101
|
Jiang Y, Cheng Z, Mandon EC, Gilmore R. An interaction between the SRP receptor and the translocon is critical during cotranslational protein translocation. ACTA ACUST UNITED AC 2008; 180:1149-61. [PMID: 18347066 PMCID: PMC2290843 DOI: 10.1083/jcb.200707196] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signal recognition particle (SRP)-dependent targeting pathway facilitates rapid, efficient delivery of the ribosome-nascent chain complex (RNC) to the protein translocation channel. We test whether the SRP receptor (SR) locates a vacant protein translocation channel by interacting with the yeast Sec61 and Ssh1 translocons. Surprisingly, the slow growth and cotranslational translocation defects caused by deletion of the transmembrane (TM) span of yeast SRbeta (SRbeta-DeltaTM) are exaggerated when the SSH1 gene is disrupted. Disruption of the SBH2 gene, which encodes the beta subunit of the Ssh1p complex, likewise causes a growth defect when combined with SRbeta-DeltaTM. Cotranslational translocation defects in the ssh1DeltaSRbeta-DeltaTM mutant are explained by slow and inefficient in vivo gating of translocons by RNCs. A critical function for translocation channel beta subunits in the SR-channel interaction is supported by the observation that simultaneous deletion of Sbh1p and Sbh2p causes a defect in the cotranslational targeting pathway that is similar to the translocation defect caused by deletion of either subunit of the SR.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
102
|
Ménétret JF, Schaletzky J, Clemons WM, Osborne AR, Skånland SS, Denison C, Gygi SP, Kirkpatrick DS, Park E, Ludtke SJ, Rapoport TA, Akey CW. Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol Cell 2008; 28:1083-92. [PMID: 18158904 DOI: 10.1016/j.molcel.2007.10.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 08/03/2007] [Accepted: 10/04/2007] [Indexed: 12/29/2022]
Abstract
The SecY complex associates with the ribosome to form a protein translocation channel in the bacterial plasma membrane. We have used cryo-electron microscopy and quantitative mass spectrometry to show that a nontranslating E. coli ribosome binds to a single SecY complex. The crystal structure of an archaeal SecY complex was then docked into the electron density maps. In the resulting model, two cytoplasmic loops of SecY extend into the exit tunnel near proteins L23, L29, and L24. The loop between transmembrane helices 8 and 9 interacts with helices H59 and H50 in the large subunit RNA, while the 6/7 loop interacts with H7. We also show that point mutations of basic residues within either loop abolish ribosome binding. We suggest that SecY binds to this primary site on the ribosome and subsequently captures and translocates the nascent chain.
Collapse
Affiliation(s)
- Jean-François Ménétret
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118-2526, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Rapoport TA. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 2008; 450:663-9. [PMID: 18046402 DOI: 10.1038/nature06384] [Citation(s) in RCA: 702] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A decisive step in the biosynthesis of many proteins is their partial or complete translocation across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. Most of these proteins are translocated through a protein-conducting channel that is formed by a conserved, heterotrimeric membrane-protein complex, the Sec61 or SecY complex. Depending on channel binding partners, polypeptides are moved by different mechanisms: the polypeptide chain is transferred directly into the channel by the translating ribosome, a ratcheting mechanism is used by the endoplasmic reticulum chaperone BiP, and a pushing mechanism is used by the bacterial ATPase SecA. Structural, genetic and biochemical data show how the channel opens across the membrane, releases hydrophobic segments of membrane proteins laterally into lipid, and maintains the membrane barrier for small molecules.
Collapse
Affiliation(s)
- Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| |
Collapse
|
104
|
Kastner B, Fischer N, Golas MM, Sander B, Dube P, Boehringer D, Hartmuth K, Deckert J, Hauer F, Wolf E, Uchtenhagen H, Urlaub H, Herzog F, Peters JM, Poerschke D, Lührmann R, Stark H. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods 2007; 5:53-5. [PMID: 18157137 DOI: 10.1038/nmeth1139] [Citation(s) in RCA: 427] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 11/06/2007] [Indexed: 01/19/2023]
Abstract
We developed a method, named GraFix, that considerably improves sample quality for structure determination by single-particle electron cryomicroscopy (cryo-EM). GraFix uses a glycerol gradient centrifugation step in which the complexes are centrifuged into an increasing concentration of a chemical fixation reagent to prevent aggregation and to stabilize individual macromolecules. The method can be used to prepare samples for negative-stain, cryo-negative-stain and, particularly, unstained cryo-EM.
