101
|
Daubenberger CA. Gene-expression analysis for prediction of RTS,S-induced protection in humans. Expert Rev Vaccines 2010; 9:465-9. [PMID: 20450320 DOI: 10.1586/erv.10.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Claudia A Daubenberger
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Basel, Switzerland and University of Basel, Basel, Switzerland.
| |
Collapse
|
102
|
Czajkowsky DM, Salanti A, Ditlev SB, Shao Z, Ghumra A, Rowe JA, Pleass RJ. IgM, Fc mu Rs, and malarial immune evasion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:4597-603. [PMID: 20410497 PMCID: PMC2859470 DOI: 10.4049/jimmunol.1000203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IgM is an ancestral Ab class found in all jawed vertebrates, from sharks to mammals. This ancient ancestry is shared by malaria parasites (genus Plasmodium) that infect all classes of terrestrial vertebrates with whom they coevolved. IgM, the least studied and most enigmatic of the vertebrate Igs, was recently shown to form an intimate relationship with the malaria parasite Plasmodium falciparum. In this article, we discuss how this association might have come about, building on the recently determined structure of the human IgM pentamer, and how this interaction could affect parasite survival, particularly in light of the just-discovered Fc mu R localized to B and T cell surfaces. Because this parasite may exploit an interaction with IgM to limit immune detection, as well as to manipulate the immune response when detected, a better understanding of this association may prove critical for the development of improved vaccines or vaccination strategies.
Collapse
Affiliation(s)
- Daniel M. Czajkowsky
- Department of Molecular Physiology & Biological Physics, University of Virginia Health Sciences Center, P. O. Box 800736, Charlottesville, VA 22908, USA
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Ali Salanti
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen University Hospital, Rigshospitalet, DK
| | - Sisse B Ditlev
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen University Hospital, Rigshospitalet, DK
| | - Zhifeng Shao
- Department of Molecular Physiology & Biological Physics, University of Virginia Health Sciences Center, P. O. Box 800736, Charlottesville, VA 22908, USA
- MOE Key Lab for Systems Biomedicine and National Lab for Oncogenes, Shanghai JiaoTong University, Shanghai 200240, China
| | - Ashfaq Ghumra
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
- Institute of Genetics, and Parasite Biology and Immunogenetics Research Group, Queen’s Medical Centre, University of Nottingham, NG7 2UH, UK
| | - J. Alexandra Rowe
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Richard J Pleass
- Institute of Genetics, and Parasite Biology and Immunogenetics Research Group, Queen’s Medical Centre, University of Nottingham, NG7 2UH, UK
| |
Collapse
|
103
|
What can we learn from an unnatural immune response? Trends Parasitol 2010; 26:319-21. [PMID: 20430697 DOI: 10.1016/j.pt.2010.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 11/23/2022]
Abstract
In a recent review on CD8+ T-cell responses after malaria infection and immunization, Zavala and colleagues outline two decades of research and formulate the central unresolved questions in the field. Here we discuss some of these findings and highlight their importance to malaria vaccinology.
Collapse
|
104
|
Vaughan AM, Wang R, Kappe SHI. Genetically engineered, attenuated whole-cell vaccine approaches for malaria. HUMAN VACCINES 2010; 6:107-13. [PMID: 19838068 DOI: 10.4161/hv.6.1.9654] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Malaria remains one of the most significant infectious diseases affecting human populations in developing countries. The quest for an efficacious malaria vaccine has been ongoing for nearly a century with limited success. The identification of malaria parasite antigens focused efforts on the development of subunit vaccines but has so far yielded only one partially efficacious vaccine candidate, RTS/S. The lack of high vaccine efficacy observed to date with subunit vaccine candidates raises doubts that the development of a single antigen or even a multi-antigen malaria subunit vaccine is possible. Fortunately, it has been demonstrated in animal studies and experimental clinical studies that immunizations with live-attenuated sporozoite stages of the malaria parasite confer long lasting, sterile protection against infection, providing a benchmark for vaccine development. These early successful vaccinations with live-attenuated malaria parasites did not however, promote a developmental path forward for such a vaccine approach. The discovery of genetically engineered parasite strains that are fully attenuated during the early asymptomatic liver infection and confer complete sterile protection in animal malaria models support the development of a live attenuated sporozoite vaccine for Plasmodium falciparum and its accelerated safety and efficacy testing in malaria challenge models and in malaria endemic areas.
Collapse
|
105
|
Moorthy VS, Ballou WR. Immunological mechanisms underlying protection mediated by RTS,S: a review of the available data. Malar J 2009; 8:312. [PMID: 20042088 PMCID: PMC2806383 DOI: 10.1186/1475-2875-8-312] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 12/30/2009] [Indexed: 11/10/2022] Open
Abstract
The RTS,S/AS candidate malaria vaccine has demonstrated efficacy against a variety of endpoints in Phase IIa and Phase IIb trials over more than a decade. A multi-country phase III trial of RTS,S/AS01 is now underway with submission as early as 2012, if vaccine safety and efficacy are confirmed. The immunologic basis for how the vaccine protects against both infection and disease remains uncertain. It is, therefore, timely to review the information currently available about the vaccine with regard to how it impacts the human-Plasmodium falciparum host-pathogen relationship. In this article, what is known about mechanisms involved in partial protection against malaria induced by RTS,S is reviewed.
