101
|
Zhao J, Guo R, Guo C, Hou H, Wang X, Gao H. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family. FRONTIERS IN PLANT SCIENCE 2016; 7:376. [PMID: 27066030 PMCID: PMC4811886 DOI: 10.3389/fpls.2016.00376] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/11/2016] [Indexed: 05/03/2023]
Abstract
Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones.
Collapse
Affiliation(s)
- Jiao Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Rongrong Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Hongmin Hou
- College of Horticulture, Qingdao Agricultural UniversityQingdao, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
- *Correspondence: Xiping Wang
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
- Hua Gao
| |
Collapse
|
102
|
|
103
|
Wang Z, Cheng K, Wan L, Yan L, Jiang H, Liu S, Lei Y, Liao B. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. BMC Genomics 2015; 16:1053. [PMID: 26651343 PMCID: PMC4676100 DOI: 10.1186/s12864-015-2258-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/30/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Plant bZIP proteins characteristically harbor a highly conserved bZIP domain with two structural features: a DNA-binding basic region and a leucine (Leu) zipper dimerization region. They have been shown to be diverse transcriptional regulators, playing crucial roles in plant development, physiological processes, and biotic/abiotic stress responses. Despite the availability of six completely sequenced legume genomes, a comprehensive investigation of bZIP family members in legumes has yet to be presented. RESULTS In this study, we identified 428 bZIP genes encoding 585 distinct proteins in six legumes, Glycine max, Medicago truncatula, Phaseolus vulgaris, Cicer arietinum, Cajanus cajan, and Lotus japonicus. The legume bZIP genes were categorized into 11 groups according to their phylogenetic relationships with genes from Arabidopsis. Four kinds of intron patterns (a-d) within the basic and hinge regions were defined and additional conserved motifs were identified, both presenting high group specificity and supporting the group classification. We predicted the DNA-binding patterns and the dimerization properties, based on the characteristic features in the basic and hinge regions and the Leu zipper, respectively, which indicated that some highly conserved amino acid residues existed across each major group. The chromosome distribution and analysis for WGD-derived duplicated blocks revealed that the legume bZIP genes have expanded mainly by segmental duplication rather than tandem duplication. Expression data further revealed that the legume bZIP genes were expressed constitutively or in an organ-specific, development-dependent manner playing roles in multiple seed developmental stages and tissues. We also detected several key legume bZIP genes involved in drought- and salt-responses by comparing fold changes of expression values in drought-stressed or salt-stressed roots and leaves. CONCLUSIONS In summary, this genome-wide identification, characterization and expression analysis of legume bZIP genes provides valuable information for understanding the molecular functions and evolution of the legume bZIP transcription factor family, and highlights potential legume bZIP genes involved in regulating tissue development and abiotic stress responses.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Ke Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Liyun Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
104
|
Divergence of the bZIP Gene Family in Strawberry, Peach, and Apple Suggests Multiple Modes of Gene Evolution after Duplication. Int J Genomics 2015; 2015:536943. [PMID: 26770968 PMCID: PMC4685131 DOI: 10.1155/2015/536943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 01/01/2023] Open
Abstract
The basic leucine zipper (bZIP) transcription factors are the most diverse members of dimerizing transcription factors. In the present study, 50, 116, and 47 bZIP genes were identified in Malus domestica (apple), Prunus persica (peach), and Fragaria vesca (strawberry), respectively. Species-specific duplication was the main contributor to the large number of bZIPs observed in apple. After WGD in apple genome, orthologous bZIP genes corresponding to strawberry on duplicated regions in apple genome were retained. However, in peach ancestor, these syntenic regions were quickly lost or deleted. Maybe the positive selection contributed to the expansion of clade S to adapt to the development and environment stresses. In addition, purifying selection was mainly responsible for bZIP sequence-specific DNA binding. The analysis of orthologous pairs between chromosomes indicates that these orthologs derived from one gene duplication located on one of the nine ancient chromosomes in the Rosaceae. The comparative analysis of bZIP genes in three species provides information on the evolutionary fate of bZIP genes in apple and peach after they diverged from strawberry.
