101
|
Storm BS, Christiansen D, Fure H, Ludviksen JK, Lau C, Lambris JD, Woodruff TM, Brekke OL, Braaten T, Nielsen EW, Mollnes TE. Air Bubbles Activate Complement and Trigger Hemostasis and C3-Dependent Cytokine Release Ex Vivo in Human Whole Blood. THE JOURNAL OF IMMUNOLOGY 2021; 207:2828-2840. [PMID: 34732467 PMCID: PMC8611197 DOI: 10.4049/jimmunol.2100308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022]
Abstract
Air bubbles trigger a C3-driven thromboinflammation in human whole blood. Blocking C3, but not C5, attenuates the air-induced inflammation. Avoiding ambient air in test tubes attenuates thromboinflammation.
Venous air embolism, which may complicate medical and surgical procedures, activates complement and triggers thromboinflammation. In lepirudin-anticoagulated human whole blood, we examined the effect of air bubbles on complement and its role in thromboinflammation. Whole blood from 16 donors was incubated with air bubbles without or with inhibitors of C3, C5, C5aR1, or CD14. Complement activation, hemostasis, and cytokine release were measured using ELISA and quantitative PCR. Compared with no air, incubating blood with air bubbles increased, on average, C3a 6.5-fold, C3bc 6-fold, C3bBbP 3.7-fold, C5a 4.6-fold, terminal complement complex sC5b9 3.6-fold, prothrombin fragments 1+2 (PTF1+2) 25-fold, tissue factor mRNA (TF-mRNA) 26-fold, microparticle tissue factor 6.1-fold, β-thromboglobulin 26-fold (all p < 0.05), and 25 cytokines 11-fold (range, 1.5–78-fold; all p < 0.0001). C3 inhibition attenuated complement and reduced PTF1+2 2-fold, TF-mRNA 5.4-fold, microparticle tissue factor 2-fold, and the 25 cytokines 2.7-fold (range, 1.4–4.9-fold; all p < 0.05). C5 inhibition reduced PTF1+2 2-fold and TF-mRNA 12-fold (all p < 0.05). C5 or CD14 inhibition alone reduced three cytokines, including IL-1β (p = 0.02 and p = 0.03). Combined C3 and CD14 inhibition reduced all cytokines 3.9-fold (range, 1.3–9.5-fold; p < 0.003) and was most pronounced for IL-1β (3.2- versus 6.4-fold), IL-6 (2.5- versus 9.3-fold), IL-8 (4.9- versus 8.6-fold), and IFN-γ (5- versus 9.5-fold). Antifoam activated complement and was avoided. PTF1+2 was generated in whole blood but not in plasma. In summary, air bubbles activated complement and triggered a C3-driven thromboinflammation. C3 inhibition reduced all mediators, whereas C5 inhibition reduced only TF-mRNA. Combined C5 and CD14 inhibition reduced IL-1β release. These data have implications for future mechanistic studies and possible pharmacological interventions in patients with air embolism.
Collapse
Affiliation(s)
- Benjamin S Storm
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway; .,Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway.,Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | | | - Hilde Fure
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | | | - Corinna Lau
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | - John D Lambris
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ole-Lars Brekke
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | - Tonje Braaten
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway.,Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erik W Nielsen
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway.,Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway.,Research Laboratory, Nordland Hospital Trust, Bodø, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Immunology, Oslo University Hospital and the University of Oslo, Oslo, Norway; and.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
102
|
Complement as a powerful "influencer" in the brain during development, adulthood and neurological disorders. Adv Immunol 2021; 152:157-222. [PMID: 34844709 DOI: 10.1016/bs.ai.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complement system was long considered as only a powerful effector arm of the immune system that, while critically protective, could lead to inflammation and cell death if overactivated, even in the central nervous system (CNS). However, in the past decade it has been recognized as playing critical roles in key physiological processes in the CNS, including neurogenesis and synaptic remodeling in the developing and adult brain. Inherent in these processes are the interactions with cells in the brain, and the cascade of interactions and functional consequences that ensue. As a result, investigations of therapeutic approaches for both suppressing excessive complement driven neurotoxicity and aberrant sculpting of neuronal circuits, require broad (and deep) knowledge of the functional activities of multiple components of this highly evolved and regulated system to avoid unintended negative consequences in the clinic. Advances in basic science are beginning to provide a roadmap for translation to therapeutics, with both small molecule and biologics. Here, we present examples of the critical roles of proper complement function in the development and sculpting of the nervous system, and in enabling rapid protection from infection and clearance of dying cells. Microglia are highlighted as important command centers that integrate signals from the complement system and other innate sensors that are programed to provide support and protection, but that direct detrimental responses to aberrant activation and/or regulation of the system. Finally, we present promising research areas that may lead to effective and precision strategies for complement targeted interventions to promote neurological health.
