101
|
Heil M, Vega-Muñoz I. Nucleic Acid Sensing in Mammals and Plants: Facts and Caveats. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:225-285. [PMID: 30904194 DOI: 10.1016/bs.ircmb.2018.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The accumulation of nucleic acids in aberrant compartments is a signal of danger: fragments of cytosolic or extracellular self-DNA indicate cellular dysfunctions or disruption, whereas cytosolic fragments of nonself-DNA or RNA indicate infections. Therefore, nucleic acids trigger immunity in mammals and plants. In mammals, endosomal Toll-like receptors (TLRs) sense single-stranded (ss) or double-stranded (ds) RNA or CpG-rich DNA, whereas various cytosolic receptors sense dsDNA. Although a self/nonself discrimination could favor targeted immune responses, no sequence-specific sensing of nucleic acids has been reported for mammals. Specific immune responses to extracellular self-DNA versus DNA from related species were recently reported for plants, but the underlying mechanism remains unknown. The subcellular localization of mammalian receptors can favor self/nonself discrimination based on the localization of DNA fragments. However, autoantibodies and diverse damage-associated molecular patterns (DAMPs) shuttle DNA through membranes, and most of the mammalian receptors share downstream signaling elements such as stimulator of interferon genes (STING) and the master transcription regulators, nuclear factor (NF)-κB, and interferon regulatory factor 3 (IRF3). The resulting type I interferon (IFN) response stimulates innate immunity against multiple threats-from infection to physical injury or endogenous DNA damage-all of which lead to the accumulation of eDNA or cytoplasmatic dsDNA. Therefore, no or only low selective pressures might have favored a strict self/nonself discrimination in nucleic acid sensing. We conclude that the discrimination between self- and nonself-DNA is likely to be less strict-and less important-than assumed originally.
Collapse
Affiliation(s)
- Martin Heil
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico.
| | - Isaac Vega-Muñoz
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
102
|
Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends Immunol 2018; 39:937-950. [PMID: 30293747 DOI: 10.1016/j.it.2018.09.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 01/13/2023]
Abstract
Innate immune receptors, well known mediators of response to non-self-molecules and inflammation, also act as mediators of immunity triggered by 'damage-associated molecular patterns' (DAMPs). Pathogen-associated molecular patterns (PAMPs) cause inflammation in mammals and a rapid immune response in plants, while DAMPs trigger more complex responses, including immunity, tissue maintenance and repair. DAMPs, their receptors and downstream transduction mechanisms are often conserved within a kingdom or, due to convergent evolution, are similar across the kingdoms of life. Herein, we describe the dynamics and functionality of specific extracellular DAMP classes and their receptors in immunity, inflammation and repair of tissue damage in plants and mammals.
Collapse
|
103
|
Ferreira-Saab M, Formey D, Torres M, Aragón W, Padilla EA, Tromas A, Sohlenkamp C, Schwan-Estrada KRF, Serrano M. Compounds Released by the Biocontrol Yeast Hanseniaspora opuntiae Protect Plants Against Corynespora cassiicola and Botrytis cinerea. Front Microbiol 2018; 9:1596. [PMID: 30065716 PMCID: PMC6056754 DOI: 10.3389/fmicb.2018.01596] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/27/2018] [Indexed: 12/16/2022] Open
Abstract
Plant diseases induced by fungi are among the most important limiting factors during pre- and post-harvest food production. For decades, synthetic chemical fungicides have been used to control these diseases, however, increase on worldwide regulatory policies and the demand to reduce their application, have led to searching for new ecofriendly alternatives such as the biostimulants. The commercial application of yeasts as biocontrol agents, has shown low efficacy compared to synthetic fungicides, mostly due to the limited knowledge of the molecular mechanisms of yeast-induced responses. To date, only two genome-wide transcriptomic analyses have characterized the mode of action of biocontrols using the plant model Arabidopsis thaliana, missing, in our point of view, all its molecular and genomic potential. Here we describe that compounds released by the biocontrol yeast Hanseniaspora opuntiae (HoFs) can protect Glycine max and Arabidopsis thaliana plants against the broad host-range necrotrophic fungi Corynespora cassiicola and Botrytis cinerea. We show that HoFs have a long-lasting, dose-dependent local, and systemic effect against Botrytis cinerea. Additionally, we performed a genome-wide transcriptomic analysis to identify genes differentially expressed after application of HoFs in Arabidopsis thaliana. Our work provides novel and valuable information that can help researchers to improve HoFs efficacy in order for it to become an ecofriendly alternative to synthetic fungicides.
Collapse
Affiliation(s)
- Mariana Ferreira-Saab
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico.,Departemento de Agronomia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Martha Torres
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Wendy Aragón
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Emir A Padilla
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Alexandre Tromas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| | | | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Mexico
| |
Collapse
|
104
|
Claverie J, Balacey S, Lemaître-Guillier C, Brulé D, Chiltz A, Granet L, Noirot E, Daire X, Darblade B, Héloir MC, Poinssot B. The Cell Wall-Derived Xyloglucan Is a New DAMP Triggering Plant Immunity in Vitis vinifera and Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1725. [PMID: 30546374 PMCID: PMC6280107 DOI: 10.3389/fpls.2018.01725] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 05/20/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules that can activate the plant innate immunity. DAMPs can derive from the plant cell wall, which is composed of a complex mixture of cellulose, hemicellulose, and pectin polysaccharides. Fragments of pectin, called oligogalacturonides (OG), can be released after wounding or by pathogen-encoded cell wall degrading enzymes (CWDEs) such as polygalacturonases (PGs). OG are known to induce innate immune responses, including the activation of mitogen-activated protein kinases (MAPKs), production of H2O2, defense gene activation, and callose deposition. Thus, we hypothesized that xyloglucans (Xh), derived from the plant cell wall hemicellulose, could also act as an endogenous elicitor and trigger a signaling cascade similar to OG. Our results indicate that purified Xh elicit MAPK activation and immune gene expression in grapevine (Vitis vinifera) and Arabidopsis (Arabidopsis thaliana) to trigger induced resistance against necrotrophic (Botrytis cinerea) or biotrophic (Hyaloperonospora arabidopsidis) pathogens. Xh also induce resveratrol production in grapevine cell suspension and callose deposition in Arabidopsis which depends on the callose synthase PMR4. In addition, we characterized some signaling components of Xh-induced immunity using Arabidopsis mutants. Our data suggest that Xh-induced resistance against B. cinerea is dependent on the phytoalexin, salicylate, jasmonate, and ethylene pathways.
Collapse
Affiliation(s)
- Justine Claverie
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Suzanne Balacey
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | | | - Daphnée Brulé
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Annick Chiltz
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Lucie Granet
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Elodie Noirot
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Xavier Daire
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | | | - Marie-Claire Héloir
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Benoit Poinssot
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
- *Correspondence: Benoit Poinssot,
| |
Collapse
|