101
|
Real-time observation of polymerase-promoter contact remodeling during transcription initiation. Nat Commun 2017; 8:1178. [PMID: 29079833 PMCID: PMC5660091 DOI: 10.1038/s41467-017-01041-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/11/2017] [Indexed: 01/22/2023] Open
Abstract
Critical contacts made between the RNA polymerase (RNAP) holoenzyme and promoter DNA modulate not only the strength of promoter binding, but also the frequency and timing of promoter escape during transcription. Here, we describe a single-molecule optical-trapping assay to study transcription initiation in real time, and use it to map contacts formed between σ70 RNAP holoenzyme from E. coli and the T7A1 promoter, as well as to observe the remodeling of those contacts during the transition to the elongation phase. The strong binding contacts identified in certain well-known promoter regions, such as the −35 and −10 elements, do not necessarily coincide with the most highly conserved portions of these sequences. Strong contacts formed within the spacer region (−10 to −35) and with the −10 element are essential for initiation and promoter escape, respectively, and the holoenzyme releases contacts with promoter elements in a non-sequential fashion during escape. Contacts between RNA polymerase and promoter DNA modulate the strength of binding and the frequency of promoter escape during transcription. Here, the authors describe a single molecule optical-trapping assay to study transcription initiation and observe the dynamic remodeling of enzyme contacts in real time.
Collapse
|
102
|
Engstrom MD, Pfleger BF. Transcription control engineering and applications in synthetic biology. Synth Syst Biotechnol 2017; 2:176-191. [PMID: 29318198 PMCID: PMC5655343 DOI: 10.1016/j.synbio.2017.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors), giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.
Collapse
Affiliation(s)
- Michael D. Engstrom
- Genetics-Biotechnology Center, University of Wisconsin-Madison School of Medicine and Public Health, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, USA
| |
Collapse
|
103
|
Alhadid Y, Chung S, Lerner E, Taatjes DJ, Borukhov S, Weiss S. Studying transcription initiation by RNA polymerase with diffusion-based single-molecule fluorescence. Protein Sci 2017; 26:1278-1290. [PMID: 28370550 PMCID: PMC5477543 DOI: 10.1002/pro.3160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 01/30/2023]
Abstract
Over the past decade, fluorescence-based single-molecule studies significantly contributed to characterizing the mechanism of RNA polymerase at different steps in transcription, especially in transcription initiation. Transcription by bacterial DNA-dependent RNA polymerase is a multistep process that uses genomic DNA to synthesize complementary RNA molecules. Transcription initiation is a highly regulated step in E. coli, but it has been challenging to study its mechanism because of its stochasticity and complexity. In this review, we describe how single-molecule approaches have contributed to our understanding of transcription and have uncovered mechanistic details that were not observed in conventional assays because of ensemble averaging.
Collapse
Affiliation(s)
- Yazan Alhadid
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, California, 90095
| | - SangYoon Chung
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California, 90095
| | - Eitan Lerner
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California, 90095
| | - Dylan J Taatjes
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| | - Sergei Borukhov
- Rowan University School of Osteopathic Medicine, Stratford, New Jersey, 08084
| | - Shimon Weiss
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, California, 90095
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California, 90095
- Molecular Biology Institute (MBI), University of California, Los Angeles, California, 90095
- California NanoSystems Institute, University of California, Los Angeles, California, 90095
- Department of Physiology, University of California, Los Angeles, California, 90095
| |
Collapse
|
104
|
Mustaev A, Roberts J, Gottesman M. Transcription elongation. Transcription 2017; 8:150-161. [PMID: 28301288 PMCID: PMC5501382 DOI: 10.1080/21541264.2017.1289294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/23/2022] Open
Abstract
This review is focused on recent progress in understanding how Escherichia coli RNAP polymerase translocates along the DNA template and the factors that affect this movement. We discuss the fundamental aspects of RNAP translocation, template signals that influence forward or backward movement, and host or phage factors that modulate translocation.
Collapse
Affiliation(s)
- Arkady Mustaev
- PHRI Center, NJMS, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jeffrey Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Max Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
105
|
Feklistov A, Bae B, Hauver J, Lass-Napiorkowska A, Kalesse M, Glaus F, Altmann KH, Heyduk T, Landick R, Darst SA. RNA polymerase motions during promoter melting. Science 2017; 356:863-866. [PMID: 28546214 PMCID: PMC5696265 DOI: 10.1126/science.aam7858] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022]
Abstract
All cellular RNA polymerases (RNAPs), from those of bacteria to those of man, possess a clamp that can open and close, and it has been assumed that the open RNAP separates promoter DNA strands and then closes to establish a tight grip on the DNA template. Here, we resolve successive motions of the initiating bacterial RNAP by studying real-time signatures of fluorescent reporters placed on RNAP and DNA in the presence of ligands locking the clamp in distinct conformations. We report evidence for an unexpected and obligatory step early in the initiation involving a transient clamp closure as a prerequisite for DNA melting. We also present a 2.6-angstrom crystal structure of a late-initiation intermediate harboring a rotationally unconstrained downstream DNA duplex within the open RNAP active site cleft. Our findings explain how RNAP thermal motions control the promoter search and drive DNA melting in the absence of external energy sources.
