101
|
Pan Y, Chatterjee D, Gerlai R. Strain dependent gene expression and neurochemical levels in the brain of zebrafish: focus on a few alcohol related targets. Physiol Behav 2012; 107:773-80. [PMID: 22313674 DOI: 10.1016/j.physbeh.2012.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 12/15/2022]
Abstract
The zebrafish is becoming increasingly popular in behavior genetics because it may allow one to conduct large scale mutation and drug screens facilitating the discovery of mechanisms of complex traits. Strain differences in adult zebrafish behavior have already been reported, which may have important implications in neurobehavioral genetics. For example, we have found the AB and SF strains to differ in their behavioral responses to both acute and chronic alcohol exposure. In the current study, we further characterize these strains using semi-quantitative RT-PCR to measure the expression of ten selected genes and HPLC to measure the levels of nine neurochemicals. We chose the target genes and neurochemicals based upon their potential involvement in alcohol and other drugs of abuse related mechanisms. We quantified the expression of the genes encoding D1-R, D2a-R, D4a-R dopamine receptors, GABA(A)-R, GABA(B)-R1, GAD1, MAO, NMDA-R (NR2D subunit), 5HT-R1bd and SLC6 a4a. We found the gene encoding D1 dopamine receptor over-expressed and the genes encoding GABA(B1) receptor and solute family carrier protein 6 (SLC6) 4a under-expressed in SF compared to AB. We also found the level of all (dopamine, DOPAC, Serotonin, GABA, Glutamate, Glycine, Aspartate, Taurine) but one (5HIAA) neurochemicals tested decreased in SF as compared to AB. These results, combined with previously identified behavioral differences between the AB and SF strains, demonstrate the importance of strain characterization in zebrafish. They now also allow formulation of working hypotheses about possible mechanisms underlying the differential effects of acute and chronic alcohol treatment on these two zebrafish strains.
Collapse
Affiliation(s)
- Y Pan
- Departments of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada
| | | | | |
Collapse
|
102
|
Animated bird silhouette above the tank: acute alcohol diminishes fear responses in zebrafish. Behav Brain Res 2012; 229:194-201. [PMID: 22266470 DOI: 10.1016/j.bbr.2012.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 12/28/2022]
Abstract
Alcohol dependence and alcohol abuse represent major unmet medical needs. The zebrafish is considered to be a promising vertebrate species with which the effects of alcohol on brain function and behavior and the mechanisms underlying these effects may be studied. Alcohol is known to induce alterations in motor function as well as fear and anxiety. Here we utilize a recently developed fear paradigm in which we employ an animated (moving) image of a bird silhouette. We measure the effect of acute alcohol administration (dose range employed: 0.00-0.75 vol/vol percentage, bath exposure for 60 min) on the behavioral responses of zebrafish. We test these responses during a pre-stimulus, stimulus and post-stimulus period of the task using both a video-tracking and an observation based quantification method. The fear inducing stimulus was found to decrease the distance of the zebrafish from the bottom of the tank, to increase number of erratic movements, and to increase the number of jumps in alcohol exposed fish (versus control fish). Alcohol attenuated these fear responses in a dose dependent manner. In addition, alcohol decreased general activity at the highest dose, an effect that was independent of the presentation of the stimulus. We discuss the similarities and differences between observation and video-tracking based results and conclude that fear paradigms will be useful in revealing alcohol induced functional changes in the brain of zebrafish.
Collapse
|
103
|
Thomas MA, Joshi PP, Klaper RD. Gene-class analysis of expression patterns induced by psychoactive pharmaceutical exposure in fathead minnow (Pimephales promelas) indicates induction of neuronal systems. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:109-20. [PMID: 21684349 PMCID: PMC3219835 DOI: 10.1016/j.cbpc.2011.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/24/2022]
Abstract
Psychoactive pharmaceuticals are among the most frequently prescribed drugs, contributing to persistent measurable concentrations in aquatic systems. Typically, it is assumed that such contaminants have no human health implications because they exist in extremely low concentrations. We exposed juvenile fathead minnows (Pimephales promelas) to three pharmaceuticals, fluoxetine, venlafaxine and carbamazepine, individually and in a mixture, and measured their effect on the induction of gene expression in fish brains using microarray analysis. Gene expression changes were accompanied by behavioral changes and validated by qPCR analysis. Gene Set Enrichment Analysis was used to perform gene-class analysis of gene expression, testing for enrichment of gene sets known to be involved in human neuronal development, regulation and growth. We found significant enrichment of gene sets for each of the treatments, with the largest induction of expression by the mixture treatment. These results suggest that the psychoactive pharmaceuticals are able to alter expression of fish genes associated with development, regulation and differentiation of synapses, neurons and neurotransmitters. The results provide a new perspective for the consideration of potential consequence for human health due to environmental exposure to unmetabolized psychoactive pharmaceuticals.
