101
|
Pokora I, Żebrowska A. Application of A Physiological Strain Index in Evaluating Responses to Exercise Stress - A Comparison Between Endurance and High Intensity Intermittent Trained Athletes. J Hum Kinet 2016; 50:103-114. [PMID: 28149347 PMCID: PMC5260640 DOI: 10.1515/hukin-2015-0142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 11/22/2022] Open
Abstract
The study evaluated differences in response to exercise stress between endurance and
high-intensity intermittent trained athletes in a thermoneutral environment using a
physiological strain index (PSI). Thirty-two subjects participated in a running
exercise under normal (23°C, 50% RH) conditions. The group included nine
endurance trained athletes (middle-distance runners - MD), twelve high-intensity
intermittent trained athletes (soccer players - HIIT) and eleven students who
constituted a control group. The exercise started at a speed of 4
km·h–1 which was increased every 3 min by 2
km·h–1 to volitional exhaustion. The heart rate was
recorded with a heart rate monitor and aural canal temperature was measured using an
aural canal temperature probe. The physiological strain index (PSI) and the
contribution of the circulatory and thermal components to the overall physiological
strain were calculated from the heart rate and aural canal temperature. The
physiological strain index differed between the study and control participants, but
not between the MD and HIIT groups. The physiological strain in response to exercise
stress in a thermoneutral environment was mainly determined based on the circulatory
strain (MD group - 73%, HIIT group – 70%). The contribution of the circulatory
and thermal components to the physiological strain did not differ significantly
between the trained groups (MD and HIIT) despite important differences in
morphological characteristics and training-induced systemic cardiovascular and
thermoregulatory adaptations.
Collapse
Affiliation(s)
- Ilona Pokora
- Department of Physiology, the Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Aleksandra Żebrowska
- Department of Physiology, the Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
102
|
Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci 2016; 196:52-62. [DOI: 10.1016/j.autneu.2016.02.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 11/22/2022]
|
103
|
Abstract
Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimize performance during sporting activities undertaken in hot ambient conditions. The most important intervention one can adopt to reduce physiological strain and optimize performance is to heat acclimatize. Heat acclimatization should comprise repeated exercise–heat exposures over 1–2 weeks. In addition, athletes should initiate competition and training in an euhydrated state and minimize dehydration during exercise. Following the development of commercial cooling systems (e.g., cooling vests), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organizers should plan for large shaded areas, along with cooling and rehydration facilities, and schedule events in accordance with minimizing the health risks of athletes, especially in mass participation events and during the first hot days of the year. Following the recent examples of the 2008 Olympics and the 2014 FIFA World Cup, sport governing bodies should consider allowing additional (or longer) recovery periods between and during events for hydration and body cooling opportunities when competitions are held in the heat.
Collapse
|
104
|
What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise? Sports Med 2016; 46:1095-109. [DOI: 10.1007/s40279-016-0483-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
105
|
Faulkner SH, Hupperets M, Hodder SG, Havenith G. Conductive and evaporative precooling lowers mean skin temperature and improves time trial performance in the heat. Scand J Med Sci Sports 2016; 25 Suppl 1:183-9. [PMID: 25943669 DOI: 10.1111/sms.12373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2014] [Indexed: 02/01/2023]
Abstract
Self-paced endurance performance is compromised by moderate-to-high ambient temperatures that are evident in many competitive settings. It has become common place to implement precooling prior to competition in an attempt to alleviate perceived thermal load and performance decline. The present study aimed to investigate precooling incorporating different cooling avenues via either evaporative cooling alone or in combination with conductive cooling on cycling time trial performance. Ten trained male cyclists completed a time trial on three occasions in hot (35 °C) ambient conditions with the cooling garment prepared by (a) immersion in water (COOL, evaporative); (b) immersion in water and frozen (COLD, evaporative and conductive); or (c) no precooling (CONT). COLD improved time trial performance by 5.8% and 2.6% vs CONT and COOL, respectively (both P < 0.05). Power output was 4.5% higher for COLD vs CONT (P < 0.05). Mean skin temperature was lower at the onset of the time trial following COLD compared with COOL and CONT (both P < 0.05) and lasted for the first 20% of the time trial. Thermal sensation was perceived cooler following COOL and COLD. The combination of evaporative and conductive cooling (COLD) had the greatest benefit to performance, which is suggested to be driven by reduced skin temperature following cooling.
Collapse
Affiliation(s)
- S H Faulkner
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, UK; National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | | | | |
Collapse
|
106
|
Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scand J Med Sci Sports 2016; 25 Suppl 1:20-38. [PMID: 25943654 DOI: 10.1111/sms.12408] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2014] [Indexed: 11/29/2022]
Abstract
Exercise heat acclimation induces physiological adaptations that improve thermoregulation, attenuate physiological strain, reduce the risk of serious heat illness, and improve aerobic performance in warm-hot environments and potentially in temperate environments. The adaptations include improved sweating, improved skin blood flow, lowered body temperatures, reduced cardiovascular strain, improved fluid balance, altered metabolism, and enhanced cellular protection. The magnitudes of adaptations are determined by the intensity, duration, frequency, and number of heat exposures, as well as the environmental conditions (i.e., dry or humid heat). Evidence is emerging that controlled hyperthermia regimens where a target core temperature is maintained, enable more rapid and complete adaptations relative to the traditional constant work rate exercise heat acclimation regimens. Furthermore, inducing heat acclimation outdoors in a natural field setting may provide more specific adaptations based on direct exposure to the exact environmental and exercise conditions to be encountered during competition. This review initially examines the physiological adaptations associated with heat acclimation induction regimens, and subsequently emphasizes their application to competitive athletes and sports.
