101
|
Vergne I, Deretic V. The role of PI3P phosphatases in the regulation of autophagy. FEBS Lett 2010; 584:1313-8. [PMID: 20188094 DOI: 10.1016/j.febslet.2010.02.054] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 12/23/2022]
Abstract
Autophagy initiation is strictly dependent on phosphatidylinositol 3-phosphate (PI3P) synthesis. PI3P production is under tight control of PI3Kinase, hVps34, in complex with Beclin-1. Mammalian cells express several PI3P phosphatases that belong to the myotubularin family. Even though some of them have been linked to serious human diseases, their cellular function is largely unknown. Two recent studies indicate that PI3P metabolism involved in autophagy initiation is further regulated by the PI3P phosphatases Jumpy and MTMR3. Additional pools of PI3P, upstream of mTOR and on the endocytic pathway, may modulate autophagy indirectly, suggesting that other PI3P phosphatases might be involved in this process. This review sums up our knowledge on PI3P phosphatases and discusses the recent progress on their role in autophagy.
Collapse
Affiliation(s)
- Isabelle Vergne
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
102
|
Jovic M, Sharma M, Rahajeng J, Caplan S. The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 2010; 25:99-112. [PMID: 19924646 DOI: 10.14670/hh-25.99] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocytosis marks the entry of internalized receptors into the complex network of endocytic trafficking pathways. Endocytic vesicles are rapidly targeted to a distinct membrane-bound endocytic organelle referred to as the early endosome. Despite the existence of numerous internalization routes, early endosomes (EE) serve as a focal point of the endocytic pathway. Sorting events initiated at this compartment determine the subsequent fate of internalized proteins and lipids, destining them either for recycling to the plasma membrane, degradation in lysosomes or delivery to the trans-Golgi network. Sorting of endocytic cargo to the latter compartments is accomplished through the formation of distinct microdomains within early endosomes, through the coordinate recruitment and assembly of the sorting machinery. An elaborate network of interactions between endocytic regulatory proteins ensures synchronized sorting of cargo to microdomains followed by morphological changes at the early endosomal membranes. Consequently, the cargo targeted either for recycling back to the plasma membrane, or for retrograde transport to the trans-Golgi network, localizes to newly-formed tubular membranes. With a high ratio of membrane surface to lumenal volume, these tubules effectively concentrate the recycling cargo, ensuring efficient transport out of the EE. Conversely, receptors sorted for degradation cluster at the flat clathrin lattices involved in invaginations of the limiting membrane, associating with newly formed intralumenal vesicles. In this review we will discuss the characteristics of early endosomes, their role in the regulation of endocytic transport, and their aberrant function in a variety of diseases.
Collapse
Affiliation(s)
- Marko Jovic
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | |
Collapse
|
103
|
Vanhaesebroeck B, Vogt PK, Rommel C. PI3K: from the bench to the clinic and back. Curr Top Microbiol Immunol 2010; 347:1-19. [PMID: 20549473 DOI: 10.1007/82_2010_65] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
From humble beginnings over 25 years ago as a lipid kinase activity associated with certain oncoproteins, PI3K (phosphoinositide 3-kinase) has been catapulted to the forefront of drug development in cancer, immunity and thrombosis, with the first clinical trials of PI3K pathway inhibitors now in progress. Here, we give a brief overview of some key discoveries in the PI3K area and their impact, and include thoughts on the current state of the field, and where it could go from here.PI3K has become a very intense area of research, with over 2,000 publications on PI3K in PubMed for 2009 alone. The expectations for a therapeutic impact of intervention with PI3K activity are high, and progress in the clinical arena is being monitored by many. However, targeted therapies almost invariably encounter roadblocks, often exposing unresolved questions in the basic understanding of the target. PI3K will most likely be no exception. Below, we describe some of these early "surprises" and how these inform and shape basic science investigations.
Collapse
|
104
|
Abstract
PURPOSE OF REVIEW We review recent advances in Charcot-Marie-Tooth disease (CMT), the most frequent inherited neuromuscular disorder. RECENT FINDINGS During the last year further progresses have occurred in this field and concerned identification of novel mutations in recently identified genes, allowing better definition of associated phenotypes; increased knowledge on pathophysiologic mechanisms of the different CMT types, with the contribution of cellular and animal model studies; studies on the natural history of CMT and attempts at developing appropriate outcome measures to assess disease course and intervention efficacy; trials with ascorbic acid in CMT type 1A; and studies on new possible therapeutic strategies. SUMMARY Such advances have implications on clinical management of CMT and are modifying the clinical approach to CMT, by improving diagnostic tools, allowing better definition of prognosis, and increasing the hope for future effective treatments. Research on CMT is important as is shedding light on important pathways that regulates the normal function of axonal transport, vesicular trafficking, and also revealing new aspects of intracellular organelles' function and interactions.