Collapse
Affiliation(s)
- Michael A Thomas
- Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave, Pocatello, ID 83209-8007, USA.
| | | | | |
Collapse
|
104
|
Blaser RE, Peñalosa YM. Stimuli affecting zebrafish (Danio rerio) behavior in the light/dark preference test. Physiol Behav 2011; 104:831-7. [PMID: 21839758 DOI: 10.1016/j.physbeh.2011.07.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/29/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
Ethanol has been suggested to have an anxiolytic effect on zebrafish, primarily based on its disruption of the novel tank diving response and of some social behaviors. The light/dark preference test offers a complementary measure of anxiety-like behavior in fish, and the purpose of the current study was to determine the effects of acute ethanol exposure on behavior in the light/dark task. In Experiment 1, the stimuli used to induce light/dark preference in zebrafish were varied in order to determine how best to measure the behavior. Subjects exhibited phototaxis (preference for light) when illumination was manipulated, but scototaxis (preference for dark) when wall and substrate color were manipulated. There was a clear interaction between locomotor activity and color preference, with animals preferentially freezing in darker locations. Because of ambiguity in interpreting behavior in the open/covered version of the test, the black/white version was used in Experiment 2. In Experiment 2, zebrafish were exposed to ethanol (0.25%, 0.5%, or 1.0%) or water for 30 minutes, and then placed in a black/white preference tank containing either ethanol (same doses) or water for a 30-minute test. Ethanol exposure increased locomotor activity and reduced freezing. Additionally, there was a significant interaction between ethanol treatment and locomotor activity on side preference. Low doses of ethanol increased white avoidance in normally swimming fish, while high doses did not.
Collapse
Affiliation(s)
- R E Blaser
- Department of Psychological Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | | |
Collapse
|
105
|
The use of the zebrafish model in stress research. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1432-51. [PMID: 20971150 DOI: 10.1016/j.pnpbp.2010.10.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/05/2010] [Accepted: 10/13/2010] [Indexed: 01/21/2023]
Abstract
The study of the causes and mechanisms underlying psychiatric disorders requires the use of non-human models for the test of scientific hypotheses as well as for use in pre-clinical drug screening and discovery. This review argues in favor of the use of zebrafish as a novel animal model to study the impact of early (stressful) experiences on the development of differential stress phenotypes in later life. This phenomenon is evolutionary conserved among several vertebrate species and has relevance to the etiology of psychiatric disorders. Why do we need novel animal models? Although significant progress has been achieved with the use of traditional mammalian models, there are major pitfalls associated with their use that impedes progress on two major fronts: 1) uncovering of the molecular mechanisms underlying aspects of compromised (stress-exposed) brain development relevant to the etiology of psychiatric disorders, and 2) ability to develop high-throughput technology for drug discovery in the field of psychiatry. The zebrafish model helps resolve these issues. Here we present a conceptual framework for the use of zebrafish in stress research and psychiatry by addressing three specific domains of application: 1) stress research, 2) human disease mechanisms, and 3) drug discovery. We also present novel methodologies associated with the development of the zebrafish stress model and discuss how such methodologies can contribute to remove the main bottleneck in the field of drug discovery.
