101
|
Smýkal P, K Varshney R, K Singh V, Coyne CJ, Domoney C, Kejnovský E, Warkentin T. From Mendel's discovery on pea to today's plant genetics and breeding : Commemorating the 150th anniversary of the reading of Mendel's discovery. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2267-2280. [PMID: 27717955 DOI: 10.1007/s00122-016-2803-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
KEY MESSAGE This work discusses several selected topics of plant genetics and breeding in relation to the 150th anniversary of the seminal work of Gregor Johann Mendel. In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin's theory of evolution was based on differential survival and differential reproductive success, Mendel's theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin's concepts were continuous variation and "soft" heredity; Mendel espoused discontinuous variation and "hard" heredity. Thus, the combination of Mendelian genetics with Darwin's theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker-trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner.
Collapse
Affiliation(s)
- Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacký University in Olomouc, Slechtitelu 27, Olomouc, Czech Republic.
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Vikas K Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | | | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Thomas Warkentin
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
102
|
Garcia V, Bres C, Just D, Fernandez L, Tai FWJ, Mauxion JP, Le Paslier MC, Bérard A, Brunel D, Aoki K, Alseekh S, Fernie AR, Fraser PD, Rothan C. Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing. Nat Protoc 2016; 11:2401-2418. [PMID: 27809315 DOI: 10.1038/nprot.2016.143] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tomato is the model species of choice for fleshy fruit development and for the Solanaceae family. Ethyl methanesulfonate (EMS) mutants of tomato have already proven their utility for analysis of gene function in plants, leading to improved breeding stocks and superior tomato varieties. However, until recently, the identification of causal mutations that underlie particular phenotypes has been a very lengthy task that many laboratories could not afford because of spatial and technical limitations. Here, we describe a simple protocol for identifying causal mutations in tomato using a mapping-by-sequencing strategy. Plants displaying phenotypes of interest are first isolated by screening an EMS mutant collection generated in the miniature cultivar Micro-Tom. A recombinant F2 population is then produced by crossing the mutant with a wild-type (WT; non-mutagenized) genotype, and F2 segregants displaying the same phenotype are subsequently pooled. Finally, whole-genome sequencing and analysis of allele distributions in the pools allow for the identification of the causal mutation. The whole process, from the isolation of the tomato mutant to the identification of the causal mutation, takes 6-12 months. This strategy overcomes many previous limitations, is simple to use and can be applied in most laboratories with limited facilities for plant culture and genotyping.
Collapse
Affiliation(s)
- Virginie Garcia
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Cécile Bres
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Daniel Just
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Lucie Fernandez
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Fabienne Wong Jun Tai
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Jean-Philippe Mauxion
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Marie-Christine Le Paslier
- Institut National de la Recherche Agronomique US1279 Etude du Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique-CNG, Evry, France
| | - Aurélie Bérard
- Institut National de la Recherche Agronomique US1279 Etude du Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique-CNG, Evry, France
| | - Dominique Brunel
- Institut National de la Recherche Agronomique US1279 Etude du Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique-CNG, Evry, France
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Christophe Rothan
- Institut National de la Recherche Agronomique and Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| |
Collapse
|
103
|
Hashimoto M, Neriya Y, Yamaji Y, Namba S. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors. Front Microbiol 2016; 7:1695. [PMID: 27833593 PMCID: PMC5080351 DOI: 10.3389/fmicb.2016.01695] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022] Open
Abstract
The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
104
|
Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1941-55. [PMID: 26990124 PMCID: PMC5043468 DOI: 10.1111/pbi.12559] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 05/18/2023]
Abstract
Biological assay has been based on analysis of all individuals collected from sample populations. Bulked sample analysis (BSA), which works with selected and pooled individuals, has been extensively used in gene mapping through bulked segregant analysis with biparental populations, mapping by sequencing with major gene mutants and pooled genomewide association study using extreme variants. Compared to conventional entire population analysis, BSA significantly reduces the scale and cost by simplifying the procedure. The bulks can be built by selection of extremes or representative samples from any populations and all types of segregants and variants that represent wide ranges of phenotypic variation for the target trait. Methods and procedures for sampling, bulking and multiplexing are described. The samples can be analysed using individual markers, microarrays and high-throughput sequencing at all levels of DNA, RNA and protein. The power of BSA is affected by population size, selection of extreme individuals, sequencing strategies, genetic architecture of the trait and marker density. BSA will facilitate plant breeding through development of diagnostic and constitutive markers, agronomic genomics, marker-assisted selection and selective phenotyping. Applications of BSA in genetics, genomics and crop improvement are discussed with their future perspectives.
Collapse
Affiliation(s)
- Cheng Zou
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingxi Wang
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunbi Xu
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
| |
Collapse
|
105
|
Lee YK, Woo MO, Lee D, Lee G, Kim B, Koh HJ. Identification of a novel candidate gene for rolled leaf in rice. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0451-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
106
|
Mustafiz A, Kumari S, Karan R. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics. Curr Genomics 2016; 17:155-76. [PMID: 27252584 PMCID: PMC4869004 DOI: 10.2174/1389202917666160202215135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population.