Collapse
Affiliation(s)
- J D Périard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | | | | |
Collapse
|
107
|
Cramer MN, Thompson MW, Périard JD. Thermal and Cardiovascular Strain Mitigate the Potential Benefit of Carbohydrate Mouth Rinse During Self-Paced Exercise in the Heat. Front Physiol 2015; 6:354. [PMID: 26635634 PMCID: PMC4658580 DOI: 10.3389/fphys.2015.00354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/10/2015] [Indexed: 11/23/2022] Open
Abstract
Purpose: To determine whether a carbohydrate mouth rinse can alter self-paced exercise performance independently of a high degree of thermal and cardiovascular strain. Methods: Eight endurance-trained males performed two 40-km cycling time trials in 35°C, 60% RH while swilling a 20-ml bolus of 6.5% maltodextrin (CHO) or a color- and taste-matched placebo (PLA) every 5 km. Heart rate, power output, rectal temperature (Tre), and mean skin temperature (Tsk) were recorded continuously; cardiac output, oxygen uptake (VO2), mean arterial pressure (MAP), and perceived exertion (RPE) were measured every 10 min. Results: Performance time and mean power output were similar between treatments, averaging 63.9 ± 3.2 and 64.3 ± 2.8 min, and 251 ± 23 and 242 ± 18 W in CHO and PLA, respectively. Power output, stroke volume, cardiac output, MAP, and VO2 decreased during both trials, increasing slightly or remaining stable during a final 2-km end-spurt. Tre, Tsk, heart rate, and RPE increased throughout exercise similarly with both treatments. Changes in RPE correlated with those in Tre (P < 0.005) and heart rate (P < 0.001). Conclusions: These findings suggest that carbohydrate mouth rinsing does not improve ~1-h time trial performance in hot-humid conditions, possibly due to a failure in down-regulating RPE, which may be influenced more by severe thermal and cardiovascular strain.
Collapse
Affiliation(s)
- Matthew N Cramer
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa Ottawa, ON, Canada ; Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney Lidcombe, NSW, Australia
| | - Martin W Thompson
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney Lidcombe, NSW, Australia
| | - Julien D Périard
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney Lidcombe, NSW, Australia ; Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| |
Collapse
|
108
|
Taylor NA. Overwhelming Physiological Regulation Through Personal Protection. J Strength Cond Res 2015; 29 Suppl 11:S111-8. [DOI: 10.1519/jsc.0000000000001030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
109
|
Racinais S, Périard JD, Karlsen A, Nybo L. Effect of heat and heat acclimatization on cycling time trial performance and pacing. Med Sci Sports Exerc 2015; 47:601-6. [PMID: 24977692 PMCID: PMC4342312 DOI: 10.1249/mss.0000000000000428] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine the effects of heat acclimatization on performance and pacing during outdoor cycling time trials (TT, 43.4 km) in the heat. METHODS Nine cyclists performed three TT in hot ambient conditions (TTH, approximately 37°C) on the first (TTH-1), sixth (TTH-2), and 14th (TTH-3) days of training in the heat. Data were compared with the average of two TT in cool condition (approximately 8°C) performed before and after heat acclimatization (TTC). RESULTS TTH-1 (77 ± 6 min) was slower (P = 0.001) than TTH-2 (69 ± 5 min), and both were slower (P < 0.01) than TTC and TTH-3 (66 ± 3 and 66 ± 4 min, respectively), without differences between TTC and TTH-3 (P > 0.05). The cyclists initiated the first 20% of all TT at a similar power output, irrespective of climate and acclimatization status; however, during TTH-1, they subsequently had a marked decrease in power output, which was partly attenuated after 6 d of acclimatization and was further reduced after 14 d. HR was higher during the first 20% of TTH-1 than that in the other TT (P < 0.05), but there were no differences between conditions from 30% onward. Final rectal temperature was similar in all TTH (40.2°C ± 0.4°C, P = 1.000) and higher than that in TTC (38.5°C ± 0.6°C, P < 0.001). CONCLUSIONS After 2 wk of acclimatization, trained cyclists are capable of completing a prolonged TT in a similar time in the heat compared with cool conditions, whereas in the unacclimatized state, they experienced a marked decrease in power output during the TTH.
Collapse
Affiliation(s)
- Sebastien Racinais
- 1Athlete Health and Performance Research Centre, Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, Doha, QATAR; and 2Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, University of Copenhagen, DENMARK
| | | | | | | |
Collapse
|
110
|
Racinais S, Alonso JM, Coutts AJ, Flouris AD, Girard O, González-Alonso J, Hausswirth C, Jay O, Lee JKW, Mitchell N, Nassis GP, Nybo L, Pluim BM, Roelands B, Sawka MN, Wingo J, Périard JD. Consensus recommendations on training and competing in the heat. Br J Sports Med 2015; 49:1164-73. [PMID: 26069301 PMCID: PMC4602249 DOI: 10.1136/bjsports-2015-094915] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 11/05/2022]
Abstract
Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimise performance during sporting activities undertaken in hot ambient conditions. The most important intervention one can adopt to reduce physiological strain and optimise performance is to heat acclimatise. Heat acclimatisation should comprise repeated exercise-heat exposures over 1–2 weeks. In addition, athletes should initiate competition and training in a euhydrated state and minimise dehydration during exercise. Following the development of commercial cooling systems (eg, cooling-vest), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organisers should plan for large shaded areas, along with cooling and rehydration facilities, and schedule events in accordance with minimising the health risks of athletes, especially in mass participation events and during the first hot days of the year. Following the recent examples of the 2008 Olympics and the 2014 FIFA World Cup, sport governing bodies should consider allowing additional (or longer) recovery periods between and during events, for hydration and body cooling opportunities, when competitions are held in the heat.
Collapse
Affiliation(s)
- S Racinais
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - J M Alonso
- Sports Medicine Department, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar Medical and Anti-doping Commission, International Association of Athletics Federations (IAAF), Montecarlo, Monaco
| | - A J Coutts
- Sport and Exercise Discipline Group, University of Technology Sydney (UTS), Australia
| | - A D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - O Girard
- Department of Physiology, Faculty of Biology and Medicine, ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - J González-Alonso
- Department of Life Sciences, Centre for Sports Medicine and Human Performance, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - C Hausswirth
- Research Department, Laboratory of Sport, Expertise and Performance, French National Institute of Sport (INSEP), Paris, France
| | - O Jay
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, Australia
| | - J K W Lee
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - N Mitchell
- British Cycling and 'Sky Pro Cycling', National Cycling Centre, Manchester, UK
| | - G P Nassis
- National Sports Medicine Programme, Excellence in Football Project, Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - L Nybo
- Department of Nutrition, Exercise and Sport, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - B M Pluim
- Medical Department, Royal Netherlands Lawn Tennis Association (KNLTB), Amersfoort, The Netherlands
| | - B Roelands
- Department of Human Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | - M N Sawka
- School of Applied Physiology, College of Science, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - J Wingo
- Department of Kinesiology, University of Alabama, Tuscaloosa, USA
| | - J D Périard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
111
|
Lloyd A, Hodder S, Havenith G. The interaction between peripheral and central fatigue at different muscle temperatures during sustained isometric contractions. Am J Physiol Regul Integr Comp Physiol 2015; 309:R410-20. [PMID: 26041110 DOI: 10.1152/ajpregu.00061.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/02/2015] [Indexed: 01/13/2023]
Abstract
Changes in central fatigue have been linked to active and passive changes in core temperature, as well as integration of sensory feedback from thermoreceptors in the skin. However, the effects of muscle temperature (Tm), and thereby metaboreceptor and local afferent nerve temperature, on central fatigue (measured using voluntary activation percentage) during sustained, high muscle fatigue exercise remain unexamined. In this study, we investigated Tm across the range of cold to hot, and its effect on voluntary activation percentage during sustained isometric contractions of the knee extensors. The results suggest that contrary to brief contractions, during a sustained fatiguing contraction Tm significantly (P < 0.001) influences force output (-0.7%/°C increase) and central fatigue (-0.5%/°C increase), showing a negative relationship across the Tm continuum in moderately trained individuals. The negative relationship between voluntary activation percentage and Tm indicates muscle temperature may influence central fatigue during sustained and high muscle fatigue exercise. On the basis of on an integrative analysis between the present data and previous literature, the impact of core and muscle temperature on voluntary muscle activation is estimated to show a ratio of 5.5 to 1, respectively. Accordingly, Tm could assume a secondary or tertiary role in the reduction of voluntary muscle activation when body temperature leaves a thermoneutral range.