Collapse
Affiliation(s)
- Andrey Feklistov
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Brian Bae
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jesse Hauver
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Agnieszka Lass-Napiorkowska
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, USA
| | - Markus Kalesse
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Brunswick, Germany
| | - Florian Glaus
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 1-5/10 8093 Zürich, Switzerland
| | - Karl-Heinz Altmann
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 1-5/10 8093 Zürich, Switzerland
| | - Tomasz Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Seth A Darst
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
106
|
Marchetti M, Malinowska A, Heller I, Wuite GJL. How to switch the motor on: RNA polymerase initiation steps at the single-molecule level. Protein Sci 2017; 26:1303-1313. [PMID: 28470684 DOI: 10.1002/pro.3183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 11/06/2022]
Abstract
RNA polymerase (RNAP) is the central motor of gene expression since it governs the process of transcription. In prokaryotes, this holoenzyme is formed by the RNAP core and a sigma factor. After approaching and binding the specific promoter site on the DNA, the holoenzyme-promoter complex undergoes several conformational transitions that allow unwinding and opening of the DNA duplex. Once the first DNA basepairs (∼10 bp) are transcribed in an initial transcription process, the enzyme unbinds from the promoter and proceeds downstream along the DNA while continuously opening the helix and polymerizing the ribonucleotides in correspondence with the template DNA sequence. When the gene is transcribed into RNA, the process generally is terminated and RNAP unbinds from the DNA. The first step of transcription-initiation, is considered the rate-limiting step of the entire process. This review focuses on the single-molecule studies that try to reveal the key steps in the initiation phase of bacterial transcription. Such single-molecule studies have, for example, allowed real-time observations of the RNAP target search mechanism, a mechanism still under debate. Moreover, single-molecule studies using Förster Resonance Energy Transfer (FRET) revealed the conformational changes that the enzyme undergoes during initiation. Force-based techniques such as scanning force microscopy and magnetic tweezers allowed quantification of the energy that drives the RNAP translocation along DNA and its dynamics. In addition to these in vitro experiments, single particle tracking in vivo has provided a direct quantification of the relative populations in each phase of transcription and their locations within the cell.
Collapse
Affiliation(s)
- M Marchetti
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - I Heller
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - G J L Wuite
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
107
|
Stracy M, Kapanidis AN. Single-molecule and super-resolution imaging of transcription in living bacteria. Methods 2017; 120:103-114. [PMID: 28414097 PMCID: PMC5670121 DOI: 10.1016/j.ymeth.2017.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
In vivo single-molecule and super-resolution techniques are transforming our ability to study transcription as it takes place in its native environment in living cells. This review will detail the methods for imaging single molecules in cells, and the data-analysis tools which can be used to extract quantitative information on the spatial organization, mobility, and kinetics of the transcription machinery from these experiments. Furthermore, we will highlight studies which have applied these techniques to shed new light on bacterial transcription.
Collapse
Affiliation(s)
- Mathew Stracy
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
| |
Collapse
|
108
|
Malkusch N, Dörfler T, Nagy J, Eilert T, Michaelis J. smFRET experiments of the RNA polymerase II transcription initiation complex. Methods 2017; 120:115-124. [PMID: 28434999 DOI: 10.1016/j.ymeth.2017.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/21/2017] [Accepted: 04/14/2017] [Indexed: 01/23/2023] Open
Abstract
Single-molecule fluorescence and in particular single-molecule Förster Resonance Energy Transfer (smFRET) is a powerful tool to provide real-time information on the dynamic architecture of large macromolecular structures such as eukaryotic transcription initiation complexes. In contrast to other structural biology methods, not only structural details, but dynamics transitions are revealed thus closing in on the underlying molecular mechanisms. Here, we describe a comprehensive quantitative biophysical toolbox which can be used for rigorous analysis of dynamic protein-nucleic acid complexes and is applied to the study of eukaryotic transcription initiation. We present detailed protocols for the purification of all essential protein components of the minimal eukaryotic transcription initiation complex. Moreover, we demonstrate how elaborate strategies for site-specific protein labeling can be used to produce complexes with dye molecules attached to arbitrary desired positions. These complexes are then used for smFRET measurements. Moreover, we describe the Nano-Positioning System (NPS) which allows us to quantitatively use the results from a network of smFRET measurements to obtain structural information. With this we provide a toolbox to answer open questions which could not be addressed using methods like X-ray crystallography or cryo-electron microscopy.