Collapse
Affiliation(s)
- Ananda Mustafiz
- South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi
| | - Sumita Kumari
- Sher-e-Kashmir University of Agriculture Sciences and Technology, Jammu 180009, India
| | - Ratna Karan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville - 32611, Florida, USA
| |
Collapse
|
107
|
Genome-wide identification of novel genetic markers from RNA sequencing assembly of diverse Aegilops tauschii accessions. Mol Genet Genomics 2016; 291:1681-94. [DOI: 10.1007/s00438-016-1211-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/21/2016] [Indexed: 02/03/2023]
|
108
|
Pandey MK, Roorkiwal M, Singh VK, Ramalingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney RK. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2016; 7:455. [PMID: 27199998 PMCID: PMC4852475 DOI: 10.3389/fpls.2016.00455] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/24/2016] [Indexed: 05/19/2023]
Abstract
Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries.
Collapse
Affiliation(s)
- Manish K. Pandey
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Manish Roorkiwal
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Vikas K. Singh
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Abirami Ramalingam
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Anu Chitikineni
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
- The University of Western AustraliaCrawley, WA, Australia
| |
Collapse
|
109
|
Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P, Chitikineni A, Pazhamala LT, Garg V, Sharma M, Sameer Kumar CV, Parupalli S, Vechalapu S, Patil S, Muniswamy S, Ghanta A, Yamini KN, Dharmaraj PS, Varshney RK. Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1183-94. [PMID: 26397045 PMCID: PMC5054876 DOI: 10.1111/pbi.12470] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 07/29/2015] [Accepted: 08/06/2015] [Indexed: 05/20/2023]
Abstract
To map resistance genes for Fusarium wilt (FW) and sterility mosaic disease (SMD) in pigeonpea, sequencing-based bulked segregant analysis (Seq-BSA) was used. Resistant (R) and susceptible (S) bulks from the extreme recombinant inbred lines of ICPL 20096 × ICPL 332 were sequenced. Subsequently, SNP index was calculated between R- and S-bulks with the help of draft genome sequence and reference-guided assembly of ICPL 20096 (resistant parent). Seq-BSA has provided seven candidate SNPs for FW and SMD resistance in pigeonpea. In parallel, four additional genotypes were re-sequenced and their combined analysis with R- and S-bulks has provided a total of 8362 nonsynonymous (ns) SNPs. Of 8362 nsSNPs, 60 were found within the 2-Mb flanking regions of seven candidate SNPs identified through Seq-BSA. Haplotype analysis narrowed down to eight nsSNPs in seven genes. These eight nsSNPs were further validated by re-sequencing 11 genotypes that are resistant and susceptible to FW and SMD. This analysis revealed association of four candidate nsSNPs in four genes with FW resistance and four candidate nsSNPs in three genes with SMD resistance. Further, In silico protein analysis and expression profiling identified two most promising candidate genes namely C.cajan_01839 for SMD resistance and C.cajan_03203 for FW resistance. Identified candidate genomic regions/SNPs will be useful for genomics-assisted breeding in pigeonpea.
Collapse
Affiliation(s)
- Vikas K Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Aamir W Khan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Vinay Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Sandip M Kale
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Pallavi Sinha
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Annapurna Chitikineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Lekha T Pazhamala
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Vanika Garg
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Mamta Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | | | - Swathi Parupalli
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Suryanarayana Vechalapu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Suyash Patil
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Sonnappa Muniswamy
- Agricultural Research Station (ARS)-Gulbarga, University of Agricultural Sciences (UAS), Raichur, Karnataka, India
| | - Anuradha Ghanta
- Institute of Biotechnology, Professor Jayshankar Telangana State Agricultural University (PJTSAU), Telangana, India
| | - Kalinati Narasimhan Yamini
- Institute of Biotechnology, Professor Jayshankar Telangana State Agricultural University (PJTSAU), Telangana, India
| | - Pallavi Subbanna Dharmaraj
- Agricultural Research Station (ARS)-Gulbarga, University of Agricultural Sciences (UAS), Raichur, Karnataka, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
110
|
Fang A, Han Y, Zhang N, Zhang M, Liu L, Li S, Lu F, Sun W. Identification and Characterization of Plant Cell Death-Inducing Secreted Proteins From Ustilaginoidea virens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:405-16. [PMID: 26927000 DOI: 10.1094/mpmi-09-15-0200-r] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ustilaginoidea virens (Cooke) Takah (telemorph Villosiclava virens) is an ascomycetous fungus that causes rice false smut, one of the most important rice diseases. Fungal effectors often play essential roles in host-pathogen coevolutionary interactions. However, little is known about the functions of U. virens effectors. Here, we performed functional studies on putative effectors in U. virens and demonstrated that 13 of 119 putative effectors caused necrosis or necrosis-like phenotypes in Nicotiana benthamiana. Among them, 11 proteins were confirmed to be secreted, using a yeast secretion system, and the corresponding genes are all highly induced during infection, except UV_44 and UV_4753. Eight secreted proteins were proven to trigger cell death or defenses in rice protoplasts and the secretion signal of these proteins is essential for their cell death-inducing activity. The ability of UV_44 and UV_1423 to trigger cell death is dependent on the predicted serine peptidase and ribonuclease catalytic active sites, respectively. We demonstrated that UV_1423 and UV_6205 are N-glycosylated proteins, which glycosylation has different impacts on their abilities to induce cell death. Collectively, the study identified multiple secreted proteins in U. virens with specific structural motifs that induce cell death or defense machinery in nonhost and host plants.