Collapse
Affiliation(s)
- Alex Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Simon Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
112
|
The influence of a mild thermal challenge and severe hypoxia on exercise performance and serum BDNF. Eur J Appl Physiol 2015; 115:2135-48. [DOI: 10.1007/s00421-015-3193-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/21/2015] [Indexed: 01/27/2023]
|
113
|
Périard JD, Racinais S. Heat stress exacerbates the reduction in middle cerebral artery blood velocity during prolonged self-paced exercise. Scand J Med Sci Sports 2015; 25 Suppl 1:135-44. [DOI: 10.1111/sms.12379] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2014] [Indexed: 11/30/2022]
Affiliation(s)
- J. D. Périard
- Athlete Health and Performance Research Centre; Aspetar Orthopaedic and Sports Medicine Hospital; Doha Qatar
| | - S. Racinais
- Athlete Health and Performance Research Centre; Aspetar Orthopaedic and Sports Medicine Hospital; Doha Qatar
| |
Collapse
|
114
|
Racinais S, Alonso JM, Coutts AJ, Flouris AD, Girard O, González-Alonso J, Hausswirth C, Jay O, Lee JKW, Mitchell N, Nassis GP, Nybo L, Pluim BM, Roelands B, Sawka MN, Wingo JE, Périard JD. Consensus recommendations on training and competing in the heat. Scand J Med Sci Sports 2015; 25 Suppl 1:6-19. [DOI: 10.1111/sms.12467] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 11/26/2022]
Affiliation(s)
- S. Racinais
- Athlete Health and Performance Research Centre; Aspetar; Qatar Orthopaedic and Sports Medicine Hospital; Doha Qatar
| | - J. M. Alonso
- Sports Medicine Department; Aspetar Orthopaedic and Sports Medicine Hospital; Doha Qatar
- Medical and Anti-doping Commission; International Association of Athletics Federations (IAAF); Montecarlo Monaco
| | - A. J. Coutts
- Sport and Exercise Discipline Group; University of Technology Sydney (UTS); Lindfield New South Wales Australia
| | - A. D. Flouris
- FAME Laboratory; Department of Physical Education and Sport Science; University of Thessaly; Trikala Greece
| | - O. Girard
- ISSUL; Institute of Sport Sciences; Department of Physiology; Faculty of Biology and Medicine; University of Lausanne; Lausanne Switzerland
| | - J. González-Alonso
- Centre for Sports Medicine and Human Performance; Department of Life Sciences; College of Health and Life Sciences; Brunel University London; Uxbridge UK
| | - C. Hausswirth
- French National Institute of Sport (INSEP); Research Department; Laboratory of Sport, Expertise and Performance; Paris France
| | - O. Jay
- Discipline of Exercise and Sport Science; Faculty of Health Sciences; University of Sydney; Lidcombe New South Wales Australia
| | - J. K. W. Lee
- Defence Medical and Environmental Research Institute; DSO National Laboratories; Singapore
- Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- Lee Kong Chian School of Medicine; Nanyang Technological University; Singapore
| | - N. Mitchell
- British Cycling and “Sky Pro Cycling”; National Cycling Centre; Manchester UK
| | - G. P. Nassis
- National Sports Medicine Programme; Excellence in Football Project; Aspetar; Qatar Orthopaedic and Sports Medicine Hospital; Doha Qatar
| | - L. Nybo
- Department of Nutrition, Exercise and Sport; Section of Human Physiology; University of Copenhagen; Copenhagen Denmark
| | - B. M. Pluim
- Medical Department; Royal Netherlands Lawn Tennis Association (KNLTB); Amersfoort The Netherlands
| | - B. Roelands
- Department of Human Physiology; Vrije Universiteit Brussel; Brussels Belgium
| | - M. N. Sawka
- School of Applied Physiology; College of Science; Georgia Institute of Technology; Atlanta Georgia USA
| | - J. E. Wingo
- Department of Kinesiology; University of Alabama; Tuscaloosa Alabama USA
| | - J. D. Périard
- Athlete Health and Performance Research Centre; Aspetar; Qatar Orthopaedic and Sports Medicine Hospital; Doha Qatar
| |
Collapse
|
115
|
Goodall S, Charlton K, Hignett C, Prichard J, Barwood M, Howatson G, Thomas K. Augmented supraspinal fatigue following constant-load cycling in the heat. Scand J Med Sci Sports 2015; 25 Suppl 1:164-72. [DOI: 10.1111/sms.12370] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 12/30/2022]
Affiliation(s)
- S. Goodall
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - K. Charlton
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - C. Hignett
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - J. Prichard
- Institue of Health & Society; Newcastle University; Newcastle UK
| | - M. Barwood
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| | - G. Howatson
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
- Water Research Group; School of Environmental Sciences and Development; Northwest University; Potchefstroom South Africa
| | - K. Thomas
- Faculty of Health and Life Sciences; Department of Sport, Exercise & Rehabilitation; Northumbria University; Newcastle UK
| |
Collapse
|
116
|
Crowcroft S, Duffield R, McCleave E, Slattery K, Wallace LK, Coutts AJ. Monitoring training to assess changes in fitness and fatigue: The effects of training in heat and hypoxia. Scand J Med Sci Sports 2015; 25 Suppl 1:287-95. [DOI: 10.1111/sms.12364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2014] [Indexed: 11/29/2022]
Affiliation(s)
- S. Crowcroft
- Faculty of Health; University of Technology; Sydney New South Wales Australia
| | - R. Duffield
- Faculty of Health; University of Technology; Sydney New South Wales Australia
| | - E. McCleave
- Faculty of Health; University of Technology; Sydney New South Wales Australia
- The New South Wales Institute of Sport; Sydney New South Wales Australia
| | - K. Slattery
- The New South Wales Institute of Sport; Sydney New South Wales Australia
| | - L. K. Wallace
- Faculty of Health; University of Technology; Sydney New South Wales Australia
| | - A. J. Coutts
- Faculty of Health; University of Technology; Sydney New South Wales Australia
| |
Collapse
|
117
|
Flouris AD, Schlader ZJ. Human behavioral thermoregulation during exercise in the heat. Scand J Med Sci Sports 2015; 25 Suppl 1:52-64. [DOI: 10.1111/sms.12349] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2014] [Indexed: 01/14/2023]
Affiliation(s)
- A. D. Flouris