Collapse
Affiliation(s)
- Nicole Malkusch
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thilo Dörfler
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julia Nagy
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Tobias Eilert
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
109
|
Marcus JI, Hassoun S, Nair NU. Computational prediction of functional abortive RNA in E. coli. Genomics 2017; 109:196-203. [PMID: 28347827 DOI: 10.1016/j.ygeno.2017.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/24/2017] [Accepted: 03/22/2017] [Indexed: 11/26/2022]
Abstract
Failure by RNA polymerase to break contacts with promoter DNA results in release of bound RNA and re-initiation of transcription. These abortive RNAs were assumed to be non-functional but have recently been shown to affect termination in bacteriophage T7. Little is known about the functional role of these RNA in other genetic models. Using a computational approach, we investigated whether abortive RNA could exert function in E. coli. Fragments generated from 3780 transcription units were used as query sequences within their respective transcription units to search for possible binding sites. Sites that fell within known regulatory features were then ranked based upon the free energy of hybridization to the abortive. We further hypothesize about mechanisms of regulatory action for a select number of likely matches. Future experimental validation of these putative abortive-mRNA pairs may confirm our findings and promote exploration of functional abortive RNAs (faRNAs) in natural and synthetic systems.
Collapse
Affiliation(s)
- Jeremy I Marcus
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Soha Hassoun
- Department of Computer Science, Tufts University, Medford, MA 02155, United States; Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, United States
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, United States.
| |
Collapse
|
110
|
Mechanism of transcription initiation and promoter escape by E. coli RNA polymerase. Proc Natl Acad Sci U S A 2017; 114:E3032-E3040. [PMID: 28348246 DOI: 10.1073/pnas.1618675114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate roles of the discriminator and open complex (OC) lifetime in transcription initiation by Escherichia coli RNA polymerase (RNAP; α2ββ'ωσ70), we compare productive and abortive initiation rates, short RNA distributions, and OC lifetime for the λPR and T7A1 promoters and variants with exchanged discriminators, all with the same transcribed region. The discriminator determines the OC lifetime of these promoters. Permanganate reactivity of thymines reveals that strand backbones in open regions of long-lived λPR-discriminator OCs are much more tightly held than for shorter-lived T7A1-discriminator OCs. Initiation from these OCs exhibits two kinetic phases and at least two subpopulations of ternary complexes. Long RNA synthesis (constrained to be single round) occurs only in the initial phase (<10 s), at similar rates for all promoters. Less than half of OCs synthesize a full-length RNA; the majority stall after synthesizing a short RNA. Most abortive cycling occurs in the slower phase (>10 s), when stalled complexes release their short RNA and make another without escaping. In both kinetic phases, significant amounts of 8-nt and 10-nt transcripts are produced by longer-lived, λPR-discriminator OCs, whereas no RNA longer than 7 nt is produced by shorter-lived T7A1-discriminator OCs. These observations and the lack of abortive RNA in initiation from short-lived ribosomal promoter OCs are well described by a quantitative model in which ∼1.0 kcal/mol of scrunching free energy is generated per translocation step of RNA synthesis to overcome OC stability and drive escape. The different length-distributions of abortive RNAs released from OCs with different lifetimes likely play regulatory roles.
Collapse
|
111
|
Lerner E, Ingargiola A, Lee JJ, Borukhov S, Michalet X, Weiss S. Different types of pausing modes during transcription initiation. Transcription 2017; 8:242-253. [PMID: 28332923 DOI: 10.1080/21541264.2017.1308853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In many cases, initiation is rate limiting to transcription. This due in part to the multiple cycles of abortive transcription that delay promoter escape and the transition from initiation to elongation. Pausing of transcription in initiation can further delay promoter escape. The previously hypothesized pausing in initiation was confirmed by two recent studies from Duchi et al. 1 and from Lerner, Chung et al. 2 In both studies, pausing is attributed to a lack of forward translocation of the nascent transcript during initiation. However, the two works report on different pausing mechanisms. Duchi et al. report on pausing that occurs during initiation predominantly on-pathway of transcript synthesis. Lerner, Chung et al. report on pausing during initiation as a result of RNAP backtracking, which is off-pathway to transcript synthesis. Here, we discuss these studies, together with additional experimental results from single-molecule FRET focusing on a specific distance within the transcription bubble. We show that the results of these studies are complementary to each other and are consistent with a model involving two types of pauses in initiation: a short-lived pause that occurs in the translocation of a 6-mer nascent transcript and a long-lived pause that occurs as a result of 1-2 nucleotide backtracking of a 7-mer transcript.