Collapse
|
106
|
Rico EP, Rosemberg DB, Seibt KJ, Capiotti KM, Da Silva RS, Bonan CD. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol Teratol 2011; 33:608-17. [PMID: 21907791 DOI: 10.1016/j.ntt.2011.07.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/20/2011] [Accepted: 07/20/2011] [Indexed: 01/23/2023]
Abstract
Recent advances in neurobiology have emphasized the study of brain structure and function and its association with numerous pathological and toxicological events. Neurotransmitters are substances that relay, amplify, and modulate electrical signals between neurons and other cells. Neurotransmitter signaling mediates rapid intercellular communication by interacting with cell surface receptors, activating second messenger systems and regulating the activity of ion channels. Changes in the functional balance of neurotransmitters have been implicated in the failure of central nervous system function. In addition, abnormalities in neurotransmitter production or functioning can be induced by several toxicological compounds, many of which are found in the environment. The zebrafish has been increasingly used as an animal model for biomedical research, primarily due to its genetic tractability and ease of maintenance. These features make this species a versatile tool for pre-clinical drug discovery and toxicological investigations. Here, we present a review regarding the role of different excitatory and inhibitory neurotransmitter systems in zebrafish, such as dopaminergic, serotoninergic, cholinergic, purinergic, histaminergic, nitrergic, glutamatergic, glycinergic, and GABAergic systems, and emphasizing their features as pharmacological and toxicological targets. The increase in the global knowledge of neurotransmitter systems in zebrafish and the elucidation of their pharmacological and toxicological aspects may lead to new strategies and appropriate research priorities to offer insights for biomedical and environmental research.
Collapse
Affiliation(s)
- E P Rico
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
107
|
Abstract
This review provides an overview of the assays that are used for measuring escape and avoidance behavior in zebrafish, with a specific focus on zebrafish larvae during the first week of development. Zebrafish larvae display a startle response when exposed to tactile, acoustic, or visual stimuli and will avoid dark areas, moving objects, conspecifics, and open spaces. Emotional states such as fear and anxiety might be induced when larvae are exposed to stimuli that they would normally escape from or avoid. Although these emotional states probably differ between species and change during development, much can be learned about human fear and anxiety using zebrafish as a model system. The molecular mechanisms of fear and anxiety are highly conserved in vertebrates and are present during early zebrafish development. Larvae during the first week of development display elevated cortisol levels in response to stress and are sensitive to the same anxiolytics that are used for the management of anxiety in humans. Zebrafish larvae are well suited for high-throughput analyses of behavior, and automated systems have been developed for imaging and analyzing the behavior of zebrafish larvae in multiwell plates. These high-throughput analyses will not only provide a wealth of information on the genes and environmental factors that influence escape and avoidance behaviors and the emotional states that might accompany them but will also facilitate the discovery of novel pharmaceuticals that could be used in the management of anxiety disorders in humans.
Collapse
Affiliation(s)
- Ruth M Colwill
- Department of Psychology, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
108
|
Stewart A, Gaikwad S, Hart P, Kyzar E, Roth A, Kalueff AV. Experimental models for anxiolytic drug discovery in the era of omes and omics. Expert Opin Drug Discov 2011; 6:755-69. [PMID: 22650981 DOI: 10.1517/17460441.2011.586028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Animal behavioral models have become an indispensable tool for studying anxiety disorders and testing anxiety-modulating drugs. However, significant methodological and conceptual challenges affect the translational validity and accurate behavioral dissection in such models. They are also often limited to individual behavioral domains and fail to target the disorder's real clinical picture (its spectrum or overlap with other disorders), which hinder screening and development of novel anxiolytic drugs. AREAS COVERED In this article, the authors discuss and emphasize the importance of high-throughput multi-domain neurophenotyping based on the latest developments in video-tracking and bioinformatics. Additionally, the authors also explain how bioinformatics can provide new insight into the neural substrates of brain disorders and its benefit for drug discovery. EXPERT OPINION The throughput and utility of animal models of anxiety and other brain disorders can be markedly increased by a number of ways: i) analyzing systems of several domains and their interplay in a wider spectrum of model species; ii) using a larger number of end points generated by video-tracking tools; iii) correlating behavioral data with genomic, proteomic and other physiologically relevant markers using online databases and iv) creating molecular network-based models of anxiety to identify new targets for drug design and discovery. Experimental models utilizing bioinformatics tools and online databases will not only improve our understanding of both gene-behavior interactions and complex trait interconnectivity but also highlight new targets for novel anxiolytic drugs.