Collapse
|
105
|
Tsuruta F, Green EM, Rousset M, Dolmetsch RE. PIKfyve regulates CaV1.2 degradation and prevents excitotoxic cell death. ACTA ACUST UNITED AC 2009; 187:279-94. [PMID: 19841139 PMCID: PMC2768838 DOI: 10.1083/jcb.200903028] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Voltage-gated Ca(2+) channels (VGCCs) play a key role in neuronal signaling but can also contribute to cellular dysfunction and death under pathological conditions such as stroke and neurodegenerative diseases. We report that activation of N-methyl-D-aspartic acid receptors causes internalization and degradation of Ca(V)1.2 channels, resulting in decreased Ca(2+) entry and reduced toxicity. Ca(V)1.2 internalization and degradation requires binding to phosphatidylinositol 3-phosphate 5-kinase (PIKfyve), a lipid kinase which generates phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P(2)) and regulates endosome and lysosome function. Sustained activation of glutamate receptors recruits PIKfyve to Ca(V)1.2 channels, increases cellular levels of PtdIns(3,5)P(2), and promotes targeting of Ca(V)1.2 to lysosomes. Knockdown of PIKfyve prevents Ca(V)1.2 degradation and increases neuronal susceptibility to excitotoxicity. These experiments identify a novel mechanism by which neurons are protected from excitotoxicity and provide a possible explanation for neuronal death in diseases caused by mutations that affect PtdIns(3,5)P(2) regulation.
Collapse
Affiliation(s)
- Fuminori Tsuruta
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
106
|
T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci U S A 2009; 106:18763-8. [PMID: 19846786 DOI: 10.1073/pnas.0900705106] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle contraction is triggered by the excitation-contraction (E-C) coupling machinery residing at the triad, a membrane structure formed by the juxtaposition of T-tubules and sarcoplasmic reticulum (SR) cisternae. The formation and maintenance of this structure is key for muscle function but is not well characterized. We have investigated the mechanisms leading to X-linked myotubular myopathy (XLMTM), a severe congenital disorder due to loss of function mutations in the MTM1 gene, encoding myotubularin, a phosphoinositide phosphatase thought to have a role in plasma membrane homeostasis and endocytosis. Using a mouse model of the disease, we report that Mtm1-deficient muscle fibers have a decreased number of triads and abnormal longitudinally oriented T-tubules. In addition, SR Ca(2+) release elicited by voltage-clamp depolarizations is strongly depressed in myotubularin-deficient muscle fibers, with myoplasmic Ca(2+) removal and SR Ca(2+) content essentially unaffected. At the molecular level, Mtm1-deficient myofibers exhibit a 3-fold reduction in type 1 ryanodine receptor (RyR1) protein level. These data reveal a critical role of myotubularin in the proper organization and function of the E-C coupling machinery and strongly suggest that defective RyR1-mediated SR Ca(2+) release is responsible for the failure of muscle function in myotubular myopathy.
Collapse
|
107
|
Falasca M, Maffucci T. Rethinking phosphatidylinositol 3-monophosphate. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1795-803. [PMID: 19852987 DOI: 10.1016/j.bbamcr.2009.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 10/06/2009] [Accepted: 10/13/2009] [Indexed: 11/27/2022]
Abstract
A generally accepted view considers phosphatidylinositol 3-monophosphate (PtdIns3P) as a lipid confined to the endosomal compartment where it regulates trafficking pathways and is produced constitutively and exclusively by class III phosphoinositide 3-kinase (PI3K). Recent evidence suggests that this phosphoinositide has a more complex role as a second messenger involved in different physiological and pathological events and that specific intracellular localization of kinases and/or phosphatases is critical for PtdIns3P synthesis and PtdIns3P-dependent intracellular functions. Here, we review the current knowledge of the regulation and function of PtdIns3P and discuss how the view of PtdIns3P changed in the last few years.
