed effects of Ne are consistent with the hypothesis that evolution of most tRNAs is governed by slightly to moderately deleterious mutations (i.e., |Nes| ≤ 5).
Collapse
Affiliation(s)
- Robert Piskol
- Section of Evolutionary Biology, Ludwig-Maximilian University, Munich, Germany.
| | | |
Collapse
|
136
|
Vicoso B, Bachtrog D. Lack of global dosage compensation in Schistosoma mansoni, a female-heterogametic parasite. Genome Biol Evol 2011; 3:230-5. [PMID: 21317157 PMCID: PMC3068002 DOI: 10.1093/gbe/evr010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Many species have morphologically and genetically differentiated sex chromosomes, such as the XY pair of mammals. Y chromosomes are often highly degenerated and carry few functional genes, so that XY males have only one copy of most X-linked genes (whereas females have two). As a result, chromosome-wide mechanisms of dosage compensation, such as the mammalian X-inactivation, often evolve to reestablish expression balance. A similar phenomenon is expected in female-heterogametic species, where ZW females should suffer from imbalances due to W-chromosome degeneration. However, no global dosage compensation mechanisms have been detected in the two independent ZW systems that have been studied systematically (birds and silkworm), leading to the suggestion that lack of global dosage compensation may be a general feature of female-heterogametic species. However, analyses of other independently evolved ZW systems are required to test if this is the case. In this study, we use published genomic and expression data to test for the presence of global dosage compensation in Schistosoma mansoni, a trematode parasite that causes schistosomiasis in humans. We find that Z-linked expression is reduced relative to autosomal expression in females but not males, consistent with incomplete or localized dosage compensation. This gives further support to the theory that female-heterogametic species may not require global mechanisms of dosage compensation.
Collapse
Affiliation(s)
- Beatriz Vicoso
- Department of Integrative Biology and Center for Theoretical and Evolutionary Genomics, UC Berkeley, USA.
| | | |
Collapse
|
137
|
Ellegren H. Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Nat Rev Genet 2011; 12:157-66. [PMID: 21301475 DOI: 10.1038/nrg2948] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is now clear that sex chromosomes differ from autosomes in many aspects of genome biology, such as organization, gene content and gene expression. Moreover, sex linkage has numerous evolutionary genetic implications. Here, I provide a coherent overview of sex-chromosome evolution and function based on recent data. Heteromorphic sex chromosomes are almost as widespread across the animal and plant kingdoms as sexual reproduction itself and an accumulating body of genetic data reveals interesting similarities, as well as dissimilarities, between organisms with XY or ZW sex-determination systems. Therefore, I discuss how patterns and processes associated with sex linkage in male- and female-heterogametic systems offer a useful contrast in the study of sex-chromosome evolution.
Collapse
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvgen 18D, SE752 36 Uppsala, Sweden.
| |
Collapse
|
138
|
Inference of mutation parameters and selective constraint in mammalian coding sequences by approximate Bayesian computation. Genetics 2011; 187:1153-61. [PMID: 21288873 DOI: 10.1534/genetics.110.124073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We develop an inference method that uses approximate Bayesian computation (ABC) to simultaneously estimate mutational parameters and selective constraint on the basis of nucleotide divergence for protein-coding genes between pairs of species. Our simulations explicitly model CpG hypermutability and transition vs. transversion mutational biases along with negative and positive selection operating on synonymous and nonsynonymous sites. We evaluate the method by simulations in which true mean parameter values are known and show that it produces reasonably unbiased parameter estimates as long as sequences are not too short and sequence divergence is not too low. We show that the use of quadratic regression within ABC offers an improvement over linear regression, but that weighted regression has little impact on the efficiency of the procedure. We apply the method to estimate mutational and selective constraint parameters in data sets of protein-coding genes extracted from the genome sequences of primates, murids, and carnivores. Estimates of CpG hypermutability are substantially higher in primates than murids and carnivores. Nonsynonymous site selective constraint is substantially higher in murids and carnivores than primates, and autosomal nonsynonymous constraint is higher than X-chromsome constraint in all taxa. We detect significant selective constraint at synonymous sites in primates, carnivores, and murid rodents. Synonymous site selective constraint is weakest in murids, a surprising result, considering that murid effective population sizes are likely to be considerably higher than the other two taxa.