Collapse
Affiliation(s)
- Anfei Fang
- Department of Plant Pathology; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Yanqing Han
- Department of Plant Pathology; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Nan Zhang
- Department of Plant Pathology; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Min Zhang
- Department of Plant Pathology; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Lijuan Liu
- Department of Plant Pathology; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Shuai Li
- Department of Plant Pathology; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Fen Lu
- Department of Plant Pathology; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Wenxian Sun
- Department of Plant Pathology; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
111
|
Zheng W, Wang Y, Wang L, Ma Z, Zhao J, Wang P, Zhang L, Liu Z, Lu X. Genetic mapping and molecular marker development for Pi65(t), a novel broad-spectrum resistance gene to rice blast using next-generation sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1035-44. [PMID: 26883042 DOI: 10.1007/s00122-016-2681-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/23/2016] [Indexed: 05/17/2023]
Abstract
A novel R gene was mapped to a locus on chromosome 11 from 30.42 to 30.85 Mb, which was proven to be efficient in the improvement of rice blast resistance. Rice blast is a devastating fungal disease worldwide. The use of blast resistance (R) genes is the most important approach to control the disease in rice breeding. In the present study, we finely mapped a novel resistance gene Pi65(t), conferring a broad-spectrum resistance to the fungus Magnaporthe oryzae, using bulked segregant analysis in combination with next-generation sequencing technology. Segregation in a doubled haploid (DH) population and a BC1F2 population suggested that resistance to blast in Gangyu129 was likely conferred by a single dominant gene, designated Pi65(t); it was located on chromosome 11 from 30.20 to 31.20 Mb using next-generation sequencing. After screening recombinants with newly developed molecular markers, the region was narrowed down to 0.43 Mb, flanked by SNP-2 and SNP-8 at the physical location from 30.42 to 30.85 Mb based on the Nipponbare reference database in build 5. Using the software QTL IciMapping, Pi65(t) was further mapped to a locus between InDel-1 and SNP-4 with genetic distances of 0.11 and 0.98 cM, respectively. Within this region, 4 predicted R genes were found with nucleotide binding site and leucine-rich repeat (NBS-LRR) domains. We developed molecular markers to genotype 305 DH lines and found that InDel-1 was closely linked with Pi65(t). Using InDel-1, a new rice variety Chuangxin1 containing Pi65(t) was developed, and it is highly resistant to rice blast and produces a high yield in Liaoning province of China. This indicated that Pi65(t) could play a key role in the improvement of rice blast resistance.
Collapse
Affiliation(s)
- Wenjing Zheng
- Crops Molecular Improvement Laboratory, Liaoning Innovation Center of the Academy of Agricultural Sciences, 84 Dongling Road, Shenyang, 110161, China.
| | - Yan Wang
- Plant Protection College, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110161, China
| | - Lili Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110161, China
| | - Zuobin Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jiaming Zhao
- Crops Molecular Improvement Laboratory, Liaoning Innovation Center of the Academy of Agricultural Sciences, 84 Dongling Road, Shenyang, 110161, China
| | - Ping Wang
- Crops Molecular Improvement Laboratory, Liaoning Innovation Center of the Academy of Agricultural Sciences, 84 Dongling Road, Shenyang, 110161, China
| | - Lixia Zhang
- Crops Molecular Improvement Laboratory, Liaoning Innovation Center of the Academy of Agricultural Sciences, 84 Dongling Road, Shenyang, 110161, China
| | - Zhiheng Liu
- Plant Protection College, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110161, China
| | - Xiaochun Lu
- Crops Molecular Improvement Laboratory, Liaoning Innovation Center of the Academy of Agricultural Sciences, 84 Dongling Road, Shenyang, 110161, China.
| |
Collapse
|
112
|
Tiwari S, SL K, Kumar V, Singh B, Rao AR, Mithra SV A, Rai V, Singh AK, Singh NK. Mapping QTLs for Salt Tolerance in Rice (Oryza sativa L.) by Bulked Segregant Analysis of Recombinant Inbred Lines Using 50K SNP Chip. PLoS One 2016; 11:e0153610. [PMID: 27077373 PMCID: PMC4831760 DOI: 10.1371/journal.pone.0153610] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/31/2016] [Indexed: 11/19/2022] Open
Abstract
Soil salinity is a major constraint to rice production in large inland and coastal areas around the world. Modern high yielding rice varieties are particularly sensitive to high salt stress. There are salt tolerant landraces and traditional varieties of rice but with limited information on genomic regions (QTLs) and genes responsible for their tolerance. Here we describe a method for rapid identification of QTLs for reproductive stage salt tolerance in rice using bulked segregant analysis (BSA) of bi-parental recombinant inbred lines (RIL). The number of RILs required for the creation of two bulks with extreme phenotypes was optimized to be thirty each. The parents and bulks were genotyped using a 50K SNP chip to identify genomic regions showing homogeneity for contrasting alleles of polymorphic SNPs in the two bulks. The method was applied to ‘CSR11/MI48’ RILs segregating for reproductive stage salt tolerance. Genotyping of the parents and RIL bulks, made on the basis of salt sensitivity index for grain yield, revealed 6,068 polymorphic SNPs and 21 QTL regions showing homogeneity of contrasting alleles in the two bulks. The method was validated further with ‘CSR27/MI48’ RILs used earlier for mapping salt tolerance QTLs using low-density SSR markers. BSA with 50K SNP chip revealed 5,021 polymorphic loci and 34 QTL regions. This not only confirmed the location of previously mapped QTLs but also identified several new QTLs, and provided a rapid way to scan the whole genome for mapping QTLs for complex agronomic traits in rice.