Collapse
|
103
|
Langeland H, Damås JK, Mollnes TE, Ludviksen JK, Ueland T, Michelsen AE, Løberg M, Bergum D, Nordseth T, Skjærvold NK, Klepstad P. The inflammatory response is related to circulatory failure after out-of-hospital cardiac arrest: A prospective cohort study. Resuscitation 2021; 170:115-125. [PMID: 34838662 DOI: 10.1016/j.resuscitation.2021.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/31/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Whole body ischemia and reperfusion injury after cardiac arrest leads to the massive inflammation clinically manifested in the post-cardiac arrest syndrome. Previous studies on the inflammatory effect on circulatory failure after cardiac arrest have either investigated a selected patient group or a limited part of the inflammatory mechanisms. We examined the association between cardiac arrest characteristics and inflammatory biomarkers, and between inflammatory biomarkers and circulatory failure after cardiac arrest, in an unselected patient cohort. METHODS This was a prospective study of 50 consecutive patients with out-of-hospital cardiac arrest. Circulation was invasively monitored from admission until day five, whereas inflammatory biomarkers, i.e. complement activation, cytokines and endothelial injury, were measured daily. We identified predictors for an increased inflammatory response, and associations between the inflammatory response and circulatory failure. RESULTS We found a marked and broad inflammatory response in patients after cardiac arrest, which was associated with clinical outcome. Long time to return of spontaneous circulation and high lactate level at admission were associated with increased complement activation (TCC and C3bc), pro-inflammatory cytokines (IL-6, IL-8) and endothelial injury (syndecan-1) at admission. These biomarkers were in turn significantly associated with lower mean arterial blood pressure, lower cardiac output and lower systemic vascular resistance, and increased need of circulatory support in the initial phase. High levels of TCC and IL-6 at admission were significantly associated with increased 30-days mortality. CONCLUSION Inflammatory biomarkers, including complement activation, cytokines and endothelial injury, were associated with increased circulatory failure in the initial period after cardiac arrest.
Collapse
Affiliation(s)
- Halvor Langeland
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Jan Kristian Damås
- Gemini Center for Sepsis Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre of Molecular Inflammation Research, Institute for Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Infectious Diseases, St. Olav's University Hospital, Trondheim, Norway
| | - Tom Eirik Mollnes
- Centre of Molecular Inflammation Research, Institute for Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway; Research Laboratory, Nordland Hospital, Bodø, Norway; K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | | | - Thor Ueland
- K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Annika E Michelsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Magnus Løberg
- Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Daniel Bergum
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Trond Nordseth
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Anaesthesia, Molde Hospital, Molde, Norway
| | - Nils Kristian Skjærvold
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Pål Klepstad
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
104
|
Witczak BJ, Pischke SE, Reisæter AV, Midtvedt K, Ludviksen JK, Heldal K, Jenssen T, Hartmann A, Åsberg A, Mollnes TE. Elevated Terminal C5b-9 Complement Complex 10 Weeks Post Kidney Transplantation Was Associated With Reduced Long-Term Patient and Kidney Graft Survival. Front Immunol 2021; 12:738927. [PMID: 34759922 PMCID: PMC8573334 DOI: 10.3389/fimmu.2021.738927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Background The major reason for graft loss is chronic tissue damage, as interstitial fibrosis and tubular atrophy (IF/TA), where complement activation may serve as a mediator. The association of complement activation in a stable phase early after kidney transplantation with long-term outcomes is unexplored. Methods We examined plasma terminal C5b-9 complement complex (TCC) 10 weeks posttransplant in 900 patients receiving a kidney between 2007 and 2012. Clinical outcomes were assessed after a median observation time of 9.3 years [interquartile range (IQR) 7.5–10.6]. Results Elevated TCC plasma values (≥0.7 CAU/ml) were present in 138 patients (15.3%) and associated with a lower 10-year patient survival rate (65.7% vs. 75.5%, P < 0.003). Similarly, 10-year graft survival was lower with elevated TCC; 56.9% vs. 67.3% (P < 0.002). Graft survival was also lower when censored for death; 81.5% vs. 87.3% (P = 0.04). In multivariable Cox analyses, impaired patient survival was significantly associated with elevated TCC [hazard ratio (HR) 1.40 (1.02–1.91), P = 0.04] along with male sex, recipient and donor age, smoking, diabetes, and overall survival more than 1 year in renal replacement therapy prior to engraftment. Likewise, elevated TCC was independently associated with graft loss [HR 1.40 (1.06–1.85), P = 0.02] along with the same covariates. Finally, elevated TCC was in addition independently associated with death-censored graft loss [HR 1.69 (1.06–2.71), P = 0.03] as were also HLA-DR mismatches and higher immunological risk. Conclusions Early complement activation, assessed by plasma TCC, was associated with impaired long-term patient and graft survival.