- FAME Laboratory; Department of Exercise Science; University of Thessaly; Trikala Greece
| | - Z. J. Schlader
- Institute for Exercise and Environmental Medicine; Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center; Dallas Texas USA
- Department of Exercise and Nutrition Sciences; University at Buffalo; Buffalo New York USA
| |
Collapse
|
118
|
James CA, Richardson AJ, Watt PW, Gibson OR, Maxwell NS. Physiological responses to incremental exercise in the heat following internal and external precooling. Scand J Med Sci Sports 2015; 25 Suppl 1:190-9. [DOI: 10.1111/sms.12376] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 11/28/2022]
Affiliation(s)
- C. A. James
- Environmental Extremes Laboratory; Centre for Sport and Exercise Science and Medicine (SESAME); University of Brighton; Eastbourne UK
| | - A. J. Richardson
- Environmental Extremes Laboratory; Centre for Sport and Exercise Science and Medicine (SESAME); University of Brighton; Eastbourne UK
| | - P. W. Watt
- Environmental Extremes Laboratory; Centre for Sport and Exercise Science and Medicine (SESAME); University of Brighton; Eastbourne UK
| | - O. R. Gibson
- Environmental Extremes Laboratory; Centre for Sport and Exercise Science and Medicine (SESAME); University of Brighton; Eastbourne UK
| | - N. S. Maxwell
- Environmental Extremes Laboratory; Centre for Sport and Exercise Science and Medicine (SESAME); University of Brighton; Eastbourne UK
| |
Collapse
|
119
|
Périard JD, Racinais S. Self-paced exercise in hot and cool conditions is associated with the maintenance of %V̇O2peak within a narrow range. J Appl Physiol (1985) 2015; 118:1258-65. [PMID: 25814635 DOI: 10.1152/japplphysiol.00084.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/23/2015] [Indexed: 11/22/2022] Open
Abstract
This study examined the time course and extent of decrease in peak oxygen uptake (V̇O2peak) during self-paced exercise in HOT (35°C and 60% relative humidity) and COOL (18°C and 40% relative humidity) laboratory conditions. Ten well-trained cyclists completed four consecutive 16.5-min time trials (15-min self-paced effort with 1.5-min maximal end-spurt to determine V̇O2peak) interspersed by 5 min of recovery on a cycle ergometer in each condition. Rectal temperature increased significantly more in HOT (39.4 ± 0.7°C) than COOL (38.6 ± 0.3°C; P < 0.001). Power output was lower throughout HOT compared with COOL (P < 0.001). The decrease in power output from trial 1 to 4 was ∼16% greater in HOT (P < 0.001). Oxygen uptake (V̇o2) was lower throughout HOT than COOL (P < 0.05), except at 5 min and during the end-spurt in trial 1. In HOT, V̇O2peak reached 97, 89, 85, and 85% of predetermined maximal V̇o2, whereas in COOL 97, 94, 93, and 92% were attained. Relative exercise intensity (%V̇O2peak) during trials 1 and 2 was lower in HOT (∼84%) than COOL (∼86%; P < 0.05), decreasing slightly during trials 3 and 4 (∼80 and ∼85%, respectively; P < 0.05). However, heart rate was higher throughout HOT (P = 0.002), and ratings of perceived exertion greater during trials 3 and 4 in HOT (P < 0.05). Consequently, the regulation of self-paced exercise appears to occur in conjunction with the maintenance of %V̇O2peak within a narrow range (80-85% V̇O2peak). This range widens under heat stress, however, when exercise becomes protracted and a disassociation develops between relative exercise intensity, heart rate, and ratings of perceived exertion.
Collapse
Affiliation(s)
- Julien D Périard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Sébastien Racinais
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
120
|
Marino FE. Time Trial Performance and Pacing in Heat is Determined by Rate of Heat Gain. Med Sci Sports Exerc 2015; 47:218. [DOI: 10.1249/mss.0000000000000487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
121
|
Affiliation(s)
- Julien D Périard
- Athlete Health and Performance Research Centre Aspetar, Qatar Orthopaedic and Sports Medicine Hospital Doha, QATAR Department of Nutrition, Exercise and Sports Section of Integrative Physiology University of Copenhagen DENMARK
| | | | | | | |
Collapse
|
122
|
Périard JD, Racinais S, Knez WL, Herrera CP, Christian RJ, Girard O. Thermal, physiological and perceptual strain mediate alterations in match-play tennis under heat stress. Br J Sports Med 2014; 48 Suppl 1:i32-i38. [PMID: 24668377 PMCID: PMC3995247 DOI: 10.1136/bjsports-2013-093063] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES This study compared the thermal, physiological and perceptual responses associated with match-play tennis in HOT (∼34°C wet-bulb-globe temperature (WBGT)) and COOL (∼19°C WBGT) conditions, along with the accompanying alterations in match characteristics. METHODS 12 male tennis players undertook two matches for an effective playing time (ie, ball in play) of 20 min, corresponding to ∼119 and ∼102 min of play in HOT and COOL conditions, respectively. Rectal and skin temperatures, heart rate, subjective ratings of thermal comfort, thermal sensation and perceived exertion were recorded, along with match characteristics. RESULTS End-match rectal temperature increased to a greater extent in the HOT (∼39.4°C) compared with the COOL (∼38.7°C) condition (p<0.05). Thigh skin temperature was higher throughout the HOT match (p<0.001). Heart rate, thermal comfort, thermal sensation and perceived exertion were also higher during the HOT match (p<0.001). Total playing time was longer in the HOT compared with the COOL match (p<0.05). Point duration (∼7.1 s) was similar between conditions, while the time between points was ∼10 s longer in the HOT relative to the COOL match (p<0.05). This led to a ∼3.4% lower effective playing percentage in the heat (p<0.05). Although several thermal, physiological and perceptual variables were individually correlated to the adjustments in time between points and effective playing percentage, thermal sensation was the only predictor variable associated with both adjustments (p<0.005). CONCLUSIONS These adjustments in match-play tennis characteristics under severe heat stress appear to represent a behavioural strategy adopted to minimise or offset the sensation of environmental conditions being rated as difficult.