Collapse
|
105
|
Kavas M, Kizildogan A, Gökdemir G, Baloglu MC. Genome-wide investigation and expression analysis of AP2-ERF gene family in salt tolerant common bean. EXCLI JOURNAL 2015; 14:1187-206. [PMID: 27152109 PMCID: PMC4849109 DOI: 10.17179/excli2015-600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/01/2015] [Indexed: 12/17/2022]
Abstract
Apetala2-ethylene-responsive element binding factor (AP2-ERF) superfamily with common AP2-DNA binding domain have developmentally and physiologically important roles in plants. Since common bean genome project has been completed recently, it is possible to identify all of the AP2-ERF genes in the common bean genome. In this study, a comprehensive genome-wide in silico analysis identified 180 AP2-ERF superfamily genes in common bean (Phaseolus vulgaris). Based on the amino acid alignment and phylogenetic analyses, superfamily members were classified into four subfamilies: DREB (54), ERF (95), AP2 (27) and RAV (3), as well as one soloist. The physical and chemical characteristics of amino acids, interaction between AP2-ERF proteins, cis elements of promoter region of AP2-ERF genes and phylogenetic trees were predicted and analyzed. Additionally, expression levels of AP2-ERF genes were evaluated by in silico and qRT-PCR analyses. In silico micro-RNA target transcript analyses identified nearly all PvAP2-ERF genes as targets of by 44 different plant species' miRNAs were identified in this study. The most abundant target genes were PvAP2/ERF-20-25-62-78-113-173. miR156, miR172 and miR838 were the most important miRNAs found in targeting and BLAST analyses. Interactome analysis revealed that the transcription factor PvAP2-ERF78, an ortholog of Arabidopsis At2G28550, was potentially interacted with at least 15 proteins, indicating that it was very important in transcriptional regulation. Here we present the first study to identify and characterize the AP2-ERF transcription factors in common bean using whole-genome analysis, and the findings may serve as a references for future functional research on the transcription factors in common bean.
Collapse
Affiliation(s)
- Musa Kavas
- Ondokuz Mayis University, Faculty of Agriculture, Department of Agricultural Biotechnology, Samsun, Turkey
| | - Aslihan Kizildogan
- Ondokuz Mayis University, Faculty of Agriculture, Department of Agricultural Biotechnology, Samsun, Turkey
| | - Gökhan Gökdemir
- Ondokuz Mayis University, Faculty of Agriculture, Department of Agricultural Biotechnology, Samsun, Turkey
| | - Mehmet Cengiz Baloglu
- Kastamonu University, Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Kastamonu, Turkey
| |
Collapse
|
106
|
Li X, Gao S, Tang Y, Li L, Zhang F, Feng B, Fang Z, Ma L, Zhao C. Genome-wide identification and evolutionary analyses of bZIP transcription factors in wheat and its relatives and expression profiles of anther development related TabZIP genes. BMC Genomics 2015; 16:976. [PMID: 26581444 PMCID: PMC4652339 DOI: 10.1186/s12864-015-2196-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/05/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Among the largest and most diverse transcription factor families in plants, basic leucine zipper (bZIP) family participate in regulating various processes, including floral induction and development, stress and hormone signaling, photomorphogenesis, seed maturation and germination, and pathogen defense. Although common wheat (Triticum aestivum L.) is one of the most widely cultivated and consumed food crops in the world, there is no comprehensive analysis of bZIPs in wheat, especially those involved in anther development. Previous studies have demonstrated wheat, T. urartu, Ae. tauschii, barley and Brachypodium are evolutionarily close in Gramineae family, however, the real evolutionary relationship still remains mysterious. RESULTS In this study, 187 bZIP family genes were comprehensively identified from current wheat genome. 98, 96 and 107 members of bZIP family were also identified from the genomes of T.urartu, Ae.tauschii and barley, respectively. Orthology analyses suggested 69.4 % of TubZIPs were orthologous to 68.8 % of AetbZIPs and wheat had many more in-paralogs in the bZIP family than its relatives. It was deduced wheat had a closer phylogenetic relationship with barley and Brachypodium than T.urartu and Ae.tauschii. bZIP proteins in wheat, T.urartu and Ae.tauschii were divided into 14 subgroups based on phylogenetic analyses. Using Affymetrix microarray data, 48 differentially expressed TabZIP genes were identified to be related to anther development from comparison between the male sterility line and the restorer line. Genes with close evolutionary relationship tended to share similar gene structures. 15 of 23 selected TabZIP genes contained LTR elements in their promoter regions. Expression of 21 among these 23 TabZIP genes were obviously responsive to low temperature. These 23 TabZIP genes all exhibited distinct tissue-specific expression pattern. Among them, 11 TabZIP genes were predominantly expressed in anther and most of them showed over-dominance expression mode in the cross combination TY806 × BS366. CONCLUSIONS The genome-wide identification provided an overall insight of bZIP gene family in wheat and its relatives. The evolutionary relationship of wheat and its relatives was proposed based on orthology analyses. Microarray and expression analyses suggested the potential involvement of bZIP genes in anther development and facilitated selection of anther development related gene for further functional characterization.