Collapse
Affiliation(s)
- Vasee S Moorthy
- Initiative for Vaccine Research, World Health Organization, 1211 Geneva 27, Switzerland.
| | | |
Collapse
|
106
|
Abstract
Malaria remains one of the most devastating infectious diseases that threaten humankind. Human malaria is caused by five different species of Plasmodium parasites, each transmitted by the bite of female Anopheles mosquitoes. Plasmodia are eukaryotic protozoans with more than 5000 genes and a complex life cycle that takes place in the mosquito vector and the human host. The life cycle can be divided into pre-erythrocytic stages, erythrocytic stages and mosquito stages. Malaria vaccine research and development faces formidable obstacles because many vaccine candidates will probably only be effective in a specific species at a specific stage. In addition, Plasmodium actively subverts and escapes immune responses, possibly foiling vaccine-induced immunity. Although early successful vaccinations with irradiated, live-attenuated malaria parasites suggested that a vaccine is possible, until recently, most efforts have focused on subunit vaccine approaches. Blood-stage vaccines remain a primary research focus, but real progress is evident in the development of a partially efficacious recombinant pre-erythrocytic subunit vaccine and a live-attenuated sporozoite vaccine. It is unlikely that partially effective vaccines will eliminate malaria; however, they might prove useful in combination with existing control strategies. Elimination of malaria will probably ultimately depend on the development of highly effective vaccines.
Collapse
|
107
|
Trimnell A, Takagi A, Gupta M, Richie TL, Kappe SH, Wang R. Genetically attenuated parasite vaccines induce contact-dependent CD8+ T cell killing of Plasmodium yoelii liver stage-infected hepatocytes. THE JOURNAL OF IMMUNOLOGY 2009; 183:5870-8. [PMID: 19812194 DOI: 10.4049/jimmunol.0900302] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The production of IFN-gamma by CD8(+) T cells is an important hallmark of protective immunity induced by irradiation-attenuated sporozoites against malaria. Here, we demonstrate that protracted sterile protection conferred by a Plasmodium yoelii genetically attenuated parasite (PyGAP) vaccine was completely dependent on CD8(+) T lymphocytes but only partially dependent on IFN-gamma. We used live cell imaging to document that CD8(+) CTL from PyGAP-immunized mice directly killed hepatocyte infected with a liver stage parasite. Immunization studies with perforin and IFN-gamma knockout mice also indicated that the protection was largely dependent on perforin-mediated effector mechanisms rather than on IFN-gamma. This was further supported by our observation that both liver and spleen CD8(+) T cells from PyGAP-immunized mice induced massive apoptosis of liver stage-infected hepatocytes in vitro without the release of detectable IFN-gamma and TNF-alpha. Conversely, CD8(+) T cells isolated from naive mice that had survived wild-type P. yoelii sporozoite infection targeted mainly sporozoite-traversed and uninfected hepatocytes, revealing an immune evasion strategy that might be used by wild-type parasites to subvert host immune responses during natural infection. However, CTLs from wild-type sporozoite-challenged mice could recognize and kill infected hepatocytes that were pulsed with circumsporozoite protein. Additionally, protection in PyGAP-immunized mice directly correlated with the magnitude of effector memory CD8(+) T cells. Our findings implicate CTLs as key immune effectors in a highly protective PyGAP vaccine for malaria and emphasize the critical need to define surrogate markers for correlates of protection, apart from IFN-gamma.
Collapse
Affiliation(s)
- Adama Trimnell
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
108
|
Rodríguez A, Mintardjo R, Tax D, Gillissen G, Custers J, Pau MG, Klap J, Santra S, Balachandran H, Letvin NL, Goudsmit J, Radošević K. Evaluation of a prime-boost vaccine schedule with distinct adenovirus vectors against malaria in rhesus monkeys. Vaccine 2009; 27:6226-33. [DOI: 10.1016/j.vaccine.2009.07.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/24/2009] [Accepted: 07/30/2009] [Indexed: 11/29/2022]
|
109
|
Radosević K, Rodriguez A, Lemckert A, Goudsmit J. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects. Expert Rev Vaccines 2009; 8:577-92. [PMID: 19397415 DOI: 10.1586/erv.09.14] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more powerful immune response, in particular T-cell immunity, are desperately needed. Combining different vaccine modalities that are able to complement each other and induce broad and sustainable immunity is a promising approach. This review provides an overview of heterologous prime-boost vaccination modalities currently in development for the 'big three' poverty-related diseases and emphasizes the need for innovative vaccination approaches.
Collapse
Affiliation(s)
- Katarina Radosević
- Immunology and Proof of Concept, Innovation & Discovery Lab, Crucell Holland BV, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
110
|
|
111
|
Woodland DL, Winslow GM. Immunity to emerging pathogens. Immunol Rev 2008; 225:5-8. [PMID: 18837772 PMCID: PMC7165631 DOI: 10.1111/j.1600-065x.2008.00695.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|