Collapse
Affiliation(s)
- Marco Falasca
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute of Cell and Molecular Science, Centre for Diabetes, Inositide Signalling Group, 4 Newark Street, London E1 2AT, UK.
| | | |
Collapse
|
108
|
Jungbluth H, Wallgren-Pettersson C, Laporte JF. 164th ENMC International workshop: 6th workshop on centronuclear (myotubular) myopathies, 16–18th January 2009, Naarden, The Netherlands. Neuromuscul Disord 2009; 19:721-9. [DOI: 10.1016/j.nmd.2009.06.373] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Indexed: 11/25/2022]
|
109
|
Current world literature. Curr Opin Neurol 2009; 22:554-61. [PMID: 19755870 DOI: 10.1097/wco.0b013e3283313b14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
110
|
Kooijman EE, King KE, Gangoda M, Gericke A. Ionization Properties of Phosphatidylinositol Polyphosphates in Mixed Model Membranes. Biochemistry 2009; 48:9360-71. [DOI: 10.1021/bi9008616] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
111
|
Two novel phosphatidylinositol-4-phosphate 5-kinase type Igamma splice variants expressed in human cells display distinctive cellular targeting. Biochem J 2009; 422:473-82. [PMID: 19548880 PMCID: PMC2782315 DOI: 10.1042/bj20090638] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The generation of various phosphoinositide messenger molecules at distinct locations within the cell is mediated via the specific targeting of different isoforms and splice variants of phosphoinositide kinases. The lipid messenger PtdIns(4,5)P2 is generated by several of these enzymes when targeted to distinct cellular compartments. Several splice variants of the type Iγ isoform of PIPK (PtdIns4P 5-kinase), which generate PtdIns(4,5)P2, have been identified, and each splice variant is thought to serve a unique functional role within cells. Here, we have identified two novel C-terminal splice variants of PIPKIγ in human cells consisting of 700 and 707 amino acids. These two splice variants are expressed in multiple tissue types and display PIPK activity in vitro. Interestingly, both of these novel splice variants display distinct subcellular targeting. With the addition of these two new splice isoforms, there are minimally five PIPKIγ splice variants that have been identified in mammals. Therefore, we propose the use of the HUGO (Human Genome Organization) nomenclature in the naming of the splice isoforms. PIPKIγ_i4 (700 amino acids) is present in the nucleus, a targeting pattern that has not been previously observed in any PIPKIγ splice variant. PIPKIγ_i5 (707 amino acids) is targeted to intracellular vesicle-like structures, where it co-localizes with markers of several types of endosomal compartments. As occurs with other PIPKIγ splice variants, the distinctive C-terminal sequences of PIPKIγ_i4 and PIPKIγ_i5 may facilitate association with unique protein targeting factors, thereby localizing the kinases to their appropriate cellular subdomains for the site-specific generation of PtdIns(4,5)P2.
Collapse
|
112
|
Abstract
How membrane biosynthesis and homeostasis is achieved in myelinating glia is mostly unknown. We previously reported that loss of myotubularin-related protein 2 (MTMR2) provokes autosomal recessive demyelinating Charcot-Marie-Tooth type 4B1 neuropathy, characterized by excessive redundant myelin, also known as myelin outfoldings. We generated a Mtmr2-null mouse that models the human neuropathy. We also found that, in Schwann cells, Mtmr2 interacts with Discs large 1 (Dlg1), a scaffold involved in polarized trafficking and membrane addition, whose localization in Mtmr2-null nerves is altered. We here report that, in Schwann cells, Dlg1 also interacts with kinesin 13B (kif13B) and Sec8, which are involved in vesicle transport and membrane tethering in polarized cells, respectively. Taking advantage of the Mtmr2-null mouse as a model of impaired membrane formation, we provide here the first evidence for a machinery that titrates membrane formation during myelination. We established Schwann cell/DRG neuron cocultures from Mtmr2-null mice, in which myelin outfoldings were reproduced and almost completely rescued by Mtmr2 replacement. By exploiting this in vitro model, we propose a mechanism whereby kif13B kinesin transports Dlg1 to sites of membrane remodeling where it coordinates a homeostatic control of myelination. The interaction of Dlg1 with the Sec8 exocyst component promotes membrane addition, whereas with Mtmr2, negatively regulates membrane formation. Myelin outfoldings thus arise as a consequence of the loss of negative control on the amount of membrane, which is produced during myelination.