Collapse
Affiliation(s)
- Sushma Tiwari
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | - Vinod Kumar
- Central Soil Salinity Research Institute, Karnal, India
| | - Balwant Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - AR Rao
- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Amitha Mithra SV
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Ashok K. Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Nagendra K. Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
113
|
Muthamilarasan M, Dhaka A, Yadav R, Prasad M. Exploration of millet models for developing nutrient rich graminaceous crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:89-97. [PMID: 26566827 DOI: 10.1016/j.plantsci.2015.08.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 05/20/2023]
Abstract
Protein-energy malnutrition and micronutrient deficiencies contribute to high mortality among considerable proportion of the current 7.2 billion global populations, especially children. Although poverty and diets poor in nutrition are prime reasons for prevalence of malnutrition, nutritionally dense crops offer an inexpensive and sustainable solution to the problem of malnutrition. Remarkably, millets are nutritionally superior to major non-millet cereals. They especially are rich in dietary fibers, antioxidants, phytochemicals and polyphenols, which contribute broad-spectrum positive impacts to human health. However, millets have received lesser research attention universally, and considering this, the present review was planned to summarize the reports available on nutrition profile of millets and non-millet cereals to provide a comparative insight on importance of millets. It also emphasizes the need for research on deciphering nutritional traits present in millets and to develop strategies for introgressing these traits into other conventional staple crops using germplasm and 'omics' technologies. In some millet species, excellent 'omics' and germplasm panels have started to get available which can act as a starting point for understanding as well as of introgressing healthful traits across millets and non-millet cereals.
Collapse
Affiliation(s)
| | - Annvi Dhaka
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Rattan Yadav
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Goggerdan, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
114
|
Fujisaki K, Abe Y, Ito A, Saitoh H, Yoshida K, Kanzaki H, Kanzaki E, Utsushi H, Yamashita T, Kamoun S, Terauchi R. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:875-87. [PMID: 26186703 DOI: 10.1111/tpj.12934] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 05/03/2023]
Abstract
Vesicle trafficking including the exocytosis pathway is intimately associated with host immunity against pathogens. However, we still have insufficient knowledge about how it contributes to immunity, and how pathogen factors affect it. In this study, we explore host factors that interact with the Magnaporthe oryzae effector AVR-Pii. Gel filtration chromatography and co-immunoprecipitation assays identified a 150 kDa complex of proteins in the soluble fraction comprising AVR-Pii and OsExo70-F2 and OsExo70-F3, two rice Exo70 proteins presumably involved in exocytosis. Simultaneous knockdown of OsExo70-F2 and F3 totally abrogated Pii immune receptor-dependent resistance, but had no effect on Pia- and Pik-dependent resistance. Knockdown levels of OsExo70-F3 but not OsExo70-F2 correlated with reduction of Pii function, suggesting that OsExo70-F3 is specifically involved in Pii-dependent resistance. Under our current experimental conditions, over-expression of AVR-Pii or knockdown of OsExo70-F2 and -F3 genes in rice did not affect the virulence of compatible isolates of M. oryzae. AVR-Pii interaction with OsExo70-F3 appears to play a crucial role in immunity triggered by Pii, suggesting a role for OsExo70 as a decoy or helper in Pii/AVR-Pii interactions.