Collapse
Affiliation(s)
- Eitan Lerner
- a Department of Chemistry & Biochemistry , University of California , Los Angeles , CA , USA
| | - Antonino Ingargiola
- a Department of Chemistry & Biochemistry , University of California , Los Angeles , CA , USA
| | - Jookyung J Lee
- b Rowan University School of Osteopathic Medicine , Stratford , NJ , USA
| | - Sergei Borukhov
- b Rowan University School of Osteopathic Medicine , Stratford , NJ , USA
| | - Xavier Michalet
- a Department of Chemistry & Biochemistry , University of California , Los Angeles , CA , USA
| | - Shimon Weiss
- a Department of Chemistry & Biochemistry , University of California , Los Angeles , CA , USA.,c Molecular Biology Institute , University of California , Los Angeles , CA , USA.,d Department of Physiology , University of California , Los Angeles , CA , USA
| |
Collapse
|
112
|
Lisica A, Grill SW. Optical tweezers studies of transcription by eukaryotic RNA polymerases. Biomol Concepts 2017; 8:1-11. [PMID: 28222010 DOI: 10.1515/bmc-2016-0028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/10/2017] [Indexed: 11/15/2022] Open
Abstract
Transcription is the first step in the expression of genetic information and it is carried out by large macromolecular enzymes called RNA polymerases. Transcription has been studied for many years and with a myriad of experimental techniques, ranging from bulk studies to high-resolution transcript sequencing. In this review, we emphasise the advantages of using single-molecule techniques, particularly optical tweezers, to study transcription dynamics. We give an overview of the latest results in the single-molecule transcription field, focusing on transcription by eukaryotic RNA polymerases. Finally, we evaluate recent quantitative models that describe the biophysics of RNA polymerase translocation and backtracking dynamics.
Collapse
Affiliation(s)
- Ana Lisica
- BIOTEC, Technical University Dresden, Tatzberg 47/49, D-01307 Dresden, Germany; and Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| | - Stephan W Grill
- BIOTEC, Technical University Dresden, Tatzberg 47/49, D-01307 Dresden, Germany; and Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307 Dresden, Germany
| |
Collapse
|
113
|
Winkelman JT, Gourse RL. Open complex DNA scrunching: A key to transcription start site selection and promoter escape. Bioessays 2017; 39:10.1002/bies.201600193. [PMID: 28052345 PMCID: PMC5313389 DOI: 10.1002/bies.201600193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacterial RNA polymerase-promoter open complexes can exist in a range of states in which the leading edge of the enzyme moves but the trailing edge does not, a phenomenon we refer to as "open complex scrunching." Here we describe how open complex scrunching can determine the position of the transcription start site for some promoters, modulate the level of expression, and potentially could be targeted by factors to regulate transcription. We suggest that open complex scrunching at the extraordinarily active ribosomal RNA promoters might have evolved to initiate transcription at an unusual position relative to the core promoter elements in order to maximize the rate of promoter escape.
Collapse
Affiliation(s)
- Jared T. Winkelman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Genetics and Waksman Institute, Rutgers University, NJ, USA
| | - Richard L. Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
114
|
Duboc C, Fan J, Graves ET, Strick TR. Preparation of DNA Substrates and Functionalized Glass Surfaces for Correlative Nanomanipulation and Colocalization (NanoCOSM) of Single Molecules. Methods Enzymol 2016; 582:275-296. [PMID: 28062038 DOI: 10.1016/bs.mie.2016.09.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Simultaneous nanomanipulation and colocalization of single molecules (NanoCOSM) provides a unique opportunity to correlate the mechanical properties and activities of biomolecules with their conformational states or states of assembly as part of dynamic macromolecular complexes. This opens the door to real-time single-molecule analysis of the correlations between structure, function, and composition of large multicomponent protein complexes.