Collapse
Affiliation(s)
- Adam Stewart
- Tulane University Medical School, Department of Pharmacology and Neuroscience Program , Tulane Neurophenotyping Platform, SL-83, 1430 Tulane Ave, New Orleans, LA 70112 , USA +1 504 988 3354 ;
| | | | | | | | | | | |
Collapse
|
109
|
Sison M, Gerlai R. Associative learning performance is impaired in zebrafish (Danio rerio) by the NMDA-R antagonist MK-801. Neurobiol Learn Mem 2011; 96:230-7. [PMID: 21596149 DOI: 10.1016/j.nlm.2011.04.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/29/2011] [Accepted: 04/27/2011] [Indexed: 12/17/2022]
Abstract
The zebrafish is gaining popularity in behavioral neuroscience perhaps because of a promise of efficient large scale mutagenesis and drug screens that could identify a substantial number of yet undiscovered molecular players involved in complex traits. Learning and memory are complex functions of the brain and the analysis of their mechanisms may benefit from such large scale zebrafish screens. One bottleneck in this research is the paucity of appropriate behavioral screening paradigms, which may be due to the relatively uncharacterized nature of the behavior of this species. Here we show that zebrafish exhibit good learning performance in a task adapted from the mammalian literature, a plus maze in which zebrafish are required to associate a neutral visual stimulus with the presence of conspecifics, the rewarding unconditioned stimulus. Furthermore, we show that MK-801, a non-competitive NMDA-R antagonist, impairs memory performance in this maze when administered right after training or just before recall but not when given before training at a dose that does not impair motor function, perception or motivation. These results suggest that the plus maze associative learning paradigm has face and construct validity and that zebrafish may become an appropriate and translationally relevant study species for the analysis of the mechanisms of vertebrate, including mammalian, learning and memory.
Collapse
Affiliation(s)
- Margarette Sison
- Department of Psychology, University of Toronto, Mississauga, Canada
| | | |
Collapse
|
110
|
Howarth DL, Passeri M, Sadler KC. Drinks like a fish: using zebrafish to understand alcoholic liver disease. Alcohol Clin Exp Res 2011; 35:826-9. [PMID: 21284674 DOI: 10.1111/j.1530-0277.2010.01407.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Steatosis is the most common consequence of acute alcohol abuse, such as occurs during a drinking binge. Acute alcohol induced steatosis may predispose to more severe hepatic disease. We have developed a model of alcoholic liver disease (ALD) in zebrafish larvae to provide a system in which the genes and pathways that contribute to steatosis can be rapidly identified. Zebrafish larvae represent an attractive vertebrate model for studying acute ALD because they possess the pathways to metabolize alcohol, the liver is mature by 4 days post-fertilization (dpf), and alcohol can be simply added to their water. Exposing 4 dpf zebrafish larvae to 2% ethanol (EtOH) for 32 hours achieves ∼80 mM intracellular EtOH and upregulation of hepatic cyp2e1, sod, and bip, indicating that EtOH is metabolized and provokes oxidative stress. EtOH-treated larvae develop ALD as demonstrated by hepatomegaly and steatosis. Increased lipogenesis driven by the sterol response element binding protein (SREBP) transcription factors is essential for steatosis associated with chronic alcohol ingestion but it has not been determined if the same pathway is essential for steatosis following a drinking binge. We report that several Srebp target genes are induced in the liver of zebrafish exposed to EtOH. We used fish which harbor a mutation in the gene encoding the membrane bound transcription factor protease 1 (mbtps1; also called site-1 protease) and embryos in which the Srebp cleavage activating protein (scap) is knocked down to determine the requirement of this pathway in acute ALD. We find that both means of blocking Srebp activation prevents steatosis in response to 2% EtOH. Moreover, this is accompanied by the failure to activate several Srebp target genes in response to alcohol. We conclude that Srebps are required for steatosis in response to acute alcohol exposure. Moreover, these data highlight the utility of zebrafish as a useful new vertebrate model to study ALD.