Collapse
Affiliation(s)
- Koki Fujisaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Yoshiko Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Akiko Ito
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | | | - Kentaro Yoshida
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | | | - Eiko Kanzaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Hiroe Utsushi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | | | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
115
|
Wu J, Kou Y, Bao J, Li Y, Tang M, Zhu X, Ponaya A, Xiao G, Li J, Li C, Song MY, Cumagun CJR, Deng Q, Lu G, Jeon JS, Naqvi NI, Zhou B. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. THE NEW PHYTOLOGIST 2015; 206:1463-75. [PMID: 25659573 DOI: 10.1111/nph.13310] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/22/2014] [Indexed: 05/20/2023]
Abstract
We identified the Magnaporthe oryzae avirulence effector AvrPi9 cognate to rice blast resistance gene Pi9 by comparative genomics of requisite strains derived from a sequential planting method. AvrPi9 encodes a small secreted protein that appears to localize in the biotrophic interfacial complex and is translocated to the host cell during rice infection. AvrPi9 forms a tandem gene array with its paralogue proximal to centromeric region of chromosome 7. AvrPi9 is expressed highly at early stages during initiation of blast disease. Virulent isolate strains contain Mg-SINE within the AvrPi9 coding sequence. Loss of AvrPi9 did not lead to any discernible defects during growth or pathogenesis in M. oryzae. This study reiterates the role of diverse transposable elements as off-switch agents in acquisition of gain-of-virulence in the rice blast fungus. The prevalence of AvrPi9 correlates well with the avirulence pathotype in diverse blast isolates from the Philippines and China, thus supporting the broad-spectrum resistance conferred by Pi9 in different rice growing areas. Our results revealed that Pi9 and Piz-t at the Pi2/9 locus activate race specific resistance by recognizing sequence-unrelated AvrPi9 and AvrPiz-t genes, respectively.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Hybrid Rice, Longping Branch of Graduate School, Central South University, Changsha, 410125, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanjun Kou
- Temasek Life Sciences Laboratory, Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Jiandong Bao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- The Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ya Li
- The Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingzhi Tang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoli Zhu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, Philippines
| | - Ariane Ponaya
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, Philippines
- College of Agriculture, University of the Philippines, Los Banos, Laguna, 4031, Philippines
| | - Gui Xiao
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, Philippines
| | - Jinbin Li
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Chenyun Li
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Min-Young Song
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Korea
| | | | - Qiyun Deng
- State Key Laboratory of Hybrid Rice, Longping Branch of Graduate School, Central South University, Changsha, 410125, China
| | - Guodong Lu
- The Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Korea
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory, Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Bo Zhou
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, Philippines
| |
Collapse
|
116
|
Bohra A, Singh NP. Whole genome sequences in pulse crops: a global community resource to expedite translational genomics and knowledge-based crop improvement. Biotechnol Lett 2015; 37:1529-39. [PMID: 25851953 DOI: 10.1007/s10529-015-1836-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/02/2015] [Indexed: 01/28/2023]
Abstract
Unprecedented developments in legume genomics over the last decade have resulted in the acquisition of a wide range of modern genomic resources to underpin genetic improvement of grain legumes. The genome enabled insights direct investigators in various ways that primarily include unearthing novel structural variations, retrieving the lost genetic diversity, introducing novel/exotic alleles from wider gene pools, finely resolving the complex quantitative traits and so forth. To this end, ready availability of cost-efficient and high-density genotyping assays allows genome wide prediction to be increasingly recognized as the key selection criterion in crop breeding. Further, the high-dimensional measurements of agronomically significant phenotypes obtained by using new-generation screening techniques will empower reference based resequencing as well as allele mining and trait mapping methods to comprehensively associate genome diversity with the phenome scale variation. Besides stimulating the forward genetic systems, accessibility to precisely delineated genomic segments reveals novel candidates for reverse genetic techniques like targeted genome editing. The shifting paradigm in plant genomics in turn necessitates optimization of crop breeding strategies to enable the most efficient integration of advanced omics knowledge and tools. We anticipate that the crop improvement schemes will be bolstered remarkably with rational deployment of these genome-guided approaches, ultimately resulting in expanded plant breeding capacities and improved crop performance.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India,
| | | |
Collapse
|
117
|
Schneeberger K. Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet 2014; 15:662-76. [PMID: 25139187 DOI: 10.1038/nrg3745] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The long-lasting success of forward genetic screens relies on the simple molecular basis of the characterized phenotypes, which are typically caused by mutations in single genes. Mapping the location of causal mutations using genetic crosses has traditionally been a complex, multistep procedure, but next-generation sequencing now allows the rapid identification of causal mutations at single-nucleotide resolution even in complex genetic backgrounds. Recent advances of this mapping-by-sequencing approach include methods that are independent of reference genome sequences, genetic crosses and any kind of linkage information, which make forward genetics amenable for species that have not been considered for forward genetic screens so far.
Collapse
Affiliation(s)
- Korbinian Schneeberger
- Genome Plasticity and Computational Genetics, Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
118
|
Mascher M, Jost M, Kuon JE, Himmelbach A, Aßfalg A, Beier S, Scholz U, Graner A, Stein N. Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 2014; 15:R78. [PMID: 24917130 PMCID: PMC4073093 DOI: 10.1186/gb-2014-15-6-r78] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/10/2014] [Indexed: 01/02/2023] Open
Abstract
Mapping-by-sequencing has emerged as a powerful technique for genetic mapping in several plant and animal species. As this resequencing-based method requires a reference genome, its application to complex plant genomes with incomplete and fragmented sequence resources remains challenging. We perform exome sequencing of phenotypic bulks of a mapping population of barley segregating for a mutant phenotype that increases the rate of leaf initiation. Read depth analysis identifies a candidate gene, which is confirmed by the analysis of independent mutant alleles. Our method illustrates how the genomic resources of barley together with exome resequencing can underpin mapping-by-sequencing.