Collapse
Affiliation(s)
- Berthold Kastner
- Department of Cellular Biochemsitry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Bange G, Wild K, Sinning I. Protein Translocation: Checkpoint Role for SRP GTPase Activation. Curr Biol 2007; 17:R980-2. [DOI: 10.1016/j.cub.2007.09.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
106
|
Shan SO, Chandrasekar S, Walter P. Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation. ACTA ACUST UNITED AC 2007; 178:611-20. [PMID: 17682051 PMCID: PMC2064468 DOI: 10.1083/jcb.200702018] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During cotranslational protein targeting, two guanosine triphosphatase (GTPase) in the signal recognition particle (SRP) and its receptor (SR) form a unique complex in which hydrolyses of both guanosine triphosphates (GTP) are activated in a shared active site. It was thought that GTP hydrolysis drives the recycling of SRP and SR, but is not crucial for protein targeting. Here, we examined the translocation efficiency of mutant GTPases that block the interaction between SRP and SR at specific stages. Surprisingly, mutants that allow SRP–SR complex assembly but block GTPase activation severely compromise protein translocation. These mutations map to the highly conserved insertion box domain loops that rearrange upon complex formation to form multiple catalytic interactions with the two GTPs. Thus, although GTP hydrolysis is not required, the molecular rearrangements that lead to GTPase activation are essential for protein targeting. Most importantly, our results show that an elaborate rearrangement within the SRP–SR GTPase complex is required to drive the unloading and initiate translocation of cargo proteins.
Collapse
Affiliation(s)
- Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
107
|
Bradshaw N, Walter P. The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting. Mol Biol Cell 2007; 18:2728-34. [PMID: 17507650 PMCID: PMC1924838 DOI: 10.1091/mbc.e07-02-0117] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The RNA component of the signal recognition particle (SRP) is universally required for cotranslational protein targeting. Biochemical studies have shown that SRP RNA participates in the central step of protein targeting by catalyzing the interaction of the SRP with the SRP receptor (SR). SRP RNA also accelerates GTP hydrolysis in the SRP.SR complex once formed. Using a reverse-genetic and biochemical analysis, we identified mutations in the E. coli SRP protein, Ffh, that abrogate the activity of the SRP RNA and cause corresponding targeting defects in vivo. The mutations in Ffh that disrupt SRP RNA activity map to regions that undergo dramatic conformational changes during the targeting reaction, suggesting that the activity of the SRP RNA is linked to the major conformational changes in the signal sequence-binding subunit of the SRP. In this way, the SRP RNA may coordinate the interaction of the SRP and the SR with ribosome recruitment and transfer to the translocon, explaining why the SRP RNA is an indispensable component of the protein targeting machinery.
Collapse
Affiliation(s)
- Niels Bradshaw
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158
| |
Collapse
|
108
|
Abell BM, Rabu C, Leznicki P, Young JC, High S. Post-translational integration of tail-anchored proteins is facilitated by defined molecular chaperones. J Cell Sci 2007; 120:1743-51. [PMID: 17456552 DOI: 10.1242/jcs.002410] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tail-anchored (TA) proteins provide an ideal model for studying post-translational integration at the endoplasmic reticulum (ER) of eukaryotes. There are multiple pathways for delivering TA proteins from the cytosol to the ER membrane yet, whereas an ATP-dependent route predominates, none of the cytosolic components involved had been identified. In this study we have directly addressed this issue and identify novel interactions between a model TA protein and the two cytosolic chaperones Hsp40 and Hsc70. To investigate their function, we have reconstituted the membrane integration of TA proteins using purified components. Remarkably, we find that a combination of Hsc70 and Hsp40 can completely substitute for the ATP-dependent factors present in cytosol. On the basis of this in vitro analysis, we conclude that this chaperone pair can efficiently facilitate the ATP-dependent integration of TA proteins.