Collapse
Affiliation(s)
- Deanna L Howarth
- Division of Liver Diseases, Department of Medicine, Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
111
|
Mathur P, Guo S. Differences of acute versus chronic ethanol exposure on anxiety-like behavioral responses in zebrafish. Behav Brain Res 2011; 219:234-9. [PMID: 21255611 DOI: 10.1016/j.bbr.2011.01.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 12/28/2022]
Abstract
Zebrafish, a vertebrate model organism amenable to high throughput screening, is an attractive system to model and study the mechanisms underlying human diseases. Alcoholism and alcoholic medical disorders are among the most debilitating diseases, yet the mechanisms by which ethanol inflicts the disease states are not well understood. In recent years zebrafish behavior assays have been used to study learning and memory, fear and anxiety, and social behavior. It is important to characterize the effects of ethanol on zebrafish behavioral repertoires in order to successfully harvest the strength of zebrafish for alcohol research. One prominent effect of alcohol in humans is its effect on anxiety, with acute intermediate doses relieving anxiety and withdrawal from chronic exposure increasing anxiety, both of which have significant contributions to alcohol dependence. In this study, we assess the effects of both acute and chronic ethanol exposure on anxiety-like behaviors in zebrafish, using two behavioral paradigms, the Novel Tank Diving Test and the Light/Dark Choice Assay. Acute ethanol exposure exerted significant dose-dependent anxiolytic effects. However, withdrawal from repeated intermittent ethanol exposure disabled recovery from heightened anxiety. These results demonstrate that zebrafish exhibit different anxiety-like behavioral responses to acute and chronic ethanol exposure, which are remarkably similar to these effects of alcohol in humans. Because of the accessibility of zebrafish to high throughput screening, our results suggest that genes and small molecules identified in zebrafish will be of relevance to understand how acute versus chronic alcohol exposure have opposing effects on the state of anxiety in humans.
Collapse
Affiliation(s)
- Priya Mathur
- Department of Bioengineering and Therapeutic Sciences, Programs in Biological Sciences and Human Genetics, University of California, San Francisco, CA 94143-2811, United States
| | | |
Collapse
|
112
|
Abstract
The zebrafish has been one of the primary study species utilized in developmental biology. However, it is also gaining increasing amount of interest in other disciplines of biology including behavioral neuroscience; the numerous genetic tools developed and the large amount of genetic information accumulated for this species by now make it an excellent tool for the analysis of the mechanisms of complex central nervous system characteristics. Although several studies have investigated the biological and genetic underpinnings of associative learning (and memory), given the complexity of these phenomena, much remains to be discovered. In the past, the zebrafish has been employed particularly successfully in screening applications where a large number of mutations or drug effects had to be analyzed. Briefly, the practical simplicity and system complexity of the zebrafish may make this species an excellent tool also for the analysis of the mechanisms of associative learning. Screening, however, requires appropriate phenotypical (in this case behavioral) paradigms. A step in this direction is the characterization of learning abilities of zebrafish. The number of studies focused on cognitive and/or mnemonic characteristics of zebrafish is orders of magnitude smaller than those with rats or mice, but recently zebrafish has also started to be utilized in this research. The current chapter reviews these most recent developments. It also discusses certain unique features of zebrafish that must be taken into account when designing an associative learning task and how these tasks may be made high throughput.
Collapse
|
113
|
Stewart A, Wong K, Cachat J, Gaikwad S, Kyzar E, Wu N, Hart P, Piet V, Utterback E, Elegante M, Tien D, Kalueff AV. Zebrafish models to study drug abuse-related phenotypes. Rev Neurosci 2011; 22:95-105. [DOI: 10.1515/rns.2011.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
114
|
Abstract
The zebrafish has been prominently utilized in developmental biology for the past three decades and numerous genetic tools have been developed for it. Due to the accumulated genetic knowledge the zebrafish has now been considered an excellent research tool in other disciplines of biology too, including behavioral neuroscience and behavior genetics. Given the complexity of the vertebrate brain in general and the large number of human brain disorders whose mechanisms remain mainly unmapped in particular, there is a substantial need for appropriate laboratory research organisms that may be utilized to model such diseases and facilitate the analysis of their mechanisms. The zebrafish may have a bright future in this research field. It offers a compromise between system complexity (it is a vertebrate similar in many ways to our own species) and practical simplicity (it is small, easy to keep, and it is prolific). These features have made zebrafish an excellent choice, for example, for large scale mutation and drug screening. Such approaches may have a chance to tackle the potentially large number of molecular targets and mechanisms involved in complex brain disorders. However, although promising, the zebrafish is admittedly a novel research tool and only few empirical examples exist to support this claim. In this chapter, first I briefly review some of the rapidly evolving genetic methods available for zebrafish. Second, I discuss some promising examples for how zebrafish have been used to model and analyze molecular mechanisms of complex brain disorders. Last, I present some recently developed zebrafish behavioral paradigms that may have relevance for a spectrum of complex human brain disorders including those associated with abnormalities of learning and memory, fear and anxiety, and social behavior. Although at this point co-application of the genetics and behavioral approaches is rare with zebrafish, I argue that the rapid accumulation of knowledge in both of these disciplines will make zebrafish a prominent research tool for the genetic analysis of complex brain disorders.