Collapse
Affiliation(s)
- C Duboc
- Institut Jacques Monod, Centre National de la Recherche Scientifique, University of Paris Diderot and Sorbonne Paris Cité, Paris, France
| | - J Fan
- Institut Jacques Monod, Centre National de la Recherche Scientifique, University of Paris Diderot and Sorbonne Paris Cité, Paris, France
| | - E T Graves
- Institut Jacques Monod, Centre National de la Recherche Scientifique, University of Paris Diderot and Sorbonne Paris Cité, Paris, France
| | - T R Strick
- Institut Jacques Monod, Centre National de la Recherche Scientifique, University of Paris Diderot and Sorbonne Paris Cité, Paris, France; Ecole Normale Supérieure, Institut de Biologie de l'ENS (iBENS), INSERM, CNRS, PSL Research University, Paris, France.
| |
Collapse
|
115
|
Lee J, Borukhov S. Bacterial RNA Polymerase-DNA Interaction-The Driving Force of Gene Expression and the Target for Drug Action. Front Mol Biosci 2016; 3:73. [PMID: 27882317 PMCID: PMC5101437 DOI: 10.3389/fmolb.2016.00073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022] Open
Abstract
DNA-dependent multisubunit RNA polymerase (RNAP) is the key enzyme of gene expression and a target of regulation in all kingdoms of life. It is a complex multifunctional molecular machine which, unlike other DNA-binding proteins, engages in extensive and dynamic interactions (both specific and nonspecific) with DNA, and maintains them over a distance. These interactions are controlled by DNA sequences, DNA topology, and a host of regulatory factors. Here, we summarize key recent structural and biochemical studies that elucidate the fine details of RNAP-DNA interactions during initiation. The findings of these studies help unravel the molecular mechanisms of promoter recognition and open complex formation, initiation of transcript synthesis and promoter escape. We also discuss most current advances in the studies of drugs that specifically target RNAP-DNA interactions during transcription initiation and elongation.
Collapse
Affiliation(s)
- Jookyung Lee
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| | - Sergei Borukhov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| |
Collapse
|
116
|
Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 2016; 113:E6562-E6571. [PMID: 27729537 DOI: 10.1073/pnas.1605038113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Initiation is a highly regulated, rate-limiting step in transcription. We used a series of approaches to examine the kinetics of RNA polymerase (RNAP) transcription initiation in greater detail. Quenched kinetics assays, in combination with gel-based assays, showed that RNAP exit kinetics from complexes stalled at later stages of initiation (e.g., from a 7-base transcript) were markedly slower than from earlier stages (e.g., from a 2- or 4-base transcript). In addition, the RNAP-GreA endonuclease accelerated transcription kinetics from otherwise delayed initiation states. Further examination with magnetic tweezers transcription experiments showed that RNAP adopted a long-lived backtracked state during initiation and that the paused-backtracked initiation intermediate was populated abundantly at physiologically relevant nucleoside triphosphate (NTP) concentrations. The paused intermediate population was further increased when the NTP concentration was decreased and/or when an imbalance in NTP concentration was introduced (situations that mimic stress). Our results confirm the existence of a previously hypothesized paused and backtracked RNAP initiation intermediate and suggest it is biologically relevant; furthermore, such intermediates could be exploited for therapeutic purposes and may reflect a conserved state among paused, initiating eukaryotic RNA polymerase II enzymes.
Collapse
|
117
|
Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers. Sci Rep 2016; 6:33257. [PMID: 27641327 PMCID: PMC5027553 DOI: 10.1038/srep33257] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/24/2016] [Indexed: 01/24/2023] Open
Abstract
Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble.
Collapse
|
118
|
Dulin D, Cui TJ, Cnossen J, Docter MW, Lipfert J, Dekker NH. High Spatiotemporal-Resolution Magnetic Tweezers: Calibration and Applications for DNA Dynamics. Biophys J 2016; 109:2113-25. [PMID: 26588570 DOI: 10.1016/j.bpj.2015.10.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 11/16/2022] Open
Abstract
The observation of biological processes at the molecular scale in real time requires high spatial and temporal resolution. Magnetic tweezers are straightforward to implement, free of radiation or photodamage, and provide ample multiplexing capability, but their spatiotemporal resolution has lagged behind that of other single-molecule manipulation techniques, notably optical tweezers and AFM. Here, we present, to our knowledge, a new high-resolution magnetic tweezers apparatus. We systematically characterize the achievable spatiotemporal resolution for both incoherent and coherent light sources, different types and sizes of beads, and different types and lengths of tethered molecules. Using a bright coherent laser source for illumination and tracking at 6 kHz, we resolve 3 Å steps with a 1 s period for surface-melted beads and 5 Å steps with a 0.5 s period for double-stranded-dsDNA-tethered beads, in good agreement with a model of stochastic bead motion in the magnetic tweezers. We demonstrate how this instrument can be used to monitor the opening and closing of a DNA hairpin on millisecond timescales in real time, together with attendant changes in the hairpin dynamics upon the addition of deoxythymidine triphosphate. Our approach opens up the possibility of observing biological events at submillisecond timescales with subnanometer resolution using camera-based detection.