Collapse
Affiliation(s)
- Julien D Périard
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, , Doha, Qatar
| | | | | | | | | | | |
Collapse
|
123
|
Girard O, Christian RJ, Racinais S, Périard JD. Heat stress does not exacerbate tennis-induced alterations in physical performance. Br J Sports Med 2014; 48 Suppl 1:i39-i44. [PMID: 24668378 PMCID: PMC3995225 DOI: 10.1136/bjsports-2013-093165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Objectives To assess the time course of changes in physical performance in response to match-play tennis under heat stress. Methods Two matches consisting of 20 min of effective playing time (2×10 min segments) were played in COOL (∼102 min; ∼22°C and 70% relative humidity (RH)) and HOT (∼119 min; ∼36°C and 35% RH) environments. Repeated-sprint ability (3×15 m, 15 s rest), 15 m sprint time with a direction change (180°), vertical jump height (squat and countermovement jumps) and leg stiffness (multirebound jumps) were assessed in 12 competitive male players prematch, midmatch and postmatch, and 24 and 48 h after match completion. Results During the repeated-sprint ability test, initial (+2.3% and +3.1%) and cumulated sprint (+1.5% and +2.8%) times increased from prematch to midmatch and postmatch, respectively (p<0.001), while the sprint decrement score did not change. Match-play tennis induced a slowing (average of both conditions: +1.1% and +1.3% at midmatch and postmatch time points; p=0.05) of 15 m sprint time with direction change. Compared with prematch, leg stiffness (−6.4% and −6.5%; p<0.001) and squat jump height (−1.5% and −2.4%; p=0.05), but not countermovement jump height (−0.7% and −1.3%; p>0.05), decreased midmatch and postmatch, respectively, regardless of the condition. Complete recovery in all physical performance markers occurred within 24 h. Conclusions In tennis, match-related fatigue is characterised by impaired repeated-sprint ability, explosive power and leg stiffness at midmatch and postmatch, with values restored to prematch baseline 24 h into recovery. In addition, physical performance responses (match and recovery kinetics) are identical when competing in cool and hot environments.
Collapse
Affiliation(s)
- Olivier Girard
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | | | | | | |
Collapse
|
124
|
|
125
|
Nybo L, Rasmussen P, Sawka MN. Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Compr Physiol 2014; 4:657-89. [PMID: 24715563 DOI: 10.1002/cphy.c130012] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article presents a historical overview and an up-to-date review of hyperthermia-induced fatigue during exercise in the heat. Exercise in the heat is associated with a thermoregulatory burden which mediates cardiovascular challenges and influence the cerebral function, increase the pulmonary ventilation, and alter muscle metabolism; which all potentially may contribute to fatigue and impair the ability to sustain power output during aerobic exercise. For maximal intensity exercise, the performance impairment is clearly influenced by cardiovascular limitations to simultaneously support thermoregulation and oxygen delivery to the active skeletal muscle. In contrast, during submaximal intensity exercise at a fixed intensity, muscle blood flow and oxygen consumption remain unchanged and the potential influence from cardiovascular stressing and/or high skin temperature is not related to decreased oxygen delivery to the skeletal muscles. Regardless, performance is markedly deteriorated and exercise-induced hyperthermia is associated with central fatigue as indicated by impaired ability to sustain maximal muscle activation during sustained contractions. The central fatigue appears to be influenced by neurotransmitter activity of the dopaminergic system, but inhibitory signals from thermoreceptors arising secondary to the elevated core, muscle and skin temperatures and augmented afferent feedback from the increased ventilation and the cardiovascular stressing (perhaps baroreceptor sensing of blood pressure stability) and metabolic alterations within the skeletal muscles are likely all factors of importance for afferent feedback to mediate hyperthermia-induced fatigue during submaximal intensity exercise. Taking all the potential factors into account, we propose an integrative model that may help understanding the interplay among factors, but also acknowledging that the influence from a given factor depends on the exercise hyperthermia situation.
Collapse
Affiliation(s)
- Lars Nybo
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
126
|
Iyoho AE, MacFadden LN, Ng LJ. Prediction of performance reduction in self-paced exercise as modulated by the rating of perceived exertion. Eur J Appl Physiol 2014; 115:675-90. [PMID: 25417169 DOI: 10.1007/s00421-014-3054-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/11/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE Rating of perceived exertion (RPE) is a scale of exercise difficulty and has been hypothesized to be a regulator of work rate during self-pacing. The goal of this work was to develop a dynamic prediction of RPE and to characterize the control strategy employed to reduce work rate during self-paced exercise using RPE as feedback. METHODS Training and test data were acquired from the literature to develop a linear regression of RPE as a function of four physiological variables: core temperature, mean-weighted skin temperature, metabolic rate, and integral of relative oxygen consumption (R (2) = 0.85). A thermoregulatory model was used to predict core and mean-weighted skin temperature. Utilizing self-paced cycling and running data from the literature, we characterized reductions in work rate with a proportional-derivative control algorithm with RPE as feedback. RESULTS Bland-Altman analysis revealed the necessity to parameterize RPE equations for untrained and endurance-trained individuals. Afterwards, dynamic predictions of RPE were accurate for a wide range of activity levels and air temperatures for walking, running, and cycling (LoA and bias of 2.3 and -0.03, respectively). For self-paced exercise, the control algorithm characterized the trend and magnitude of work rate reductions for cycling and running, and showed regulated RPE to be less conservative for shorter vs. longer duration exercise. CONCLUSIONS A novel methodology to characterize self-paced work intensity, based upon dynamic physiologic response, is provided. The complete model is a useful tool that estimates performance decrements during self-paced exercise and predicts tolerance time for exhaustive fixed-rate exercise.