Collapse
|
113
|
Phosphoinositides and the endocytic pathway. Exp Cell Res 2009; 315:1627-31. [DOI: 10.1016/j.yexcr.2008.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/05/2008] [Accepted: 10/07/2008] [Indexed: 11/21/2022]
|
114
|
Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 2009; 419:1-13. [PMID: 19272020 DOI: 10.1042/bj20081950] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PtdIns(3,5)P(2) is one of the seven regulatory PPIn (polyphosphoinositides) that are ubiquitous in eukaryotes. It controls membrane trafficking at multiple points in the endosomal/lysosomal system and consequently regulates the size, shape and acidity of at least one endo-lysosomal compartment. PtdIns(3,5)P(2) appears to exert this control via multiple effector proteins, with each effector specific for a subset of the various PtdIns(3,5)P(2)-dependent processes. Some putative PtdIns(3,5)P(2) effectors have been identified, including Atg18p-related PROPPIN [beta-propeller(s) that bind PPIn] proteins and the epsin-like proteins Ent3p and Ent5p, whereas others remain to be defined. One of the principal functions of PtdIns(3,5)P(2) is to regulate the fission/fragmentation of endo-lysosomal sub-compartments. PtdIns(3,5)P(2) is required for vesicle formation during protein trafficking between endo-lysosomes and also for fragmentation of endo-lysosomes into smaller compartments. In yeast, hyperosmotic stress accelerates the latter process. In the present review we highlight and discuss recent studies that reveal the role of the HOPS-CORVET complex and the vacuolar H(+)-ATPase in the process of endo-lysosome fission, and speculate on connections between these machineries and the Fab1p pathway. We also discuss new evidence linking PtdIns(3,5)P(2) and PtdIns5P to the regulation of exocytosis.
Collapse
|
115
|
The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 2009; 419:29-49. [PMID: 19272022 DOI: 10.1042/bj20081673] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phosphoinositides are membrane-bound signalling molecules that regulate cell proliferation and survival, cytoskeletal reorganization and vesicular trafficking by recruiting effector proteins to cellular membranes. Growth factor or insulin stimulation induces a canonical cascade resulting in the transient phosphorylation of PtdIns(4,5)P(2) by PI3K (phosphoinositide 3-kinase) to form PtdIns(3,4,5)P(3), which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) back to PtdIns(4,5)P(2), or by the 5-ptases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). The 5-ptases also hydrolyse PtdIns(4,5)P(2), forming PtdIns4P. Ten mammalian 5-ptases have been identified, which share a catalytic mechanism similar to that of the apurinic/apyrimidinic endonucleases. Gene-targeted deletion of 5-ptases in mice has revealed that these enzymes regulate haemopoietic cell proliferation, synaptic vesicle recycling, insulin signalling, endocytosis, vesicular trafficking and actin polymerization. Several studies have revealed that the molecular basis of Lowe's syndrome is due to mutations in the 5-ptase OCRL (oculocerebrorenal syndrome of Lowe). Futhermore, the 5-ptases SHIP [SH2 (Src homology 2)-domain-containing inositol phosphatase] 2, SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) and 72-5ptase (72 kDa 5-ptase)/Type IV/Inpp5e (inositol polyphosphate 5-phosphatase E) are implicated in negatively regulating insulin signalling and glucose homoeostasis in specific tissues. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. Gene profiling studies have identified changes in the expression of various 5-ptases in specific cancers. In addition, 5-ptases such as SHIP1, SHIP2 and 72-5ptase/Type IV/Inpp5e regulate macrophage phagocytosis, and SHIP1 also controls haemopoietic cell proliferation. Therefore the 5-ptases are a significant family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Emerging studies have implicated their loss or gain of function in human disease.
Collapse
|
116
|
Damek-Poprawa M, Diemer T, Lopes VS, Lillo C, Harper DC, Marks MS, Wu Y, Sparrow JR, Rachel RA, Williams DS, Boesze-Battaglia K. Melanoregulin (MREG) modulates lysosome function in pigment epithelial cells. J Biol Chem 2009; 284:10877-89. [PMID: 19240024 DOI: 10.1074/jbc.m808857200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanoregulin (MREG), the product of the Mreg(dsu) gene, is a small highly charged protein, hypothesized to play a role in organelle biogenesis due to its effect on pigmentation in dilute, ashen, and leaden mutant mice. Here we provide evidence that MREG is required in lysosome-dependent phagosome degradation. In the Mreg(-/-) mouse, we show that loss of MREG function results in phagosome accumulation due to delayed degradation of engulfed material. Over time, the Mreg(-/-) mouse retinal pigment epithelial cells accumulate the lipofuscin component, A2E. MREG-deficient human and mouse retinal pigment epithelial cells exhibit diminished activity of the lysosomal hydrolase, cathepsin D, due to defective processing. Moreover, MREG localizes to small intracellular vesicles and associates with the endosomal phosphoinositide, phosphatidylinositol 3,5-biphosphate. Collectively, these studies suggest that MREG is required for lysosome maturation and support a role for MREG in intracellular trafficking.