Collapse
Affiliation(s)
- Xueyin Li
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- College of Agronomy, Northwest A & F University, Yangling, 712100, China.
| | - Shiqing Gao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Yimiao Tang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fengjie Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, China.
| | - Biane Feng
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, China.
| | - Zhaofeng Fang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lingjian Ma
- College of Agronomy, Northwest A & F University, Yangling, 712100, China.
| | - Changping Zhao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
107
|
Li D, Fu F, Zhang H, Song F. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genomics 2015. [PMID: 26459863 DOI: 10.1186/s12864-015-1990-1996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Transcription factors of the basic leucine zipper (bZIP) family represent exclusively in eukaryotes and have been shown to regulate diverse biological processes in plant growth and development as well as in abiotic and biotic stress responses. However, little is known about the bZIP family in tomato (Solanum lycopersicum L.). METHODS The SlbZIP genes were identified using local BLAST and hidden Markov model profile searches. The phylogenetic trees, conserved motifs and gene structures were generated by MEGA6.06, MEME tool and gene Structure Display Server, respectively. The syntenic block diagrams were generated by the Circos software. The transcriptional gene expression profiles were obtained using Genevestigator tool and quantitative RT-PCR. RESULTS In the present study, we carried out a genome-wide identification and systematic analyses of 69 SlbZIP genes that distributes unevenly on the tomato chromosomes. This family can be divided into 9 groups according to the phylogenetic relationship among the SlbZIP proteins. Six kinds of intron patterns (a-f) within the basic and hinge regions are defined. The additional conserved motifs and their presence of the group specificity were also identified. Further, we predicted the DNA-binding patterns and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 24 distinct subfamilies. Within the SlbZIP family, a total of 40 SlbZIP genes are located in the segmental duplicate regions in the tomato genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the tomato SlbZIP family. Expression profiling analyses of 59 SlbZIP genes using quantitative RT-PCR and publicly available microarray data indicate that the tomato SlbZIP genes have distinct and diverse expression patterns in different tissues and developmental stages and many of the tomato bZIP genes might be involved in responses to various abiotic and biotic stresses as well as in response to light. CONCLUSIONS This genome-wide systematic characterization identified a total of 69 members in the SlbZIP family and the analyses of the protein features and gene expression patterns provide useful clues for further functional characterization of the bZIP transcription factors in tomato.
Collapse
Affiliation(s)
- Dayong Li
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Huijuan Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
108
|
Li D, Fu F, Zhang H, Song F. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genomics 2015; 16:771. [PMID: 26459863 PMCID: PMC4603586 DOI: 10.1186/s12864-015-1990-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription factors of the basic leucine zipper (bZIP) family represent exclusively in eukaryotes and have been shown to regulate diverse biological processes in plant growth and development as well as in abiotic and biotic stress responses. However, little is known about the bZIP family in tomato (Solanum lycopersicum L.). METHODS The SlbZIP genes were identified using local BLAST and hidden Markov model profile searches. The phylogenetic trees, conserved motifs and gene structures were generated by MEGA6.06, MEME tool and gene Structure Display Server, respectively. The syntenic block diagrams were generated by the Circos software. The transcriptional gene expression profiles were obtained using Genevestigator tool and quantitative RT-PCR. RESULTS In the present study, we carried out a genome-wide identification and systematic analyses of 69 SlbZIP genes that distributes unevenly on the tomato chromosomes. This family can be divided into 9 groups according to the phylogenetic relationship among the SlbZIP proteins. Six kinds of intron patterns (a-f) within the basic and hinge regions are defined. The additional conserved motifs and their presence of the group specificity were also identified. Further, we predicted the DNA-binding patterns and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 24 distinct subfamilies. Within the SlbZIP family, a total of 40 SlbZIP genes are located in the segmental duplicate regions in the tomato genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the tomato SlbZIP family. Expression profiling analyses of 59 SlbZIP genes using quantitative RT-PCR and publicly available microarray data indicate that the tomato SlbZIP genes have distinct and diverse expression patterns in different tissues and developmental stages and many of the tomato bZIP genes might be involved in responses to various abiotic and biotic stresses as well as in response to light. CONCLUSIONS This genome-wide systematic characterization identified a total of 69 members in the SlbZIP family and the analyses of the protein features and gene expression patterns provide useful clues for further functional characterization of the bZIP transcription factors in tomato.
Collapse
Affiliation(s)
- Dayong Li
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Huijuan Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
109
|
Pourabed E, Ghane Golmohamadi F, Soleymani Monfared P, Razavi SM, Shobbar ZS. Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis. Mol Biotechnol 2015; 57:12-26. [PMID: 25173685 DOI: 10.1007/s12033-014-9797-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factors in eukaryotes participating in many essential plant processes. We identified 141 bZIP proteins encoded by 89 genes from the Hordeum vulgare genome. HvbZIPs were classified into 11 groups based on their DNA-binding motif. Amino acid sequence alignment of the HvbZIPs basic-hinge regions revealed some highly conserved residues within each group. The leucine zipper heptads were analyzed predicting their dimerization properties. 34 conserved motifs were identified outside the bZIP domain. Phylogenetic analysis indicated that major diversification within the bZIP family predated the monocot/dicot divergence, although intra-species duplication and parallel evolution seems to be occurred afterward. Localization of HvbZIPs on the barley chromosomes revealed that different groups have been distributed on seven chromosomes of barley. Six types of intron pattern were detected within the basic-hinge regions. Most of the detected cis-elements in the promoter and UTR sequences were involved in seed development or abiotic stress response. Microarray data analysis revealed differential expression pattern of HvbZIPs in response to ABA treatment, drought, and cold stresses and during barley grain development and germination. This information would be helpful for functional characterization of bZIP transcription factors in barley.