Collapse
Affiliation(s)
- David Dulin
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| | - Tao Ju Cui
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Jelmer Cnossen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Margreet W Docter
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich and Center for Nanoscience, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
119
|
Duchi D, Bauer DLV, Fernandez L, Evans G, Robb N, Hwang LC, Gryte K, Tomescu A, Zawadzki P, Morichaud Z, Brodolin K, Kapanidis AN. RNA Polymerase Pausing during Initial Transcription. Mol Cell 2016; 63:939-50. [PMID: 27618490 PMCID: PMC5031556 DOI: 10.1016/j.molcel.2016.08.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 04/12/2016] [Accepted: 08/05/2016] [Indexed: 11/11/2022]
Abstract
In bacteria, RNA polymerase (RNAP) initiates transcription by synthesizing short transcripts that are either released or extended to allow RNAP to escape from the promoter. The mechanism of initial transcription is unclear due to the presence of transient intermediates and molecular heterogeneity. Here, we studied initial transcription on a lac promoter using single-molecule fluorescence observations of DNA scrunching on immobilized transcription complexes. Our work revealed a long pause (“initiation pause,” ∼20 s) after synthesis of a 6-mer RNA; such pauses can serve as regulatory checkpoints. Region sigma 3.2, which contains a loop blocking the RNA exit channel, was a major pausing determinant. We also obtained evidence for RNA backtracking during abortive initial transcription and for additional pausing prior to escape. We summarized our work in a model for initial transcription, in which pausing is controlled by a complex set of determinants that modulate the transition from a 6- to a 7-nt RNA. E. coli RNA polymerase pauses during initial transcription at lac promoters Initiation pausing lasts for ∼20 s and occurs at the transition from 6- to 7-nt RNA Region 3.2 of σ70 is the main protein element controlling pausing Pausing is likely to be controlled further by a complex set of determinants
Collapse
Affiliation(s)
- Diego Duchi
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - David L V Bauer
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Laurent Fernandez
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Geraint Evans
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Nicole Robb
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Ling Chin Hwang
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Kristofer Gryte
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Alexandra Tomescu
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Pawel Zawadzki
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Zakia Morichaud
- CNRS FRE 3689, Centre d'études d'agents Pathogénes et Biotechnologies pour la Santé (CPBS), 1919 route de Mende, 34293 Montpellier, France
| | - Konstantin Brodolin
- CNRS FRE 3689, Centre d'études d'agents Pathogénes et Biotechnologies pour la Santé (CPBS), 1919 route de Mende, 34293 Montpellier, France
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK.
| |
Collapse
|
120
|
Abstract
The production of a single mRNA is the result of many sequential steps, from docking of transcription factors to polymerase initiation, elongation, splicing, and, finally, termination. Much of our knowledge about the fundamentals of RNA synthesis and processing come from ensemble in vitro biochemical measurements. Single-molecule approaches are very much in this same reductionist tradition but offer exquisite sensitivity in space and time along with the ability to observe heterogeneous behavior and actually manipulate macromolecules. These techniques can also be applied in vivo, allowing one to address questions in living cells that were previously restricted to reconstituted systems. In this review, we examine the unique insights that single-molecule techniques have yielded on the mechanisms of gene expression.
Collapse
Affiliation(s)
- Huimin Chen
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel R Larson
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
121
|
Berghuis BA, Köber M, van Laar T, Dekker NH. High-throughput, high-force probing of DNA-protein interactions with magnetic tweezers. Methods 2016; 105:90-8. [DOI: 10.1016/j.ymeth.2016.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 12/19/2022] Open
|
122
|
Blouin S, Craggs TD, Lafontaine DA, Penedo JC. Functional Studies of DNA-Protein Interactions Using FRET Techniques. Methods Mol Biol 2016; 1334:115-41. [PMID: 26404147 DOI: 10.1007/978-1-4939-2877-4_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Protein-DNA interactions underpin life and play key roles in all cellular processes and functions including DNA transcription, packaging, replication, and repair. Identifying and examining the nature of these interactions is therefore a crucial prerequisite to understand the molecular basis of how these fundamental processes take place. The application of fluorescence techniques and in particular fluorescence resonance energy transfer (FRET) to provide structural and kinetic information has experienced a stunning growth during the past decade. This has been mostly promoted by new advances in the preparation of dye-labeled nucleic acids and proteins and in optical sensitivity, where its implementation at the level of individual molecules has opened a new biophysical frontier. Nowadays, the application of FRET-based techniques to the analysis of protein-DNA interactions spans from the classical steady-state and time-resolved methods averaging over large ensembles to the analysis of distances, conformational changes, and enzymatic reactions in individual protein-DNA complexes. This chapter introduces the practical aspects of applying these methods for the study of protein-DNA interactions.