Collapse
|
119
|
Mascher M, Jost M, Kuon JE, Himmelbach A, Aßfalg A, Beier S, Scholz U, Graner A, Stein N. Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 2014. [PMID: 24917130 DOI: 10.1186/gb‐2014‐15‐6‐r78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mapping-by-sequencing has emerged as a powerful technique for genetic mapping in several plant and animal species. As this resequencing-based method requires a reference genome, its application to complex plant genomes with incomplete and fragmented sequence resources remains challenging. We perform exome sequencing of phenotypic bulks of a mapping population of barley segregating for a mutant phenotype that increases the rate of leaf initiation. Read depth analysis identifies a candidate gene, which is confirmed by the analysis of independent mutant alleles. Our method illustrates how the genomic resources of barley together with exome resequencing can underpin mapping-by-sequencing.
Collapse
|
120
|
Abstract
Rajeev Varshney, Ryohei Terauchi, and Susan McCouch summarize the current and future uses of next-generation sequencing technologies, both for developing crops with improved traits and for increasing the efficiency of modern plant breeding, as a step towards meeting the challenge of feeding a growing world population. Next generation sequencing (NGS) technologies are being used to generate whole genome sequences for a wide range of crop species. When combined with precise phenotyping methods, these technologies provide a powerful and rapid tool for identifying the genetic basis of agriculturally important traits and for predicting the breeding value of individuals in a plant breeding population. Here we summarize current trends and future prospects for utilizing NGS-based technologies to develop crops with improved trait performance and increase the efficiency of modern plant breeding. It is our hope that the application of NGS technologies to plant breeding will help us to meet the challenge of feeding a growing world population.
Collapse
|
121
|
Na R, Yu D, Chapman BP, Zhang Y, Kuflu K, Austin R, Qutob D, Zhao J, Wang Y, Gijzen M. Genome re-sequencing and functional analysis places the Phytophthora sojae avirulence genes Avr1c and Avr1a in a tandem repeat at a single locus. PLoS One 2014; 9:e89738. [PMID: 24586999 PMCID: PMC3933651 DOI: 10.1371/journal.pone.0089738] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/22/2014] [Indexed: 11/28/2022] Open
Abstract
The aim of this work was to map and identify the Phytophthora sojae Avr1c gene. Progeny from a cross of P. sojae strains ACR10×P7076 were tested for virulence on plants carrying Rps1c. Results indicate that avirulence segregates as a dominant trait. We mapped the Avr1c locus by performing whole genome re-sequencing of composite libraries created from pooled samples. Sequence reads from avirulent (Pool1) and virulent (Pool2) samples were aligned to the reference genome and single nucleotide polymorphisms (SNP) were identified for each pool. High quality SNPs were filtered to select for positions where SNP frequency was close to expected values for each pool. Only three SNP positions fit all requirements, and these occurred in close proximity. Additional DNA markers were developed and scored in the F₂ progeny, producing a fine genetic map that places Avr1c within the Avr1a gene cluster. Transient expression of Avr1c or Avr1a triggers cell death on Rps1c plants, but Avr1c does not trigger cell death on Rps1a plants. Sequence comparisons show that the RXLR effector genes Avr1c and Avr1a are closely related paralogs. Gain of virulence on Rps1c in P. sojae strain P7076 is achieved by gene deletion, but in most other strains this is accomplished by gene silencing. This work provides practical tools for crop breeding and diagnostics, as the Rps1c gene is widely deployed in commercial soybean cultivars.
Collapse
Affiliation(s)
- Ren Na
- Agriculture and Agri-Food Canada, London, Canada
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot, China
| | - Dan Yu
- Agriculture and Agri-Food Canada, London, Canada
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Yun Zhang
- Agriculture and Agri-Food Canada, London, Canada
| | - Kuflom Kuflu
- Agriculture and Agri-Food Canada, London, Canada
| | - Ryan Austin
- Agriculture and Agri-Food Canada, London, Canada
| | - Dinah Qutob
- Agriculture and Agri-Food Canada, London, Canada
| | - Jun Zhao
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot, China
| | - Yuanchao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Mark Gijzen
- Agriculture and Agri-Food Canada, London, Canada
| |
Collapse
|
122
|
Etherington GJ, Monaghan J, Zipfel C, MacLean D. Mapping mutations in plant genomes with the user-friendly web application CandiSNP. PLANT METHODS 2014; 10:41. [PMID: 25610492 PMCID: PMC4301057 DOI: 10.1186/s13007-014-0041-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/05/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Analysis of mutants isolated from forward-genetic screens has revealed key components of several plant signalling pathways. Mapping mutations by position, either using classical methods or whole genome high-throughput sequencing (HTS), largely relies on the analysis of genome-wide polymorphisms in F2 recombinant populations. Combining bulk segregant analysis with HTS has accelerated the identification of causative mutations and has been widely adopted in many research programmes. A major advantage of HTS is the ability to perform bulk segregant analysis after back-crossing to the parental line rather than out-crossing to a polymorphic ecotype, which reduces genetic complexity and avoids issues with phenotype penetrance in different ecotypes. Plotting the positions of homozygous polymorphisms in a mutant genome identifies areas of low recombination and is an effective way to detect molecular linkage to a phenotype of interest. RESULTS We describe the use of single nucleotide polymorphism (SNP) density plots as a mapping strategy to identify and refine chromosomal positions of causative mutations from screened plant populations. We developed a web application called CandiSNP that generates density plots from user-provided SNP data obtained from HTS. Candidate causative mutations, defined as SNPs causing non-synonymous changes in annotated coding regions are highlighted on the plots and listed in a table. We use data generated from a recent mutant screen in the model plant Arabidopsis thaliana as proof-of-concept for the validity of our tool. CONCLUSIONS CandiSNP is a user-friendly application that will aid in novel discoveries from forward-genetic mutant screens. It is particularly useful for analysing HTS data from bulked back-crossed mutants, which contain fewer polymorphisms than data generated from out-crosses. The web-application is freely available online at http://candisnp.tsl.ac.uk.