Collapse
Affiliation(s)
- Anthony E Iyoho
- L-3 Applied Technologies Inc., 10770 Wateridge Circle, Suite 200, San Diego, CA, 92121, USA,
| | | | | |
Collapse
|
127
|
De Sousa J, Cheatham C, Wittbrodt M. The effects of a moisture-wicking fabric shirt on the physiological and perceptual responses during acute exercise in the heat. APPLIED ERGONOMICS 2014; 45:1447-1453. [PMID: 24768089 DOI: 10.1016/j.apergo.2014.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 03/07/2014] [Accepted: 04/06/2014] [Indexed: 06/03/2023]
Abstract
This study investigated the effects that a form fitted, moisture-wicking fabric shirt, promoted to have improved evaporative and ventilation properties, has on the physiological and perceptual responses during exercise in the heat. Ten healthy male participants completed two heat stress tests consisting of 45 min of exercise (50% VO2peak) in a hot environment (33 °C, 60% RH). One heat stress test was conducted with the participant wearing a 100% cotton short sleeved t-shirt and the other heat stress test was conducted with the participant wearing a short sleeved synthetic shirt (81% polyester and 19% elastane). Rectal temperature was significantly lower (P < 0.05) in the synthetic condition during the last 15 min of exercise. Furthermore, the synthetic polyester shirt retained less sweat (P < 0.05). As exercise duration increases, the ventilation and evaporation properties of the synthetic garment may prove beneficial in the preservation of body temperature during exercise in the heat.
Collapse
Affiliation(s)
- Justin De Sousa
- Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI 49008, USA.
| | | | - Matthew Wittbrodt
- Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI 49008, USA.
| |
Collapse
|
128
|
Girard O, Racinais S. Combining heat stress and moderate hypoxia reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Eur J Appl Physiol 2014; 114:1521-32. [PMID: 24748530 PMCID: PMC4048668 DOI: 10.1007/s00421-014-2883-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/01/2014] [Indexed: 11/27/2022]
Abstract
Purpose This study investigated the isolated and combined effects of heat [temperate (22 °C/30 % rH) vs. hot (35 °C/40 % rH)] and hypoxia [sea level (FiO2 0.21) vs. moderate altitude (FiO2 0.15)] on exercise capacity and neuromuscular fatigue characteristics. Methods Eleven physically active subjects cycled to exhaustion at constant workload (66 % of the power output associated with their maximal oxygen uptake in temperate conditions) in four different environmental conditions [temperate/sea level (control), hot/sea level (hot), temperate/moderate altitude (hypoxia) and hot/moderate altitude (hot + hypoxia)]. Torque and electromyography (EMG) responses following electrical stimulation of the tibial nerve (plantar-flexion; soleus) were recorded before and 5 min after exercise. Results Time to exhaustion was reduced (P < 0.05) in hot (−35 ± 15 %) or hypoxia (−36 ± 14 %) compared to control (61 ± 28 min), while hot + hypoxia (−51 ± 20 %) further compromised exercise capacity (P < 0.05). However, the effect of temperature or altitude on end-exercise core temperature (P = 0.089 and P = 0.070, respectively) and rating of perceived exertion (P > 0.05) did not reach significance. Maximal voluntary contraction torque, voluntary activation (twitch interpolation) and peak twitch torque decreased from pre- to post-exercise (−9 ± 1, −4 ± 1 and −6 ± 1 % all trials compounded, respectively; P < 0.05), with no effect of the temperature or altitude. M-wave amplitude and root mean square activity were reduced (P < 0.05) in hot compared to temperate conditions, while normalized maximal EMG activity did not change. Altitude had no effect on any measured parameters. Conclusion Moderate hypoxia in combination with heat stress reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Impaired oxygen delivery or increased cardiovascular strain, increasing relative exercise intensity, may have also contributed to earlier exercise cessation.
Collapse
Affiliation(s)
- Olivier Girard
- Athlete Health and Performance Research Centre, Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, PO Box 29222, Doha, Qatar,
| | | |
Collapse
|
129
|
Girard O, Racinais S, Périard JD. Tennis in hot and cool conditions decreases the rapid muscle torque production capacity of the knee extensors but not of the plantar flexors. Br J Sports Med 2014; 48 Suppl 1:i52-8. [PMID: 24668381 PMCID: PMC3995226 DOI: 10.1136/bjsports-2013-093286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To assess the time course of changes in rapid muscle force/torque production capacity and neuromuscular activity of lower limb muscles in response to prolonged (∼2 h) match-play tennis under heat stress. METHODS The rates of torque development (RTD) and electromyographic activity (EMG; ie, root mean square) rise were recorded from 0 to 30, -50, -100 and -200 ms during brief (3-5 s) explosive maximal isometric voluntary contractions (MVC) of the knee extensors (KE) and plantar flexors (PF), along with the peak RTD within the entirety of the torque-time curve. These values were recorded in 12 male tennis players before (prematch) and after (postmatch, 24 and 48 h) match-play in HOT (∼37°C) and COOL (∼22°C) conditions. RESULTS The postmatch core temperature was greater in the HOT (∼39.4°C) vs COOL (∼38.7°C) condition (p<0.05). Reductions in KE RTD occurred within the 0-200 ms epoch after contraction onset postmatch and at 24 h, compared with prematch, independent of environmental conditions (p<0.05). A similar reduction in the KE peak RTD was also observed postmatch relative to prematch (p<0.05). No differences in KE RTD values were observed after normalisation to MVC torque. Furthermore, the rate of KE EMG activity rise remained unchanged. Conversely, the PF contractile RTD and rate of EMG activity rise were unaffected by the exercise or environmental conditions. CONCLUSIONS In the KE, a reduction in maximal torque production capacity following prolonged match-play tennis appears to account for the decrease in the rate of torque development, independent of environmental conditions, while remaining unchanged in the PF.
Collapse
Affiliation(s)
- Olivier Girard
- Aspetar-Qatar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, , Doha, Qatar
| | | | | |
Collapse
|
130
|
Minett GM, Duffield R. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Front Physiol 2014; 5:24. [PMID: 24550837 PMCID: PMC3909945 DOI: 10.3389/fphys.2014.00024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/11/2014] [Indexed: 01/29/2023] Open
Abstract
Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise.