Collapse
Affiliation(s)
- Simon Blouin
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Daniel A Lafontaine
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, Canada, J1K 2R1.
| | - J Carlos Penedo
- School of Physics and Astronomy, University of St. Andrews, St. Andrews, UK
| |
Collapse
|
123
|
He Y, Yan C, Fang J, Inouye C, Tjian R, Ivanov I, Nogales E. Near-atomic resolution visualization of human transcription promoter opening. Nature 2016; 533:359-65. [PMID: 27193682 PMCID: PMC4940141 DOI: 10.1038/nature17970] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
Abstract
In eukaryotic transcription initiation, a large multi-subunit pre-initiation complex (PIC) that assembles at the core promoter is required for the opening of the duplex DNA and identification of the start site for transcription by RNA polymerase II. Here we use cryo-electron microscropy (cryo-EM) to determine near-atomic resolution structures of the human PIC in a closed state (engaged with duplex DNA), an open state (engaged with a transcription bubble), and an initially transcribing complex (containing six base pairs of DNA-RNA hybrid). Our studies provide structures for previously uncharacterized components of the PIC, such as TFIIE and TFIIH, and segments of TFIIA, TFIIB and TFIIF. Comparison of the different structures reveals the sequential conformational changes that accompany the transition from each state to the next throughout the transcription initiation process. This analysis illustrates the key role of TFIIB in transcription bubble stabilization and provides strong structural support for a translocase activity of XPB.
Collapse
Affiliation(s)
- Yuan He
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Chunli Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, USA
| | - Jie Fang
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | - Carla Inouye
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, California 94720, USA
| | - Robert Tjian
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.,Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, USA
| | - Eva Nogales
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
124
|
Liu B, Zuo Y, Steitz TA. Structures of E. coli σS-transcription initiation complexes provide new insights into polymerase mechanism. Proc Natl Acad Sci U S A 2016; 113:4051-6. [PMID: 27035955 PMCID: PMC4839411 DOI: 10.1073/pnas.1520555113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In bacteria, multiple σ factors compete to associate with the RNA polymerase (RNAP) core enzyme to form a holoenzyme that is required for promoter recognition. During transcription initiation RNAP remains associated with the upstream promoter DNA via sequence-specific interactions between the σ factor and the promoter DNA while moving downstream for RNA synthesis. As RNA polymerase repetitively adds nucleotides to the 3'-end of the RNA, a pyrophosphate ion is generated after each nucleotide incorporation. It is currently unknown how the release of pyrophosphate affects transcription. Here we report the crystal structures of E coli transcription initiation complexes (TICs) containing the stress-responsive σ(S) factor, a de novo synthesized RNA oligonucleotide, and a complete transcription bubble (σ(S)-TIC) at about 3.9-Å resolution. The structures show the 3D topology of the σ(S) factor and how it recognizes the promoter DNA, including likely specific interactions with the template-strand residues of the -10 element. In addition, σ(S)-TIC structures display a highly stressed pretranslocated initiation complex that traps a pyrophosphate at the active site that remains closed. The position of the pyrophosphate and the unusual phosphodiester linkage between the two terminal RNA residues suggest an unfinished nucleotide-addition reaction that is likely at equilibrium between nucleotide addition and pyrophosphorolysis. Although these σ(S)-TIC crystals are enzymatically active, they are slow in nucleotide addition, as suggested by an NTP soaking experiment. Pyrophosphate release completes the nucleotide addition reaction and is associated with extensive conformational changes around the secondary channel but causes neither active site opening nor transcript translocation.