Collapse
Affiliation(s)
- Ehsan Pourabed
- Systems Biology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Seed and Plant Improvement Institutes Campus, Mahdasht Road, P. O. Box: 31535-1897, Karaj, Iran,
| | | | | | | | | |
Collapse
|
110
|
Zhang Z, Liu W, Qi X, Liu Z, Xie W, Wang Y. Genome-wide identification, expression profiling, and SSR marker development of the bZIP transcription factor family in Medicago truncatula. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
111
|
Kavas M, Baloğlu MC, Atabay ES, Ziplar UT, Daşgan HY, Ünver T. Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration. Mol Genet Genomics 2015; 291:129-43. [PMID: 26193947 DOI: 10.1007/s00438-015-1095-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/11/2015] [Indexed: 11/28/2022]
Abstract
Members of basic helix-loop-helix (bHLH) gene family found in all eukaryotes play crucial roles in response to stress. Though, most eukaryotes carry the proteins of this family, biological functions of the most bHLH family members are not deeply evaluated in plants. In this study, we conducted a comprehensive genome-wide analysis of bHLH transcription factors in salt tolerant common bean. We identified 155 bHLH protein-encoding genes (PvbHLH) by using in silico comparative genomics tools. Based on the phylogenetic tree, PvbHLH genes were classified into 8 main groups with 21 subfamilies. Exon-intron analysis indicated that proteins belonging to same main groups exhibited a closely related gene structure. While, the PvbHLH gene family has been mainly expanded through segmental duplications, a total of 11 tandem duplication were detected. Genome-wide expression analysis of bHLH genes showed that 63 PvbHLH genes were differentially expressed in at least one tissue. Three of them displayed higher expression values in both leaf and root tissues. The in silico micro-RNA target transcript analyses revealed that totally 100 PvHLH genes targeted by 86 plant miRNAs. The most abundant transcripts, which were targeted by all 18 plant miRNA, were belonging to PvHLH-22 and PvHLH-44 genes. The expression of 16 PvbHLH genes in the root and leaf tissues of salt-stressed common bean was evaluated using qRT-PCR. Among them, two of PvbHLHs, PvbHLH-54, PvbHLH-148, were found to be up-regulated in both tissues in correlation with RNA-seq measurements. The results of this study could help improve understanding of biological functions of common bean bHLH family under salt stress. Additionally, it may provide basic resources for analyzing bHLH protein function for improving economic, agronomic and ecological benefit in common bean and other species.
Collapse
Affiliation(s)
- Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey.
| | - Mehmet Cengiz Baloğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Elif Seda Atabay
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | | | - Hayriye Yıldız Daşgan
- Department of Horticulture, Faculty of Agriculture, Çukurova University, Adana, Turkey
| | - Turgay Ünver
- Department of Biology, Faculty of Science, Çankırı Karatekin University, Cankiri, Turkey
| |
Collapse
|
112
|
Lim CW, Baek W, Lim S, Han SW, Lee SC. Expression and Functional Roles of the Pepper Pathogen-Induced bZIP Transcription Factor CabZIP2 in Enhanced Disease Resistance to Bacterial Pathogen Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:825-33. [PMID: 25738319 DOI: 10.1094/mpmi-10-14-0313-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A pepper bZIP transcription factor gene, CabZIP2, was isolated from pepper leaves infected with a virulent strain of Xanthomonas campestris pv. vesicatoria. Transient expression analysis of the CabZIP2-GFP fusion protein in Nicotiana benthamiana revealed that the CabZIP2 protein is localized in the cytoplasm as well as the nucleus. The acidic domain in the N-terminal region of CabZIP2 that is fused to the GAL4 DNA-binding domain is required to activate the transcription of reporter genes in yeast. Transcription of CabZIP2 is induced in pepper plants inoculated with virulent or avirulent strains of X. campestris pv. vesicatoria. The CabZIP2 gene is also induced by defense-related hormones such as salicylic acid, methyl jasmonate, and ethylene. To elucidate the in vivo function of the CabZIP2 gene in plant defense, virus-induced gene silencing in pepper and overexpression in Arabidopsis were used. CabZIP2-silenced pepper plants were susceptible to infection by the virulent strain of X. campestris pv. vesicatoria, which was accompanied by reduced expression of defense-related genes such as CaBPR1 and CaAMP1. CabZIP2 overexpression in transgenic Arabidopsis plants conferred enhanced resistance to Pseudomonas syringae pv. tomato DC3000. Together, these results suggest that CabZIP2 is involved in bacterial disease resistance.