Collapse
Affiliation(s)
- Graham J Etherington
- />The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH UK
- />The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | | | - Cyril Zipfel
- />The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH UK
| | - Dan MacLean
- />The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
123
|
Ishihara T, Hayano-Saito Y, Oide S, Ebana K, La NT, Hayashi K, Ashizawa T, Suzuki F, Koizumi S. Quantitative trait locus analysis of resistance to panicle blast in the rice cultivar Miyazakimochi. RICE (NEW YORK, N.Y.) 2014; 7:2. [PMID: 24920970 PMCID: PMC4052777 DOI: 10.1186/s12284-014-0002-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/27/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Rice blast is a destructive disease caused by Magnaporthe oryzae, and it has a large impact on rice production worldwide. Compared with leaf blast resistance, our understanding of panicle blast resistance is limited, with only one panicle blast resistance gene, Pb1, isolated so far. The japonica cultivar Miyazakimochi shows resistance to panicle blast, yet the genetic components accounting for this resistance remain to be determined. RESULTS In this study, we evaluated the panicle blast resistance of populations derived from a cross between Miyazakimochi and the Bikei 22 cultivar, which is susceptible to both leaf and panicle blast. The phenotypic analyses revealed no correlation between panicle blast resistance and leaf blast resistance. Quantitative trait locus (QTL) analysis of 158 recombinant inbred lines using 112 developed genome-wide and 35 previously reported polymerase chain reaction (PCR) markers revealed the presence of two QTLs conferring panicle blast resistance in Miyazakimochi: a major QTL, qPbm11, on chromosome 11; and a minor QTL, qPbm9, on chromosome 9. To clarify the contribution of these QTLs to panicle blast resistance, 24 lines homozygous for each QTL were selected from 2,818 progeny of a BC2F7 backcrossed population, and characterized for disease phenotypes. The panicle blast resistance of the lines harboring qPbm11 was very similar to the resistant donor parental cultivar Miyazakimochi, whereas the contribution of qPbm9 to the resistance was small. Genotyping of the BC2F7 individuals highlighted the overlap between the qPbm11 region and a locus of the panicle blast resistance gene, Pb1. Reverse transcriptase PCR analysis revealed that the Pb1 transcript was absent in the panicles of Miyazakimochi, demonstrating that qPbm11 is a novel genetic component of panicle blast resistance. CONCLUSIONS This study revealed that Miyazakimochi harbors a novel panicle blast resistance controlled mainly by the major QTL qPbm11. qPbm11 is distinct from Pb1 and could be a genetic source for breeding panicle blast resistance, and will improve understanding of the molecular basis of host resistance to panicle blast.
Collapse
Affiliation(s)
- Takeaki Ishihara
- National Agricultural Research Center, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba 305-8666, Ibaraki, Japan
| | - Yuriko Hayano-Saito
- National Agricultural Research Center, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba 305-8666, Ibaraki, Japan
| | - Shinichi Oide
- National Agricultural Research Center, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba 305-8666, Ibaraki, Japan
- Present address: Molecular Microbiology and Biotechnology group, Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa 619-0292, Kyoto, Japan
| | - Kaworu Ebana
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Ibaraki, Japan
| | - Nghia Tuan La
- National Plant Resources Center, An Khanh, Hoai Duc Hanoi, Vietnam
| | - Keiko Hayashi
- National Agricultural Research Center, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba 305-8666, Ibaraki, Japan
| | - Taketo Ashizawa
- National Agricultural Research Center, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba 305-8666, Ibaraki, Japan
| | - Fumihiko Suzuki
- National Agricultural Research Center, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba 305-8666, Ibaraki, Japan
| | - Shinzo Koizumi
- National Agricultural Research Center, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba 305-8666, Ibaraki, Japan
- Present address: Technical Adviser, Tsukuba International Center, Japan International Cooperation Agency, 3-6 Koyadai, Tsukuba 305-0074, Ibaraki, Japan
| |
Collapse
|
124
|
Huang X, Han B. Natural variations and genome-wide association studies in crop plants. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:531-51. [PMID: 24274033 DOI: 10.1146/annurev-arplant-050213-035715] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Natural variants of crops are generated from wild progenitor plants under both natural and human selection. Diverse crops that are able to adapt to various environmental conditions are valuable resources for crop improvements to meet the food demands of the increasing human population. With the completion of reference genome sequences, the advent of high-throughput sequencing technology now enables rapid and accurate resequencing of a large number of crop genomes to detect the genetic basis of phenotypic variations in crops. Comprehensive maps of genome variations facilitate genome-wide association studies of complex traits and functional investigations of evolutionary changes in crops. These advances will greatly accelerate studies on crop designs via genomics-assisted breeding. Here, we first discuss crop genome studies and describe the development of sequencing-based genotyping and genome-wide association studies in crops. We then review sequencing-based crop domestication studies and offer a perspective on genomics-driven crop designs.