Collapse
Affiliation(s)
| | - Søren E Pischke
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Anaesthesiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Anna V Reisæter
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Norwegian Renal Registry, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Karsten Midtvedt
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | | | - Kristian Heldal
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Trond Jenssen
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Hartmann
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Norwegian Renal Registry, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tom E Mollnes
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Faculty of Health Sciences, KG Jebsen Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
105
|
Gomez-Arboledas A, Acharya MM, Tenner AJ. The Role of Complement in Synaptic Pruning and Neurodegeneration. Immunotargets Ther 2021; 10:373-386. [PMID: 34595138 PMCID: PMC8478425 DOI: 10.2147/itt.s305420] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
The complement system, an essential part of the innate immune system, is composed of a group of secreted and membrane proteins that collectively participate in maintaining the function of the healthy and diseased brain. However, an inappropriate activation of the complement system has been related to an inflammatory response in multiple diseases, such as stroke, traumatic brain injury, multiple sclerosis, and Alzheimer's disease, as well as Zika infection and radiotherapy. In addition, C1q and C3 (initial activation components of the complement cascade) have been shown to play a key beneficial role in the refinement of synaptic circuits during developmental stages and adult plasticity. Nevertheless, excessive synaptic pruning in the adult brain can be detrimental and has been associated with synaptic loss in several pathological conditions. In this brief review, we will discuss the role of the complement system in synaptic pruning as well as its contribution to neurodegeneration and cognitive deficits. We also mention potential therapeutic approaches to target the complement system to treat several neuroinflammatory diseases and unintended consequences of radiotherapy.
Collapse
Affiliation(s)
- Angela Gomez-Arboledas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, USA
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA
| |
Collapse
|
106
|
Li H, Chen J, Hu Y, Cai X, Tang D, Zhang P. Serum C1q Levels Have Prognostic Value for Sepsis and are Related to the Severity of Sepsis and Organ Damage. J Inflamm Res 2021; 14:4589-4600. [PMID: 34531674 PMCID: PMC8439974 DOI: 10.2147/jir.s322391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To explore the clinical application value of serum complement component C1q levels in sepsis. Methods The clinical data and laboratory examination data of 320 research subjects (including 132 cases as sepsis group, 93 cases as nonsepsis group and 95 cases as control group) who were diagnosed and treated in Renmin Hospital of Wuhan University from July 2020 to March 2021 were collected. We compared the levels of each index among the three groups and further analyzed the C1q levels of different severity subgroups and different outcome subgroups of sepsis. Afterwards, we explored the correlation between C1q levels and SOFA score, organ damage indexes and coagulation indexes. Finally, the receiver operating characteristic curve (ROC) was used to analyze the prognostic value of C1q in patients with sepsis. Results C1q levels were significantly reduced in the serum of patients with sepsis; the level of C1q in the death group was lower than that in the survival group (127.1 mg/L vs 153.2 mg/L, P < 0.05), and the mortality in the C1q decreased group was higher when compared with C1q normal group; in addition, serum C1q levels were correlated with SOFA score, organ damage indexes and coagulation indexes; C1q had a high area under the curve (AUC) for the prognosis of sepsis, and the combination of other indexes can further improve the prognostic value. Conclusion Serum C1q levels have potential clinical value for the condition and prognosis of sepsis.