Collapse
Affiliation(s)
- Chae Woo Lim
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Woonhee Baek
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sohee Lim
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sang-Wook Han
- 2 Department of Integrative Plant Science, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Sung Chul Lee
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| |
Collapse
|
113
|
Zhang L, Zhang L, Xia C, Zhao G, Liu J, Jia J, Kong X. A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2015; 153:538-54. [PMID: 25135325 DOI: 10.1111/ppl.12261] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 05/03/2023]
Abstract
The basic region/leucine zipper (bZIP) transcription factors (TFs) play vital roles in the response to abiotic stress. However, little is known about the function of bZIP genes in wheat abiotic stress. In this study, we report the isolation and functional characterization of the TabZIP60 gene. Three homologous genome sequences of TabZIP60 were isolated from hexaploid wheat and mapped to the wheat homoeologous group 6. A subcellular localization analysis indicated that TabZIP60 is a nuclear-localized protein that activates transcription. Furthermore, TabZIP60 gene transcripts were strongly induced by polyethylene glycol, salt, cold and exogenous abscisic acid (ABA) treatments. Further analysis showed that the overexpression of TabZIP60 in Arabidopsis resulted in significantly improved tolerances to drought, salt, freezing stresses and increased plant sensitivity to ABA in seedling growth. Meanwhile, the TabZIP60 was capable of binding ABA-responsive cis-elements that are present in promoters of many known ABA-responsive genes. A subsequent analysis showed that the overexpression of TabZIP60 led to enhanced expression levels of some stress-responsive genes and changes in several physiological parameters. Taken together, these results suggest that TabZIP60 enhances multiple abiotic stresses through the ABA signaling pathway and that modifications of its expression may improve multiple stress tolerances in crop plants.
Collapse
Affiliation(s)
- Lina Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | |
Collapse
|
114
|
Liu X, Chu Z. Genome-wide evolutionary characterization and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stresses in Brachypodium distachyon. BMC Genomics 2015. [PMID: 25887221 DOI: 10.1186/s12864-015-1457-1459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Plant basic leucine zipper (bZIP) transcription factors are one of the largest and most diverse gene families and play key roles in regulating diverse stress processes. Brachypodium distachyon is emerging as a widely recognized model plant for the temperate grass family and the herbaceous energy crops, however there is no comprehensive analysis of bZIPs in B. distachyon, especially those involved in stress tolerances. RESULTS In this study, 96 bZIP genes (BdbZIPs) were identified distributing unevenly on each chromosome of B. distachyon, and most of them were scattered in the low CpG content regions. Gene duplications were widespread throughout B. distachyon genome. Evolutionary comparisons suggested B. distachyon and rice's bZIPs had the similar evolutionary patterns. The exon splicing in BdbZIP motifs were more complex and diverse than those in other plant species. We further revealed the potential close relationships between BdbZIP gene expressions and items including gene structure, exon splicing pattern and dimerization features. In addition, multiple stresses expression profile demonstrated that BdbZIPs exhibited significant expression patterns responding to 14 stresses, and those responding to heavy metal treatments showed opposite expression pattern comparing to the treatments of environmental factors and phytohormones. We also screened certain up- and down-regulated BdbZIP genes with fold changes ≥2, which were more sensitive to abiotic stress conditions. CONCLUSIONS BdbZIP genes behaved diverse functional characters and showed discrepant and some regular expression patterns in response to abiotic stresses. Comprehensive analysis indicated these BdbZIPs' expressions were associated not only with gene structure, exon splicing pattern and dimerization feature, but also with abiotic stress treatments. It is possible that our findings are crucial for revealing the potentialities of utilizing these candidate BdbZIPs to improve productivity of grass plants and cereal crops.
Collapse
Affiliation(s)
- Xiang Liu
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, 201602, Shanghai, Songjiang, China.
| | - Zhaoqing Chu
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, 201602, Shanghai, Songjiang, China.