Collapse
Affiliation(s)
- Benjamin M Abell
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
109
|
van Nues RW, Brown JD. Distant segments of Saccharomyces cerevisiae scR1 RNA promote assembly and function of the signal recognition particle. J Mol Biol 2007; 368:677-90. [PMID: 17368481 DOI: 10.1016/j.jmb.2007.02.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/07/2007] [Indexed: 11/19/2022]
Abstract
The conserved signal recognition particle targets ribosomes synthesizing presecretory proteins to the endoplasmic reticulum membrane. Key to the activity of SRP is its ability to bind the ribosome at distant locations, the signal sequence exit and elongation factor-binding sites. These contacts are made by the S and Alu domains of SRP, respectively. We tested earlier secondary structure predictions of the Saccharomyces cerevisiae SRP RNA, scR1, and provide and test a consensus structure. The structure contains four non-conserved insertions, helices 9-12, into the core SRP RNA fold, and an extended helix 7. Using a series of scR1 mutants lacking part or all of these structural elements, we find that they are important for the RNA in both function and assembly of the RNP. About 20% of the RNA, corresponding to the outer regions of these helices, is dispensable for function. Further, we examined the role of several features within the S-domain section of the core, helix 5, and find that its length and flexibility are important for proper SRP function and become essential in the absence of helix 10, 11 and/or 7 regions. Overall, the genetic data indicate that regions of scR1 distant in both primary sequence and secondary structure have interrelated roles in the function of the complex, and possibly mediate communication between Alu and S domains during targeting.
Collapse
Affiliation(s)
- Rob W van Nues
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
110
|
Halic M, Blau M, Becker T, Mielke T, Pool MR, Wild K, Sinning I, Beckmann R. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 2006; 444:507-11. [PMID: 17086193 DOI: 10.1038/nature05326] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 10/10/2006] [Indexed: 11/08/2022]
Abstract
Membrane and secretory proteins can be co-translationally inserted into or translocated across the membrane. This process is dependent on signal sequence recognition on the ribosome by the signal recognition particle (SRP), which results in targeting of the ribosome-nascent-chain complex to the protein-conducting channel at the membrane. Here we present an ensemble of structures at subnanometre resolution, revealing the signal sequence both at the ribosomal tunnel exit and in the bacterial and eukaryotic ribosome-SRP complexes. Molecular details of signal sequence interaction in both prokaryotic and eukaryotic complexes were obtained by fitting high-resolution molecular models. The signal sequence is presented at the ribosomal tunnel exit in an exposed position ready for accommodation in the hydrophobic groove of the rearranged SRP54 M domain. Upon ribosome binding, the SRP54 NG domain also undergoes a conformational rearrangement, priming it for the subsequent docking reaction with the NG domain of the SRP receptor. These findings provide the structural basis for improving our understanding of the early steps of co-translational protein sorting.
Collapse
Affiliation(s)
- Mario Halic
- Gene Center, Department of Chemistry and Biochemistry, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV, Pugsley AP. Secretion by numbers: Protein traffic in prokaryotes. Mol Microbiol 2006; 62:308-19. [PMID: 17020575 PMCID: PMC3873778 DOI: 10.1111/j.1365-2958.2006.05377.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Almost all aspects of protein traffic in bacteria were covered at the ASM-FEMS meeting on the topic in Iraklio, Crete in May 2006. The studies presented ranged from mechanistic analysis of specific events leading proteins to their final destinations to the physiological roles of the targeted proteins. Among the highlights from the meeting that are reviewed here are the molecular dynamics of SecA protein, membrane protein insertion, type III secretion needles and chaperones, type IV secretion, the two partner and autosecretion systems, the 'secretion competent state', and the recently discovered type VI secretion system.