Collapse
Affiliation(s)
- Geoffrey M Minett
- School of Exercise and Nutrition Sciences, Queensland University of Technology Kelvin Grove, Brisbane, QLD, Australia ; Institute of Health and Biomedical Innovation, Queensland University of Technology Kelvin Grove, Brisbane, QLD, Australia
| | - Rob Duffield
- Sport and Exercise Discipline Group, UTS: Health, University of Technology Sydney Lindfield, Sydney, NSW, Australia
| |
Collapse
|
131
|
|
132
|
Levels K, de Koning J, Broekhuijzen I, Zwaan T, Foster C, Daanen H. Effects of radiant heat exposure on pacing pattern during a 15-km cycling time trial. J Sports Sci 2014; 32:845-52. [DOI: 10.1080/02640414.2013.862843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
133
|
Pires W, Wanner SP, Lima MRM, Fonseca IAT, Fumega U, Haibara AS, Coimbra CC, Lima NRV. Physical exercise performance in temperate and warm environments is decreased by an impaired arterial baroreflex. PLoS One 2013; 8:e72005. [PMID: 23951278 PMCID: PMC3737155 DOI: 10.1371/journal.pone.0072005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022] Open
Abstract
The present study aimed to investigate whether running performance in different environments is dependent on intact arterial baroreceptor reflexes. We also assessed the exercise-induced cardiovascular and thermoregulatory responses in animals lacking arterial baroafferent signals. To accomplish these goals, male Wistar rats were subjected to sinoaortic denervation (SAD) or sham surgery (SHAM) and had a catheter implanted into the ascending aorta to record arterial pressure and a telemetry sensor implanted in the abdominal cavity to record core temperature. After recovering from these surgeries, the animals were subjected to constant- or incremental-speed exercises performed until the voluntary interruption of effort under temperate (25° C) and warm (35° C) conditions. During the constant-speed exercises, the running time until the rats were fatigued was shorter in SAD rats in both environments. Although the core temperature was not significantly different between the groups, tail skin temperature was higher in SAD rats under temperate conditions. The denervated rats also displayed exaggerated increases in blood pressure and double product compared with the SHAM rats; in particular, in the warm environment, these exaggerated cardiovascular responses in the SAD rats persisted until they were fatigued. These SAD-mediated changes occurred in parallel with increased variability in the very low and low components of the systolic arterial pressure power spectrum. The running performance was also affected by SAD during the incremental-speed exercises, with the maximal speed attained being decreased by approximately 20% in both environments. Furthermore, at the maximal power output tolerated during the incremental exercises, the mean arterial pressure, heart rate and double product were exaggerated in the SAD relative to SHAM rats. In conclusion, the chronic absence of the arterial baroafferents accelerates exercise fatigue in temperate and warm environments. Our findings also suggest that an augmented cardiovascular strain accounted for the early interruption of exercise in the SAD rats.
Collapse
Affiliation(s)
- Washington Pires
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Authors’ Reply to Périard: “Cardiovascular Determinants Involved in Pacing Under Heat Stress”. Sports Med 2013; 43:647-8. [DOI: 10.1007/s40279-013-0051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
135
|
|
136
|
Hamouti N, Fernández-Elías VE, Ortega JF, Mora-Rodriguez R. Ingestion of sodium plus water improves cardiovascular function and performance during dehydrating cycling in the heat. Scand J Med Sci Sports 2012; 24:507-18. [PMID: 23253191 DOI: 10.1111/sms.12028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2012] [Indexed: 11/28/2022]
Affiliation(s)
- N. Hamouti
- Exercise Physiology Laboratory; University of Castilla-La Mancha; Toledo Spain
| | | | - J. F. Ortega
- Exercise Physiology Laboratory; University of Castilla-La Mancha; Toledo Spain
| | - R. Mora-Rodriguez
- Exercise Physiology Laboratory; University of Castilla-La Mancha; Toledo Spain
| |
Collapse
|
137
|
Macdermid PW, Stannard S. Mechanical work and physiological responses to simulated cross country mountain bike racing. J Sports Sci 2012; 30:1491-501. [PMID: 22876780 DOI: 10.1080/02640414.2012.711487] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The purpose was to assess the mechanical work and physiological responses to cross country mountain bike racing. Participants (n = 7) cycled on a cross country track at race speed whilst VO2, power, cadence, speed, and geographical position were recorded. Mean power during the designated start section (68.5 ± 5.5 s) was 481 ± 122 W, incurring an O2 deficit of 1.58 ± 0.67 L - min(-1) highlighting a significant initial anaerobic (32.4 ± 10.2%) contribution. Complete lap data produced mean (243 ± 12 W) and normalised (279 ± 15 W) power outputs with 13.3 ± 6.1 and 20.7 ± 8.3% of time spent in high force-high velocity and high force-low velocity, respectively. This equated to, physiological measures for %VO(2max) (77 ± 5%) and % HR(max) (93 ± 2%). Terrain (uphill vs downhill) significantly (P < 0.05) influenced power output (70.9 ± 7.5 vs. 41.0 ± 9.2% W(max)),the distribution of low velocity force production, VO2 (80 ± 1.7 vs. 72 ± 3.7%) and cadence (76 + 2 vs. 55 ± 4 rpm) but not heart rate (93.8 ± 2.3 vs. 91.3 ± 0.6% HR(max)) and led to a significant difference between anaerobic contribution and terrain (uphill, 6.4 ± 3.0 vs. downhill, 3.2 ± 1.8%, respectively) but not aerobic energy contribution. Both power and cadence were highly variable through all sections resulting in one power surge every 32 s and a supra-maximal effort every 106 s. The results show that cross country mountain bike racing consists of predominantly low velocity pedalling with a large high force component and when combined with a high oscillating work rate, necessitates high aerobic energy provision, with intermittent anaerobic contribution. Additional physical stress during downhill sections affords less recovery emphasised by physiological variables remaining high throughout.