| |
Collapse
|
115
|
Genome-wide evolutionary characterization and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stresses in Brachypodium distachyon. BMC Genomics 2015; 16:227. [PMID: 25887221 PMCID: PMC4393604 DOI: 10.1186/s12864-015-1457-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/09/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Plant basic leucine zipper (bZIP) transcription factors are one of the largest and most diverse gene families and play key roles in regulating diverse stress processes. Brachypodium distachyon is emerging as a widely recognized model plant for the temperate grass family and the herbaceous energy crops, however there is no comprehensive analysis of bZIPs in B. distachyon, especially those involved in stress tolerances. RESULTS In this study, 96 bZIP genes (BdbZIPs) were identified distributing unevenly on each chromosome of B. distachyon, and most of them were scattered in the low CpG content regions. Gene duplications were widespread throughout B. distachyon genome. Evolutionary comparisons suggested B. distachyon and rice's bZIPs had the similar evolutionary patterns. The exon splicing in BdbZIP motifs were more complex and diverse than those in other plant species. We further revealed the potential close relationships between BdbZIP gene expressions and items including gene structure, exon splicing pattern and dimerization features. In addition, multiple stresses expression profile demonstrated that BdbZIPs exhibited significant expression patterns responding to 14 stresses, and those responding to heavy metal treatments showed opposite expression pattern comparing to the treatments of environmental factors and phytohormones. We also screened certain up- and down-regulated BdbZIP genes with fold changes ≥2, which were more sensitive to abiotic stress conditions. CONCLUSIONS BdbZIP genes behaved diverse functional characters and showed discrepant and some regular expression patterns in response to abiotic stresses. Comprehensive analysis indicated these BdbZIPs' expressions were associated not only with gene structure, exon splicing pattern and dimerization feature, but also with abiotic stress treatments. It is possible that our findings are crucial for revealing the potentialities of utilizing these candidate BdbZIPs to improve productivity of grass plants and cereal crops.
Collapse
|
116
|
Xu Q, Xing S, Zhu C, Liu W, Fan Y, Wang Q, Song Z, Yang W, Luo F, Shang F, Kang L, Chen W, Yan J, Li J, Sang T. Population transcriptomics reveals a potentially positive role of expression diversity in adaptation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:284-99. [PMID: 25251542 DOI: 10.1111/jipb.12287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/19/2014] [Indexed: 05/27/2023]
Abstract
While it is widely accepted that genetic diversity determines the potential of adaptation, the role that gene expression variation plays in adaptation remains poorly known. Here we show that gene expression diversity could have played a positive role in the adaptation of Miscanthus lutarioriparius. RNA-seq was conducted for 80 individuals of the species, with half planted in the energy crop domestication site and the other half planted in the control site near native habitats. A leaf reference transcriptome consisting of 18,503 high-quality transcripts was obtained using a pipeline developed for de novo assembling with population RNA-seq data. The population structure and genetic diversity of M. lutarioriparius were estimated based on 30,609 genic single nucleotide polymorphisms. Population expression (Ep ) and expression diversity (Ed ) were defined to measure the average level and the magnitude of variation of a gene expression in the population, respectively. It was found that expression diversity increased while genetic diversity decreased after the species was transplanted from the native habitats to the harsh domestication site, especially for genes involved in abiotic stress resistance, histone methylation, and biomass synthesis under water limitation. The increased expression diversity could have enriched phenotypic variation directly subject to selections in the new environment.
Collapse
Affiliation(s)
- Qin Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Hwang I, Jung HJ, Park JI, Yang TJ, Nou IS. Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response. Genomics 2014; 104:194-202. [PMID: 25075938 DOI: 10.1016/j.ygeno.2014.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 10/25/2022]
Abstract
Plant bZIP transcription factors play crucial roles in biological processes. In this study, 136 putative bZIP transcription members were identified in Brassica rapa. The bZIP family can be divided into nine groups according to the specific amino acid rich domain in B. rapa and Arabidopsis thaliana. To screen the cold stress responsive BrbZIP genes, we evaluated whether the transcription patterns of the BrbZIP genes were enhanced by cold treatment in the inbred lines, Chiifu and Kenshin, by microarray data analysis and qRT-PCR. The expression level of six genes increased significantly in Kenshin, but these genes were unchanged in Chiifu. These findings suggest that the six genes that encoded proteins containing N-rich regions might be involved in cold stress response. The results presented herein provide valuable information regarding the molecular basis of the bZIP transcription factors and their potential function in regulation growth and development, particularly in cold stress response.
Collapse
Affiliation(s)
- Indeok Hwang
- Department of Horticulture, Sunchon National University, 255 Jungangro, Suncheon, Jeonnam 540-950, Republic of Korea.
| | - Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, 255 Jungangro, Suncheon, Jeonnam 540-950, Republic of Korea.
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255 Jungangro, Suncheon, Jeonnam 540-950, Republic of Korea.
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungangro, Suncheon, Jeonnam 540-950, Republic of Korea.