Collapse
Affiliation(s)
- Xuehui Huang
- National Center for Gene Research, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China; ,
| | | |
Collapse
|
125
|
Wulff BBH, Moscou MJ. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. FRONTIERS IN PLANT SCIENCE 2014; 5:692. [PMID: 25538723 PMCID: PMC4255625 DOI: 10.3389/fpls.2014.00692] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/20/2014] [Indexed: 05/19/2023]
Abstract
The domestication of wheat in the Fertile Crescent 10,000 years ago led to a genetic bottleneck. Modern agriculture has further narrowed the genetic base by introducing extreme levels of uniformity on a vast spatial and temporal scale. This reduction in genetic complexity renders the crop vulnerable to new and emerging pests and pathogens. The wild relatives of wheat represent an important source of genetic variation for disease resistance. For nearly a century farmers, breeders, and cytogeneticists have sought to access this variation for crop improvement. Several barriers restricting interspecies hybridization and introgression have been overcome, providing the opportunity to tap an extensive reservoir of genetic diversity. Resistance has been introgressed into wheat from at least 52 species from 13 genera, demonstrating the remarkable plasticity of the wheat genome and the importance of such natural variation in wheat breeding. Two main problems hinder the effective deployment of introgressed resistance genes for crop improvement: (1) the simultaneous introduction of genetically linked deleterious traits and (2) the rapid breakdown of resistance when deployed individually. In this review, we discuss how recent advances in molecular genomics are providing new opportunities to overcome these problems.
Collapse
Affiliation(s)
- Brande B. H. Wulff
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk, UK
- *Correspondence: Brande B. H. Wulff, Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK e-mail: ; Matthew J. Moscou, The Sainsbury Laboratory, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK e-mail:
| | - Matthew J. Moscou
- The Sainsbury Laboratory, Norwich, Norfolk, UK
- *Correspondence: Brande B. H. Wulff, Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK e-mail: ; Matthew J. Moscou, The Sainsbury Laboratory, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK e-mail:
| |
Collapse
|
126
|
Wei FJ, Droc G, Guiderdoni E, Hsing YIC. International Consortium of Rice Mutagenesis: resources and beyond. RICE (NEW YORK, N.Y.) 2013; 6:39. [PMID: 24341871 PMCID: PMC3946042 DOI: 10.1186/1939-8433-6-39] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/04/2013] [Indexed: 05/20/2023]
Abstract
Rice is one of the most important crops in the world. The rice community needs to cooperate and share efforts and resources so that we can understand the functions of rice genes, especially those with a role in important agronomical traits, for application in agricultural production. Mutation is a major source of genetic variation that can be used for studying gene function. We will present here the status of mutant collections affected in a random manner by physical/chemical and insertion mutageneses.As of early September 2013, a total of 447, 919 flanking sequence tags from rice mutant libraries with T-DNA, Ac/Ds, En/Spm, Tos17, nDART/aDART insertions have been collected and publicly available. From these, 336,262 sequences are precisely positioned on the japonica rice chromosomes, and 67.5% are in gene interval. We discuss the genome coverage and preference of the insertion, issues limiting the exchange and use of the current collections, as well as new and improved resources. We propose a call to renew all mutant populations as soon as possible. We also suggest that a common web portal should be established for ordering seeds.
Collapse
Affiliation(s)
- Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, Hsing: Rm312, IPMB, Academia Sinica, Nankang District, Taipei 11529 Taiwan
| | - Gaëtan Droc
- CIRAD, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Cirad - av. Agropolis -TA A-108/03, 34398 Montpellier Cedex 5, France
| | - Emmanuel Guiderdoni
- CIRAD, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Cirad - av. Agropolis -TA A-108/03, 34398 Montpellier Cedex 5, France
| | - Yue-ie C Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Hsing: Rm312, IPMB, Academia Sinica, Nankang District, Taipei 11529 Taiwan
| |
Collapse
|
127
|
Kawano Y, Shimamoto K. Early signaling network in rice PRR-mediated and R-mediated immunity. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:496-504. [PMID: 23927868 DOI: 10.1016/j.pbi.2013.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 05/21/2023]
Abstract
Recent studies on plant immunity and pathogen infection have revealed sophisticated forms of plant-pathogen interaction. Considerable progress has been made recently in our understanding of the molecular mechanism underlying chitin signaling in rice. The identification and characterization of two direct substrates, OsRacGEF1 and OsRLCK185, as components in the chitin receptor complex of OsCERK1 have revealed how pattern recognition receptors transduce pathogen signals to downstream molecules in rice. In this review, we highlight these and other recent studies that have contributed to our current understanding of the signaling network in rice immunity, especially with regard to pattern recognition receptors, disease resistance (R) proteins, and their downstream targets.
Collapse
Affiliation(s)
- Yoji Kawano
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | |
Collapse
|