Collapse
Affiliation(s)
- Huan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Juanjuan Chen
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yuanhui Hu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xin Cai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Dongling Tang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Pingan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| |
Collapse
|
107
|
Das A, Behera LM, Rana S. Interaction of Human C5a with the Major Peptide Fragments of C5aR1: Direct Evidence in Support of "Two-Site" Binding Paradigm. ACS OMEGA 2021; 6:22876-22887. [PMID: 34514259 PMCID: PMC8427777 DOI: 10.1021/acsomega.1c03400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 05/26/2023]
Abstract
The C5a receptor's (C5aR1) physiological function in various tissues depends on its high-affinity binding to the cationic proinflammatory glycoprotein C5a, produced during the activation of the complement system. However, an overstimulated complement can quickly alter the C5a-C5aR1 function from physiological to pathological, as has been noted in the case of several chronic inflammation-induced diseases like asthma, lung injury, multiorgan failure, sepsis, and now COVID-19. In the absence of the structural data, the current study provides the confirmatory biophysical validation of the hypothesized "two-site" binding interactions of C5a, involving (i) the N-terminus (NT) peptide ("Site1") and (ii) the extracellular loop 2 (ECL2) peptide of the extracellular surface (ECS) of the C5aR1 ("Site2"), as illustrated earlier in the reported model structural complex of C5a-C5aR1. The biophysical and computational data elaborated in the study provides an improved understanding of the C5a-C5aR1 interaction at an atomistic resolution, highlighting the energetic importance of the aspartic acids on the NT-peptide of C5aR1 toward binding of C5a. The current study can potentially advance the search and optimization of new-generation alternative "antibodies" as well as "neutraligands" targeting the C5a to modulate its interaction with C5aR1.
Collapse
|
108
|
Wu X, Bao L, Hu Z, Yao D, Li F, Li H, Xu X, An Y, Wang X, Cao B, Zhang X. Ficolin A exacerbates severe H1N1 influenza virus infection-induced acute lung immunopathological injury via excessive complement activation. Cell Mol Immunol 2021; 18:2278-2280. [PMID: 34302063 PMCID: PMC8298942 DOI: 10.1038/s41423-021-00737-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xu Wu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infection, Beijing, China
| | - Ziqi Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Duoduo Yao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fengdi Li
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infection, Beijing, China
| | - Hui Li
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Xiaoxue Xu
- Department of Core Facility Center, Capital Medical University, Beijing, China
| | - Yunqing An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Cao
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
109
|
Frazer-Abel A, Kirschfink M, Prohászka Z. Expanding Horizons in Complement Analysis and Quality Control. Front Immunol 2021; 12:697313. [PMID: 34434189 PMCID: PMC8381195 DOI: 10.3389/fimmu.2021.697313] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023] Open
Abstract
Complement not only plays a key role in host microbial defense but also modulates the adaptive immune response through modification of T- and B-cell reactivity. Moreover, a normally functioning complement system participates in hematopoiesis, reproduction, lipid metabolism, and tissue regeneration. Because of its powerful inflammatory potential, multiple regulatory proteins are needed to prevent potential tissue damage. In clinical practice, dysregulation and overactivation of the complement system are major causes of a variety of inflammatory and autoimmune diseases ranging from nephropathies, age-related macular degeneration (AMD), and systemic lupus erythematosus (SLE) to graft rejection, sepsis, and multi-organ failure. The clinical importance is reflected by the recent development of multiple drugs targeting complement with a broad spectrum of indications. The recognition of the role of complement in diverse diseases and the advent of complement therapeutics has increased the number of laboratories and suppliers entering the field. This has highlighted the need for reliable complement testing. The relatively rapid expansion in complement testing has presented challenges for a previously niche field. This is exemplified by the issue of cross-reactivity of complement-directed antibodies and by the challenges of the poor stability of many of the complement analytes. The complex nature of complement testing and increasing clinical demand has been met in the last decade by efforts to improve the standardization among laboratories. Initiated by the IUIS/ICS Committee for the Standardization and Quality Assessment in Complement Measurements 14 rounds of external quality assessment since 2010 resulted in improvements in the consistency of testing across participating institutions, while extending the global reach of the efforts to more than 200 laboratories in 30 countries. Worldwide trends of assay availability, usage, and analytical performance are summarized based on the past years’ experiences. Progress in complement analysis has been facilitated by the quality assessment and standardization efforts that now allow complement testing to provide a comprehensive insight into deficiencies and the activation state of the system. This in turn enables clinicians to better define disease severity, evolution, and response to therapy.