Collapse
|
139
|
Good JM, Vanderpool D, Smith KL, Nachman MW. Extraordinary sequence divergence at Tsga8, an X-linked gene involved in mouse spermiogenesis. Mol Biol Evol 2010; 28:1675-86. [PMID: 21186189 DOI: 10.1093/molbev/msq348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The X chromosome plays an important role in both adaptive evolution and speciation. We used a molecular evolutionary screen of X-linked genes potentially involved in reproductive isolation in mice to identify putative targets of recurrent positive selection. We then sequenced five very rapidly evolving genes within and between several closely related species of mice in the genus Mus. All five genes were involved in male reproduction and four of the genes showed evidence of recurrent positive selection. The most remarkable evolutionary patterns were found at Testis-specific gene a8 (Tsga8), a spermatogenesis-specific gene expressed during postmeiotic chromatin condensation and nuclear transformation. Tsga8 was characterized by extremely high levels of insertion-deletion variation of an alanine-rich repetitive motif in natural populations of Mus domesticus and M. musculus, differing in length from the reference mouse genome by up to 89 amino acids (27% of the total protein length). This population-level variation was coupled with striking divergence in protein sequence and length between closely related mouse species. Although no clear orthologs had previously been described for Tsga8 in other mammalian species, we have identified a highly divergent hypothetical gene on the rat X chromosome that shares clear orthology with the 5' and 3' ends of Tsga8. Further inspection of this ortholog verified that it is expressed in rat testis and shares remarkable similarity with mouse Tsga8 across several general features of the protein sequence despite no conservation of nucleotide sequence across over 60% of the rat-coding domain. Overall, Tsga8 appears to be one of the most rapidly evolving genes to have been described in rodents. We discuss the potential evolutionary causes and functional implications of this extraordinary divergence and the possible contribution of Tsga8 and the other four genes we examined to reproductive isolation in mice.
Collapse
Affiliation(s)
- Jeffrey M Good
- Department of Ecology and Evolutionary Biology, University of Arizona, AZ, USA.
| | | | | | | |
Collapse
|
140
|
Heritability and genetic correlation between the sexes in a songbird sexual ornament. Heredity (Edinb) 2010; 106:945-54. [PMID: 21081966 DOI: 10.1038/hdy.2010.142] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genetic correlation between the sexes in the expression of secondary sex traits in wild vertebrate populations has attracted very few previous empirical efforts of field researchers. In southern European populations of pied flycatchers, a sexually selected male ornament is also expressed by a proportion of females. Additive genetic variances in ornament size and expression, transmission mechanisms (autosomal vs Z-linkage) and maternal effects are examined by looking at patterns of familial resemblance across three generations. Size of the secondary sex trait has a genetic basis common to both sexes, with estimated heritability being 0.5 under an autosomal model of inheritance. Significant additive genetic variance in males was also confirmed through a cross-fostering experiment. Heritability analyses were only partially consistent with previous molecular genetics evidence, as only two out of the three predictions supported Z-linkage and lack of significant mother-daughter resemblance could be due to small sample sizes caused by limited female trait expression. Therefore, the evidence was mixed as to the contribution of the Z chromosome and autosomal genes to trait size. The threshold heritability of trait expression in females was lower, around 0.3, supporting autosomal-based trait expression in females. Environmental (birth date) and parental effects on ornament size mediated by the mother's condition after accounting for maternal and paternal genetic influences are also highlighted. The genetic correlation between the sexes did not differ from one, indicating that selection on the character on either sex entails a correlated response in the opposite sex.