Collapse
|
138
|
Influence of heat stress and exercise intensity on vastus lateralis muscle and prefrontal cortex oxygenation. Eur J Appl Physiol 2012; 113:211-22. [DOI: 10.1007/s00421-012-2427-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/12/2012] [Indexed: 10/27/2022]
|
139
|
Périard JD, Caillaud C, Thompson MW. Central and peripheral fatigue during passive and exercise-induced hyperthermia. Med Sci Sports Exerc 2012; 43:1657-65. [PMID: 21364487 DOI: 10.1249/mss.0b013e3182148a9a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Hyperthermia was induced during prolonged exercise (ExH) and passive heating (PaH) to isolate the influence of exercise on neuromuscular function during a maximal voluntary isometric contraction (MVC) of the quadriceps under heat stress. The influence of cardiovascular strain in limiting endurance performance in the heat was also examined. METHODS On separate days, eight males cycled to exhaustion at 60% maximal oxygen uptake or were immersed in a water bath (∼41°C) until rectal temperature (Tre) increased to 39.5°C. The ExH and PaH interventions were performed in ambient conditions of 38°C and 60% relative humidity with Tre reaching 39.8°C during exercise. Before (control) and after each intervention, voluntary activation and force production capacity were evaluated by superimposing an electrically stimulated tetanus during a 45-s MVC. RESULTS Force production decreased immediately after PaH and ExH compared with control, with the magnitude of decline being more pronounced after ExH (P < 0.01). Mean voluntary activation was also significantly depressed after both interventions (P < 0.01 vs control). However, the extent of decline in voluntary activation was maintained at ∼90% during both PaH and ExH MVC. This decline accounted for 41.5% (PaH) and 33.1% (ExH) of the decrease in force production. In addition, exhaustion coincided with a marked increase in HR (∼96% of maximum) and a decline in stroke volume (25%) and mean arterial pressure (10%) (P < 0.05). CONCLUSIONS The loss of force production capacity during hyperthermia originated from central and peripheral fatigue factors, with the combination of heat stress and previous contractile activity exacerbating the rate of decline. Thus, the observed significant rise in thermal strain in ExH and PaH impaired neuromuscular function and was associated with an exercise performance limiting increase in cardiovascular strain.
Collapse
Affiliation(s)
- Julien D Périard
- Aspetar, Research and Education Centre, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.
| | | | | |
Collapse
|
140
|
The limitations of the constant load and self-paced exercise models of exercise physiology. COMPARATIVE EXERCISE PHYSIOLOGY 2012. [DOI: 10.1017/s1755254012000013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
141
|
Marino F. The limitations of the constant load and self-paced exercise models of exercise physiology. COMPARATIVE EXERCISE PHYSIOLOGY 2012. [DOI: 10.3920/cep11012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The fundamental tenets of exercise physiology are to describe energy transformations during physical work and make predictions about physical performance during different conditions. Historically, the most popular method to observe such responses during exercise has been the constant load or fixed intensity protocol based largely on the assumption that there is a threshold response of the organism under given conditions. However, constant load exercise does not fully allow for randomness or variability as the biological system is overridden by a predetermined externally imposed load which cannot be altered. Conversely, in self-regulated (paced) exercise there is almost an immediate reduction in power output and muscle recruitment upon commencing exercise. This observation suggests the existence of a neural inhibitory command processes. This difference in regulation demonstrates the inherent importance of variability in the biological system; for in tightly controlled energy expenditure, as is the case during constant load exercise, sensory cues cannot be fully integrated to provide a more appropriate response to the given task. The collective evidence from conventional constant load versus self-regulated exercise studies suggest that energy transformations are indeed different so that the inherent biological variability accounts for the different results achieved by the two experimental paradigms.
Collapse
Affiliation(s)
- F.E. Marino
- Faculty of Education, School of Human Movement Studies, Chair of Exercise Physiology, Charles Sturt University, Panorama Ave, Bathurst NSW 2795, Australia
| |
Collapse
|
142
|
Sawka MN, Cheuvront SN, Kenefick RW. High skin temperature and hypohydration impair aerobic performance. Exp Physiol 2011; 97:327-32. [PMID: 22143882 DOI: 10.1113/expphysiol.2011.061002] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.
Collapse
Affiliation(s)
- Michael N Sawka
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, 42 Kansas Street, Natick, MA 01760, USA
| | | | | |
Collapse
|
143
|
Schlader ZJ, Stannard SR, Mündel T. Is peak oxygen uptake a determinant of moderate-duration self-paced exercise performance in the heat? Appl Physiol Nutr Metab 2011; 36:863-72. [DOI: 10.1139/h11-111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to identify whether reductions in peak oxygen uptake (VO2peak) dictate performance outcomes during 30 min of self-paced exercise in the heat, which is expected to induce minimal hyperthermia. On 4 occasions, 11 male subjects completed peak and self-paced exercise in both hot (HOT, 40.2 ± 0.3 °C) and moderate (MOD; 20.4 ± 0.7 °C) conditions. During peak exercise, submaximal oxygen uptake (VO2) was ∼8% higher in HOT, but VO2peak (MOD, 4.64 ± 0.83 L·min–1; HOT, 4.54 ± 0.77 L·min–1) and peak cardiac output (Qpeak) were similar. Self-paced exercise performance was reduced by ∼21% in HOT. VO2 was similar through 15 min, but lower in HOT thereafter. Relative to MOD, this represented a higher and lower %VO2peak during the initial and latter stages. Cardiac output was similar in both trials (MOD, 31.6 ± 6.6 L·min–1; HOT, 30.1 ± 6.0 L·min–1), representing a similar percentage of Qpeak throughout. Rectal temperature was similar in both conditions until 30 min (MOD, 38.5 ± 0.3 °C; HOT, 38.7 ± 0.3 °C), while skin temperature was higher throughout in HOT (mean: MOD, 32.4 ± 1.1 °C; HOT, 37.3 ± 0.4 °C). Perceived exertion rose similarly in both conditions, while thermal discomfort was higher in HOT. These data indicate that when only skin temperature is elevated, reductions in exercise performance during moderate-duration self-paced exercise are not associated with changes in VO2peak. Rather, increases in VO2 at a given submaximal external workload and (or) thermal discomfort appear to play a larger role.
Collapse
Affiliation(s)
- Zachary J. Schlader
- School of Sport and Exercise, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Stephen R. Stannard
- School of Sport and Exercise, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Toby Mündel
- School of Sport and Exercise, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| |
Collapse
|
144
|
Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated Physiological Mechanisms of Exercise Performance, Adaptation, and Maladaptation to Heat Stress. Compr Physiol 2011; 1:1883-928. [DOI: 10.1002/cphy.c100082] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
145
|
Marino FE. Is cardiovascular strain limiting during self-paced exercise in the heat? Exp Physiol 2011; 96:476-8; author reply 479. [PMID: 21402881 DOI: 10.1113/expphysiol.2010.056366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
146
|
|