Collapse
Affiliation(s)
| | | | - Zoltán Prohászka
- Department of Medicine and Hematology, Research Laboratory Semmelweis University, Budapest, Hungary
| |
Collapse
|
110
|
Shinjyo N, Kagaya W, Pekna M. Interaction Between the Complement System and Infectious Agents - A Potential Mechanistic Link to Neurodegeneration and Dementia. Front Cell Neurosci 2021; 15:710390. [PMID: 34408631 PMCID: PMC8365172 DOI: 10.3389/fncel.2021.710390] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
As part of the innate immune system, complement plays a critical role in the elimination of pathogens and mobilization of cellular immune responses. In the central nervous system (CNS), many complement proteins are locally produced and regulate nervous system development and physiological processes such as neural plasticity. However, aberrant complement activation has been implicated in neurodegeneration, including Alzheimer's disease. There is a growing list of pathogens that have been shown to interact with the complement system in the brain but the short- and long-term consequences of infection-induced complement activation for neuronal functioning are largely elusive. Available evidence suggests that the infection-induced complement activation could be protective or harmful, depending on the context. Here we summarize how various infectious agents, including bacteria (e.g., Streptococcus spp.), viruses (e.g., HIV and measles virus), fungi (e.g., Candida spp.), parasites (e.g., Toxoplasma gondii and Plasmodium spp.), and prion proteins activate and manipulate the complement system in the CNS. We also discuss the potential mechanisms by which the interaction between the infectious agents and the complement system can play a role in neurodegeneration and dementia.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Wataru Kagaya
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
111
|
Fodil S, Annane D. Complement Inhibition and COVID-19: The Story so Far. Immunotargets Ther 2021; 10:273-284. [PMID: 34345614 PMCID: PMC8323860 DOI: 10.2147/itt.s284830] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe complication of COVID-19, a disease caused by severe acute respiratory syndrome coronavirus (SARS CoV) 2. The mechanisms underlying the progression from asymptomatic disease to pneumonia and ARDS are complex and by far unelucidated. As for bacterial sepsis, the release of damage associated molecular patterns and pathogen associated molecular patterns triggers activation of the complement cascade. Subsequently, overexpressed anaphylatoxins recruit inflammatory cells in the lung and other organs and contribute initiating and amplifying a vicious circle of thromboinflammation causing organs damage and eventually death. Preclinical and observational studies in patients with COVID-19 provided evidence that complement inhibition effectively may attenuate lung and systemic inflammation, restore the coagulation/fibrinolysis balance, improve organs function and eventually may save life. Ongoing Phase 2/3 trials should elucidate the benefit to risk profile of complement inhibitors and may clarify the optimal targets in the complement cascade.
Collapse
Affiliation(s)
- Sofiane Fodil
- Department of Intensive Care, Hôpital Raymond Poincaré (APHP), Garches, 92380, France
| | - Djillali Annane
- Department of Intensive Care, Hôpital Raymond Poincaré (APHP), Garches, 92380, France
- Laboratory of Infection & Inflammation _ U1173, School of Medicine Simone Veil, University Versailles Saint Quentin _ University Paris Saclay, INSERM, Montigny-Le-Bretonneau, 78180, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for SEPSIS), AP-HP, University Versailles Saint Quentin _ University Paris Saclay, INSERM, Garches, 92380, France
| |
Collapse
|