Collapse
|
141
|
Lachance J, True JR. X-autosome incompatibilities in Drosophila melanogaster: tests of Haldane's rule and geographic patterns within species. Evolution 2010; 64:3035-46. [PMID: 20455929 DOI: 10.1111/j.1558-5646.2010.01028.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substantial genetic variation exists in natural populations of Drosophila melanogaster. This segregating variation includes alleles at different loci that interact to cause lethality or sterility (synthetic incompatibilities). Fitness epistasis in natural populations has important implications for speciation and the rate of adaptive evolution. To assess the prevalence of epistatic fitness interactions, we placed naturally occurring X chromosomes into genetic backgrounds derived from different geographic locations. Considerable amounts of synthetic incompatibilities were observed between X chromosomes and autosomes: greater than 44% of all combinations were either lethal or sterile. Sex-specific lethality and sterility were also tested to determine whether Haldane's rule holds for within-species variation. Surprisingly, we observed an excess of female sterility in genotypes that were homozygous, but not heterozygous, for the X chromosome. The recessive nature of these incompatibilities is similar to that predicted for incompatibilities underlying Haldane's rule. Our study also found higher levels of sterility and lethality for genomes that contain chromosomes from different geographical regions. These findings are consistent with the view that genomes are coadapted gene complexes and that geography affects the likelihood of epistatic fitness interactions.
Collapse
Affiliation(s)
- Joseph Lachance
- Graduate Program in Genetics, Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
142
|
Yoshido A, Sahara K, Marec F, Matsuda Y. Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp. Heredity (Edinb) 2010; 106:614-24. [PMID: 20668432 DOI: 10.1038/hdy.2010.94] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Geographical subspecies of wild silkmoths, Samia cynthia ssp. (Lepidoptera: Saturniidae), differ considerably in sex chromosome constitution owing to sex chromosome fusions with autosomes, which leads to variation in chromosome numbers. We cloned S. cynthia orthologues of 16 Bombyx mori genes and mapped them to chromosome spreads of S. cynthia subspecies by fluorescence in situ hybridization (FISH) to determine the origin of S. cynthia neo-sex chromosomes. FISH mapping revealed that the Z chromosome and chromosome 12 of B. mori correspond to the Z chromosome and an autosome (A₁) of S. c. ricini (Vietnam population, 2n=27, Z0 in female moths), respectively. B. mori chromosome 11 corresponds partly to another autosome (A₂) and partly to a chromosome carrying nucleolar organizer region (NOR) of this subspecies. The NOR chromosome of S. c. ricini is also partly homologous to B. mori chromosome 24. Furthermore, our results revealed that two A₁ homologues each fused with the W and Z chromosomes in a common ancestor of both Japanese subspecies S. c. walkeri (Sapporo population, 2n=26, neo-Wneo-Z) and S. cynthia subsp. indet. (Nagano population, 2n=25, neo-WZ₁Z₂). One homologue, corresponding to the A₂ autosome in S. c. ricini and S. c. walkeri, fused with the W chromosome in S. cynthia subsp. indet. Consequently, the other homologue became a Z₂ chromosome. These results clearly showed a step-by-step evolution of the neo-sex chromosomes by repeated autosome-sex chromosome fusions. We suggest that the rearrangements of sex chromosomes may facilitate divergence of S. cynthia subspecies towards speciation.
Collapse
Affiliation(s)
- A Yoshido
- Laboratory of Applied Molecular Entomology, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan.
| | | | | | | |
Collapse
|
143
|
Estimating the parameters of selection on nonsynonymous mutations in Drosophila pseudoobscura and D. miranda. Genetics 2010; 185:1381-96. [PMID: 20516497 DOI: 10.1534/genetics.110.117614] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present the results of surveys of diversity in sets of >40 X-linked and autosomal loci in samples from natural populations of Drosophila miranda and D. pseudoobscura, together with their sequence divergence from D. affinis. Mean silent site diversity in D. miranda is approximately one-quarter of that in D. pseudoobscura; mean X-linked silent diversity is about three-quarters of that for the autosomes in both species. Estimates of the distribution of selection coefficients against heterozygous, deleterious nonsynonymous mutations from two different methods suggest a wide distribution, with coefficients of variation greater than one, and with the average segregating amino acid mutation being subject to only very weak selection. Only a small fraction of new amino acid mutations behave as effectively neutral, however. A large fraction of amino acid differences between D. pseudoobscura and D. affinis appear to have been fixed by positive natural selection, using three different methods of estimation; estimates between D. miranda and D. affinis are more equivocal. Sources of bias in the estimates, especially those arising from selection on synonymous mutations and from the choice of genes, are discussed and corrections for these applied. Overall, the results show that both purifying selection and positive selection on nonsynonymous mutations are pervasive.
Collapse
|