| |
Collapse
|
118
|
Baloglu MC, Eldem V, Hajyzadeh M, Unver T. Genome-wide analysis of the bZIP transcription factors in cucumber. PLoS One 2014; 9:e96014. [PMID: 24760072 PMCID: PMC3997510 DOI: 10.1371/journal.pone.0096014] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/31/2014] [Indexed: 01/14/2023] Open
Abstract
bZIP proteins are one of the largest transcriptional regulators playing crucial roles in plant development, physiological processes, and biotic/abiotic stress responses. Despite the availability of recently published draft genome sequence of Cucumis sativus, no comprehensive investigation of these family members has been presented for cucumber. We have identified 64 bZIP transcription factor-encoding genes in the cucumber genome. Based on structural features of their encoded proteins, CsbZIP genes could be classified into 6 groups. Cucumber bZIP genes were expanded mainly by segmental duplication rather than tandem duplication. Although segmental duplication rate of the CsbZIP genes was lower than that of Arabidopsis, rice and sorghum, it was observed as a common expansion mechanism. Some orthologous relationships and chromosomal rearrangements were observed according to comparative mapping analysis with other species. Genome-wide expression analysis of bZIP genes indicated that 64 CsbZIP genes were differentially expressed in at least one of the ten sampled tissues. A total of 4 CsbZIP genes displayed higher expression values in leaf, flowers and root tissues. The in silico micro-RNA (miRNA) and target transcript analyses identified that a total of 21 CsbZIP genes were targeted by 38 plant miRNAs. CsbZIP20 and CsbZIP22 are the most targeted by miR165 and miR166 family members, respectively. We also analyzed the expression of ten CsbZIP genes in the root and leaf tissues of drought-stressed cucumber using quantitative RT-PCR. All of the selected CsbZIP genes were measured as increased in root tissue at 24th h upon PEG treatment. Contrarily, the down-regulation was observed in leaf tissues of all analyzed CsbZIP genes. CsbZIP12 and CsbZIP44 genes showed gradual induction of expression in root tissues during time points. This genome-wide identification and expression profiling provides new opportunities for cloning and functional analyses, which may be used in further studies for improving stress tolerance in plants.
Collapse
Affiliation(s)
- Mehmet Cengiz Baloglu
- Kastamonu University, Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Kastamonu, Turkey
- * E-mail:
| | - Vahap Eldem
- Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey
| | - Mortaza Hajyzadeh
- Cankırı Karatekin University, Faculty of Science, Department of Biology, Cankiri, Turkey
| | - Turgay Unver
- Cankırı Karatekin University, Faculty of Science, Department of Biology, Cankiri, Turkey
| |
Collapse
|
119
|
Liu J, Chen N, Chen F, Cai B, Dal Santo S, Tornielli GB, Pezzotti M, Cheng ZMM. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genomics 2014; 15:281. [PMID: 24725365 PMCID: PMC4023599 DOI: 10.1186/1471-2164-15-281] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 03/31/2014] [Indexed: 01/27/2023] Open
Abstract
Background Basic leucine zipper (bZIP) transcription factor gene family is one of the largest and most diverse families in plants. Current studies have shown that the bZIP proteins regulate numerous growth and developmental processes and biotic and abiotic stress responses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant bZIP family members remains very limited. Results We identified 55 bZIP transcription factor-encoding genes in the grapevine (Vitis vinifera) genome, and divided them into 10 groups according to the phylogenetic relationship with those in Arabidopsis. The chromosome distribution and the collinearity analyses suggest that expansion of the grapevine bZIP (VvbZIP) transcription factor family was greatly contributed by the segment/chromosomal duplications, which may be associated with the grapevine genome fusion events. Nine intron/exon structural patterns within the bZIP domain and the additional conserved motifs were identified among all VvbZIP proteins, and showed a high group-specificity. The predicted specificities on DNA-binding domains indicated that some highly conserved amino acid residues exist across each major group in the tree of land plant life. The expression patterns of VvbZIP genes across the grapevine gene expression atlas, based on microarray technology, suggest that VvbZIP genes are involved in grapevine organ development, especially seed development. Expression analysis based on qRT-PCR indicated that VvbZIP genes are extensively involved in drought- and heat-responses, with possibly different mechanisms. Conclusions The genome-wide identification, chromosome organization, gene structures, evolutionary and expression analyses of grapevine bZIP genes provide an overall insight of this gene family and their potential involvement in growth, development and stress responses. This will facilitate further research on the bZIP gene family regarding their evolutionary history and biological functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zong-Ming Max Cheng
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, China.
| |
Collapse
|
120
|
Jin Z, Xu W, Liu A. Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.). PLANTA 2014; 239:299-312. [PMID: 24165825 DOI: 10.1007/s00425-013-1979-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/11/2013] [Indexed: 05/08/2023]
Abstract
The basic leucine zipper (bZIP) transcription factors comprise a family of transcriptional regulators present extensively in plants, involved in regulating diverse biological processes such as flower and vascular development, seed maturation, stress signaling and pathogen defense. Castor bean (Ricinus communis L. Euphorbiaceae) is one of the most important non-edible oilseed crops and its seed oil is broadly used for industrial applications. We performed a comprehensive genome-wide identification and analysis of the bZIP transcription factors that exist in the castor bean genome in this study. In total, 49 RcbZIP transcription factors were identified, characterized and categorized into 11 groups (I-XI) based on their gene structure, DNA-binding sites, conserved motifs, and phylogenetic relationships. The dimerization properties of 49 RcbZIP proteins were predicted on the basis of the characteristic features in the leucine zipper. Global expression profiles of 49 RcbZIP genes among different tissues were examined using high-throughput sequencing of digital gene expression profiles, and resulted in diverse expression patterns that may provide basic information to further reveal the function of the 49 RcbZIP genes in castor bean. The results obtained from this study would provide valuable information in understanding the molecular basis of the RcbZIP transcription factor family and their potential function in regulating the growth and development, particularly in seed filling of castor bean.