Collapse
|
115
|
|
116
|
|
117
|
Pan Y, Kaiguo M, Razak Z, Westwood JT, Gerlai R. Chronic alcohol exposure induced gene expression changes in the zebrafish brain. Behav Brain Res 2010; 216:66-76. [PMID: 20654657 DOI: 10.1016/j.bbr.2010.07.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/05/2010] [Accepted: 07/13/2010] [Indexed: 01/07/2023]
Abstract
Chronic alcohol exposure affects the central nervous system, influences behavior, and induces neuroadaptive changes in vertebrate species including our own. The molecular mechanisms responsible for chronic alcohol effects have not been fully elucidated due to the complexity of alcohol's actions. Here we use zebrafish, a novel tool in alcohol research, to reveal a large number of genes that respond to chronic alcohol treatment. We demonstrate differential gene expression in response to chronic alcohol treatment using full genome DNA microarrays and find a total of 1914 genes to show a minimum of 2-fold and significant expression level change (1127 were up- and 787 were down-regulated). Approximately two-thirds of these genes had no known previous functional annotation. The results of the microarray analyses correlated well with those obtained on a selected subset of genes analyzed by quantitative real-time RT-PCR. Analyses of the differentially expressed genes with known annotations were enriched for a variety of molecular functions. Only a fraction of these known genes has been reported in the literature to be alcohol related. We conclude that the zebrafish is an excellent tool for the analysis of genes associated with alcohol's actions in vertebrates, one which may facilitate the discovery and better understanding of the mechanisms of alcohol abuse.
Collapse
Affiliation(s)
- Yi Pan
- Department of Psychology, University of Toronto Mississauga, Canada
| | | | | | | | | |
Collapse
|
118
|
Mathur P, Guo S. Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiol Dis 2010; 40:66-72. [PMID: 20493262 DOI: 10.1016/j.nbd.2010.05.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/07/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022] Open
Abstract
Despite massive research efforts the exact pathogenesis and pathophysiology of addiction and neuropsychiatric disorders such as anxiety, schizophrenia and autism remain largely unknown. Animal models can serve as tools to understand the etiology and pathogenesis of these disorders. In recent years researchers are turning to zebrafish as it allows easy access to all developmental stages and imaging of pathological processes as well as automated behavioral quantification coupled with large scale screening and mutagenesis strategies. This review summarizes studies conducted over the last few years which demonstrate the relevance of the zebrafish model to human diseases including addiction and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Priya Mathur
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California San Francisco, CA 94143-2811, USA
| | | |
Collapse
|
119
|
Gerlai R. High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 2010; 15:2609-22. [PMID: 20428068 PMCID: PMC6257226 DOI: 10.3390/molecules15042609] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/26/2010] [Accepted: 04/07/2010] [Indexed: 01/26/2023] Open
Abstract
The zebrafish has been in the forefront of developmental biology for three decades and has become a favorite of geneticists. Due to the accumulated genetic knowledge and tools developed for the zebrafish it is gaining popularity in other disciplines, including neuroscience. The zebrafish offers a compromise between system complexity (it is a vertebrate similar in many ways to our own species) and practical simplicity (it is small, easy to keep, and prolific). Such features make zebrafish an excellent choice for high throughput mutation and drug screening. For the identification of mutation or drug induced alteration of brain function arguably the best methods are behavioral test paradigms. This review does not present experimental examples for the identification of particular genes or drugs. Instead it describes how behavioral screening methods may enable one to find functional alterations in the vertebrate brain. Furthermore, the review is not comprehensive. The behavioral test examples presented are biased according to the personal interests of the author. They will cover research areas including learning and memory, fear and anxiety, and social behavior. Nevertheless, the general principles will apply to other functional domains and should represent a snapshot of the rapidly evolving behavioral screening field with zebrafish.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Rm 3035, Ontario, Canada.