Collapse
Affiliation(s)
- Anastasias Economou
- Institute of Molecular Biology and Biotechnology, F.O.R.T.H and University of Crete, PO Box 1527, GR-711 10 Iraklio, Crete, Greece
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - Rachel C. Fernandez
- Department of Microbiology and Immunology, University of British Columbia, 2559-2350 Health Sciences Mall, 300-6174 University Blvd., Vancouver, BC, V6T 1Z3, Canada
| | - Tracy Palmer
- Department of Molecular Microbiology, John Innes Centre, Conley Lane, Norwich, NR4 7UH, UK
| | - Greg V. Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, PO Box 016960 (R-138), Miami, FL 33101, USA
| | - Anthony P. Pugsley
- Molecular Genetics Unit and CNRS URA2172, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris CEDEX 15, France
| |
Collapse
|
112
|
Angelini S, Boy D, Schiltz E, Koch HG. Membrane binding of the bacterial signal recognition particle receptor involves two distinct binding sites. ACTA ACUST UNITED AC 2006; 174:715-24. [PMID: 16923832 PMCID: PMC2064314 DOI: 10.1083/jcb.200606093] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cotranslational protein targeting in bacteria is mediated by the signal recognition particle (SRP) and FtsY, the bacterial SRP receptor (SR). FtsY is homologous to the SRα subunit of eukaryotes, which is tethered to the membrane via its interaction with the membrane-integral SRβ subunit. Despite the lack of a membrane-anchoring subunit, 30% of FtsY in Escherichia coli are found stably associated with the cytoplasmic membrane. However, the mechanisms that are involved in this membrane association are only poorly understood. Our data indicate that membrane association of FtsY involves two distinct binding sites and that binding to both sites is stabilized by blocking its GTPase activity. Binding to the first site requires only the NG-domain of FtsY and confers protease protection to FtsY. Importantly, the SecY translocon provides the second binding site, to which FtsY binds to form a carbonate-resistant 400-kD FtsY–SecY translocon complex. This interaction is stabilized by the N-terminal A-domain of FtsY, which probably serves as a transient lipid anchor.
Collapse
Affiliation(s)
- Sandra Angelini
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
113
|
Sousa D, Grigorieff N. Ab initio resolution measurement for single particle structures. J Struct Biol 2006; 157:201-10. [PMID: 17029845 DOI: 10.1016/j.jsb.2006.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 08/03/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
A computational method is described that allows the measurement of the signal-to-noise ratio and resolution of a three-dimensional structure obtained by single particle electron microscopy and reconstruction. The method does not rely on the availability of the original image data or the calculation of several structures from different parts of the data that are needed for the commonly used Fourier Shell Correlation criterion. Instead, the correlation between neighboring Fourier pixels is calculated and used to distinguish signal from noise. The new method has been conveniently implemented in a computer program called RMEASURE and is available to the microscopy community.
Collapse
Affiliation(s)
- Duncan Sousa
- Howard Hughes Medical Institute and Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
114
|
Schaletzky J, Rapoport TA. Ribosome binding to and dissociation from translocation sites of the endoplasmic reticulum membrane. Mol Biol Cell 2006; 17:3860-9. [PMID: 16822833 PMCID: PMC1593163 DOI: 10.1091/mbc.e06-05-0439] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We have addressed how ribosome-nascent chain complexes (RNCs), associated with the signal recognition particle (SRP), can be targeted to Sec61 translocation channels of the endoplasmic reticulum (ER) membrane when all binding sites are occupied by nontranslating ribosomes. These competing ribosomes are known to be bound with high affinity to tetramers of the Sec61 complex. We found that the membrane binding of RNC-SRP complexes does not require or cause the dissociation of prebound nontranslating ribosomes, a process that is extremely slow. SRP and its receptor target RNCs to a free population of Sec61 complex, which associates with nontranslating ribosomes only weakly and is conformationally different from the population of ribosome-bound Sec61 complex. Taking into account recent structural data, we propose a model in which SRP and its receptor target RNCs to a Sec61 subpopulation of monomeric or dimeric state. This could explain how RNC-SRP complexes can overcome the competition by nontranslating ribosomes.
Collapse
Affiliation(s)
- Julia Schaletzky
- Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| | - Tom A. Rapoport
- Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
115
|
Protein transport in and out of the endoplasmic reticulum. HARVEY LECTURES 2006. [PMID: 20166563 DOI: 10.1002/9780470593042.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|