Collapse
Affiliation(s)
- Monika Damek-Poprawa
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL. Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 2009; 5:e1000372. [PMID: 19197364 PMCID: PMC2631153 DOI: 10.1371/journal.pgen.1000372] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/07/2009] [Indexed: 11/26/2022] Open
Abstract
Myotubularin is a lipid phosphatase implicated in endosomal trafficking in vitro, but with an unknown function in vivo. Mutations in myotubularin cause myotubular myopathy, a devastating congenital myopathy with unclear pathogenesis and no current therapies. Myotubular myopathy was the first described of a growing list of conditions caused by mutations in proteins implicated in membrane trafficking. To advance the understanding of myotubularin function and disease pathogenesis, we have created a zebrafish model of myotubular myopathy using morpholino antisense technology. Zebrafish with reduced levels of myotubularin have significantly impaired motor function and obvious histopathologic changes in their muscle. These changes include abnormally shaped and positioned nuclei and myofiber hypotrophy. These findings are consistent with those observed in the human disease. We demonstrate for the first time that myotubularin functions to regulate PI3P levels in a vertebrate in vivo, and that homologous myotubularin-related proteins can functionally compensate for the loss of myotubularin. Finally, we identify abnormalities in the tubulo-reticular network in muscle from myotubularin zebrafish morphants and correlate these changes with abnormalities in T-tubule organization in biopsies from patients with myotubular myopathy. In all, we have generated a new model of myotubular myopathy and employed this model to uncover a novel function for myotubularin and a new pathomechanism for the human disease that may explain the weakness associated with the condition (defective excitation–contraction coupling). In addition, our findings of tubuloreticular abnormalities and defective excitation-contraction coupling mechanistically link myotubular myopathy with several other inherited muscle diseases, most notably those due to ryanodine receptor mutations. Based on our findings, we speculate that congenital myopathies, usually considered entities with similar clinical features but very disparate pathomechanisms, may at their root be disorders of calcium homeostasis. Congenital myopathies are inherited muscle conditions typically presenting in early childhood. They are individually rare, but as a group are likely as common as conditions such as muscular dystrophy. The zebrafish is an emerging experimental system for the study of myopathies. We have utilized the zebrafish to develop a model of myotubular myopathy, one of the most severe childhood muscle diseases and a condition whose pathogenesis is poorly understood. We have generated fish that have the characteristic behavioral and histological features of human myotubular myopathy. Using this model, we then made novel insights into the pathogenesis of myotubular myopathy, including the identification of abnormalities in the muscle tubulo-reticular system. We subsequently identified similar changes in muscle from patients with myotubular myopathy, corroborating the importance of our zebrafish findings. Because a functional tubulo-reticular complex is required for normal muscle contraction, we speculate that the weakness observed in myotubular myopathy is caused by breakdown of this network. In all, our study is the first to identify a potential pathomechanism to explain the clinical features of myotubular myopathy. Furthermore, by revealing abnormalities in the tubulo-reticular system, we provide a novel link between myotubular myopathy and several other congenital myopathies.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Embryo, Nonmammalian/metabolism
- Fluorescent Antibody Technique
- Homeostasis
- Humans
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/metabolism
- Mutation
- Myopathies, Structural, Congenital/etiology
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/physiology
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- James J Dowling
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
118
|
Martín‐Belmonte F, Rodríguez‐Fraticelli AE. Chapter 3 Acquisition of Membrane Polarity in Epithelial Tube Formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:129-82. [DOI: 10.1016/s1937-6448(08)02003-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
119
|
Abstract
The field of inositol signaling has expanded greatly in recent years. Given the many reviews on phosphoinositide kinases, we have chosen to restrict our discussion to inositol lipid hydrolysis focused on the phosphatases and a brief mention of the lipase isoforms. We also discuss recent discoveries that link mutations in phosphoinositide phosphatases to disease.
Collapse
Affiliation(s)
- Philip W Majerus
- Division of Hematology, Washington University School of Medicine, Box 8125, St. Louis, MO 63110, USA.
| | | |
Collapse
|