Collapse
Affiliation(s)
- Zhengwei Jin
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
| | | | | |
Collapse
|
121
|
Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D. Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 2012; 19:463-476. [PMID: 23103471 DOI: 10.1093/dnares/dss026-] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
In plants, basic leucine zipper (bZIP) proteins regulate numerous biological processes such as seed maturation, flower and vascular development, stress signalling and pathogen defence. We have carried out a genome-wide identification and analysis of 125 bZIP genes that exist in the maize genome, encoding 170 distinct bZIP proteins. This family can be divided into 11 groups according to the phylogenetic relationship among the maize bZIP proteins and those in Arabidopsis and rice. Six kinds of intron patterns (a-f) within the basic and hinge regions are defined. The additional conserved motifs have been identified and present the group specificity. Detailed three-dimensional structure analysis has been done to display the sequence conservation and potential distribution of the bZIP domain. Further, we predict the DNA-binding pattern and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 26 distinct subfamilies. The chromosome distribution and the genetic analysis reveal that 58 ZmbZIP genes are located in the segmental duplicate regions in the maize genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the maize bZIP family. Across the 60 different developmental stages of 11 organs, three apparent clusters formed represent three kinds of different expression patterns among the ZmbZIP gene family in maize development. A similar but slightly different expression pattern of bZIPs in two inbred lines displays that 22 detected ZmbZIP genes might be involved in drought stress. Thirteen pairs and 143 pairs of ZmbZIP genes show strongly negative and positive correlations in the four distinct fungal infections, respectively, based on the expression profile and Pearson's correlation coefficient analysis.
Collapse
Affiliation(s)
- Kaifa Wei
- Department of Biological Sciences and Biotechnology, Zhangzhou Normal University, 36 Xian Qian Zhi Street, Zhangzhou 363000 Fujian, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D. Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 2012; 19:463-76. [PMID: 23103471 PMCID: PMC3514857 DOI: 10.1093/dnares/dss026] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In plants, basic leucine zipper (bZIP) proteins regulate numerous biological processes such as seed maturation, flower and vascular development, stress signalling and pathogen defence. We have carried out a genome-wide identification and analysis of 125 bZIP genes that exist in the maize genome, encoding 170 distinct bZIP proteins. This family can be divided into 11 groups according to the phylogenetic relationship among the maize bZIP proteins and those in Arabidopsis and rice. Six kinds of intron patterns (a–f) within the basic and hinge regions are defined. The additional conserved motifs have been identified and present the group specificity. Detailed three-dimensional structure analysis has been done to display the sequence conservation and potential distribution of the bZIP domain. Further, we predict the DNA-binding pattern and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 26 distinct subfamilies. The chromosome distribution and the genetic analysis reveal that 58 ZmbZIP genes are located in the segmental duplicate regions in the maize genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the maize bZIP family. Across the 60 different developmental stages of 11 organs, three apparent clusters formed represent three kinds of different expression patterns among the ZmbZIP gene family in maize development. A similar but slightly different expression pattern of bZIPs in two inbred lines displays that 22 detected ZmbZIP genes might be involved in drought stress. Thirteen pairs and 143 pairs of ZmbZIP genes show strongly negative and positive correlations in the four distinct fungal infections, respectively, based on the expression profile and Pearson's correlation coefficient analysis.
Collapse
Affiliation(s)
- Kaifa Wei
- Department of Biological Sciences and Biotechnology, Zhangzhou Normal University, 36 Xian Qian Zhi Street, Zhangzhou 363000 Fujian, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Martinez M. Plant protein-coding gene families: emerging bioinformatics approaches. TRENDS IN PLANT SCIENCE 2011; 16:558-567. [PMID: 21757395 DOI: 10.1016/j.tplants.2011.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 05/31/2023]
Abstract
Protein-coding gene families are sets of similar genes with a shared evolutionary origin and, generally, with similar biological functions. In plants, the size and role of gene families has been only partially addressed. However, suitable bioinformatics tools are being developed to cluster the enormous number of sequences currently available in databases. Specifically, comparative genomic databases promise to become powerful tools for gene family annotation in plant clades. In this review, I evaluate the data retrieved from various gene family databases, the ease with which they can be extracted and how useful the extracted information is.
Collapse
Affiliation(s)
- Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus Montegancedo, Universidad Politécnica de Madrid. Autovía M40 (Km 38), 28223-Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
124
|
Parry MAJ, Jing HC. Bioenergy plants: Hopes, concerns and prospectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:94-95. [PMID: 21205192 DOI: 10.1111/j.1744-7909.2010.01029.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|