| |
Collapse
|
120
|
Gerlai R. Zebrafish antipredatory responses: a future for translational research? Behav Brain Res 2010; 207:223-31. [PMID: 19836422 PMCID: PMC3203216 DOI: 10.1016/j.bbr.2009.10.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/05/2009] [Accepted: 10/07/2009] [Indexed: 12/11/2022]
Abstract
Human neuropsychiatric conditions associated with abnormally exaggerated or misdirected fear (anxiety disorders and phobias) still represent a large unmet medical need because the biological mechanisms underlying these diseases are not well understood. Animal models have been proposed to facilitate this research. Here I review the literature with a focus on zebrafish, an upcoming laboratory organism in behavioral brain research. I argue that abnormal human fear responses are likely the result of the malfunction of neurobiological mechanisms (brain areas, circuits and/or molecular mechanisms) that originally evolved to support avoidance of predators or other harm in nature. I also argue that the understanding of the normal as well as pathological functioning of such mechanisms may be best achieved if one utilizes naturalistic experimental approaches. In case of laboratory model organisms, this may entail presenting stimuli associated with predators and measuring species-specific antipredatory responses. Although zebrafish is a relatively new subject of such inquiry, I review the recently rapidly increasing number of zebrafish studies in this area, and conclude that zebrafish is a promising research tool for the analysis of the neurobiology and genetics of vertebrate fear responses.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada. robert
| |
Collapse
|
121
|
Gómez-Laplaza LM, Gerlai R. Latent learning in zebrafish (Danio rerio). Behav Brain Res 2009; 208:509-15. [PMID: 20043955 DOI: 10.1016/j.bbr.2009.12.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
The zebrafish may represent an excellent compromise between system complexity and practical simplicity for behavioral brain research. It may be particularly appropriate for large scale screening studies whose aim is to identify mutants with altered phenotypes or novel compounds with particular efficacy. For example, the zebrafish may have utility in the analysis of the biological mechanisms of learning and memory. Although learning and memory have been extensively studied and hundreds of underlying molecular mechanisms have been identified, this number may represent only the fraction of genes involved in these complex brain functions. Thus large scale mutagenesis screens may have utility. In order for such screens to succeed, appropriate screening paradigms must be developed. The first step in this research is the characterization of learning and memory capabilities of zebrafish and the development of automatable tasks. Here we show that zebrafish is capable of latent learning, i.e. can acquire memory of their environment after being allowed to explore it. For example, we found experimental zebrafish that experienced an open left tunnel or an open right tunnel of a maze during the unrewarded exploration phase of the test to show the appropriate side bias during a probe trial when they had to swim to a group of conspecifics (the reward). Given that exploration of the maze does not require the presence of the experimenter and the probe trial, during which the subjects are video-recorded and their memory is tested, is short, we argue that the paradigm has utility in high-throughput screening.
Collapse
|
122
|
Modeling withdrawal syndrome in zebrafish. Behav Brain Res 2009; 208:371-6. [PMID: 20006651 DOI: 10.1016/j.bbr.2009.12.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 12/01/2009] [Accepted: 12/06/2009] [Indexed: 01/19/2023]
Abstract
The zebrafish (Danio rerio) is rapidly becoming a popular model species in behavioral neuroscience research. Zebrafish behavior is robustly affected by environmental and pharmacological manipulations, and can be examined using exploration-based paradigms, paralleled by analysis of endocrine (cortisol) stress responses. Discontinuation of various psychotropic drugs evokes withdrawal in both humans and rodents, characterized by increased anxiety. Sensitivity of zebrafish to drugs of abuse has been recently reported in the literature. Here we examine the effects of ethanol, diazepam, morphine and caffeine withdrawal on zebrafish behavior. Overall, discontinuation of ethanol, diazepam and morphine produced anxiogenic-like behavioral or endocrine responses, demonstrating the utility of zebrafish in translational research of withdrawal syndrome.
Collapse
|