Collapse
Affiliation(s)
- Bin Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Yuhong Zuo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520;
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520; Department of Chemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
125
|
Sreenivasan R, Heitkamp S, Chhabra M, Saecker R, Lingeman E, Poulos M, McCaslin D, Capp MW, Artsimovitch I, Record MT. Fluorescence Resonance Energy Transfer Characterization of DNA Wrapping in Closed and Open Escherichia coli RNA Polymerase-λP(R) Promoter Complexes. Biochemistry 2016; 55:2174-86. [PMID: 26998673 DOI: 10.1021/acs.biochem.6b00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Initial recognition of promoter DNA by RNA polymerase (RNAP) is proposed to trigger a series of conformational changes beginning with bending and wrapping of the 40-50 bp of DNA immediately upstream of the -35 region. Kinetic studies demonstrated that the presence of upstream DNA facilitates bending and entry of the downstream duplex (to +20) into the active site cleft to form an advanced closed complex (CC), prior to melting of ∼13 bp (-11 to +2), including the transcription start site (+1). Atomic force microscopy and footprinting revealed that the stable open complex (OC) is also highly wrapped (-60 to +20). To test the proposed bent-wrapped model of duplex DNA in an advanced RNAP-λP(R) CC and compare wrapping in the CC and OC, we use fluorescence resonance energy transfer (FRET) between cyanine dyes at far-upstream (-100) and downstream (+14) positions of promoter DNA. Similarly large intrinsic FRET efficiencies are observed for the CC (0.30 ± 0.07) and the OC (0.32 ± 0.11) for both probe orientations. Fluorescence enhancements at +14 are observed in the single-dye-labeled CC and OC. These results demonstrate that upstream DNA is extensively wrapped and the start site region is bent into the cleft in the advanced CC, reducing the distance between positions -100 and +14 on promoter DNA from >300 to <100 Å. The proximity of upstream DNA to the downstream cleft in the advanced CC is consistent with the proposed mechanism for facilitation of OC formation by upstream DNA.
Collapse
Affiliation(s)
- Raashi Sreenivasan
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Sara Heitkamp
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Munish Chhabra
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Ruth Saecker
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Emily Lingeman
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Mikaela Poulos
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Darrell McCaslin
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Michael W Capp
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Irina Artsimovitch
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - M Thomas Record
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
126
|
Winkelman JT, Chandrangsu P, Ross W, Gourse RL. Open complex scrunching before nucleotide addition accounts for the unusual transcription start site of E. coli ribosomal RNA promoters. Proc Natl Acad Sci U S A 2016; 113:E1787-95. [PMID: 26976590 PMCID: PMC4822585 DOI: 10.1073/pnas.1522159113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most Escherichia coli promoters initiate transcription with a purine 7 or 8 nt downstream from the -10 hexamer, but some promoters, including the ribosomal RNA promoter rrnB P1, start 9 nt from the -10 element. We identified promoter and RNA polymerase determinants of this noncanonical rrnB P1 start site using biochemical and genetic approaches including mutational analysis of the promoter, Fe(2+) cleavage assays to monitor template strand positions near the active-site, and Bpa cross-linking to map the path of open complex DNA at amino acid and nucleotide resolution. We find that mutations in several promoter regions affect transcription start site (TSS) selection. In particular, we show that the absence of strong interactions between the discriminator region and σ region 1.2 and between the extended -10 element and σ region 3.0, identified previously as a determinant of proper regulation of rRNA promoters, is also required for the unusual TSS. We find that the DNA in the single-stranded transcription bubble of the rrnB P1 promoter complex expands and is "scrunched" into the active site channel of RNA polymerase, similar to the situation in initial transcribing complexes. However, in the rrnB P1 open complex, scrunching occurs before RNA synthesis begins. We find that the scrunched open complex exhibits reduced abortive product synthesis, suggesting that scrunching and unusual TSS selection contribute to the extraordinary transcriptional activity of rRNA promoters by increasing promoter escape, helping to offset the reduction in promoter activity that would result from the weak interactions with σ.
Collapse
Affiliation(s)
- Jared T Winkelman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Pete Chandrangsu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
127
|
Winkelman JT, Vvedenskaya IO, Zhang Y, Zhang Y, Bird JG, Taylor DM, Gourse RL, Ebright RH, Nickels BE. Multiplexed protein-DNA cross-linking: Scrunching in transcription start site selection. Science 2016; 351:1090-3. [PMID: 26941320 DOI: 10.1126/science.aad6881] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In bacterial transcription initiation, RNA polymerase (RNAP) selects a transcription start site (TSS) at variable distances downstream of core promoter elements. Using next-generation sequencing and unnatural amino acid-mediated protein-DNA cross-linking, we have determined, for a library of 4(10) promoter sequences, the TSS, the RNAP leading-edge position, and the RNAP trailing-edge position. We find that a promoter element upstream of the TSS, the "discriminator," participates in TSS selection, and that, as the TSS changes, the RNAP leading-edge position changes, but the RNAP trailing-edge position does not change. Changes in the RNAP leading-edge position, but not the RNAP trailing-edge position, are a defining hallmark of the "DNA scrunching" that occurs concurrent with RNA synthesis in initial transcription. We propose that TSS selection involves DNA scrunching prior to RNA synthesis.
Collapse
Affiliation(s)
- Jared T Winkelman
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA. Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA. Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA. Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Irina O Vvedenskaya
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA. Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Yuanchao Zhang
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA. Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yu Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA. Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeremy G Bird
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA. Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA. Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Deanne M Taylor
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA. Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA. Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard H Ebright
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA. Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | - Bryce E Nickels
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA. Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
128
|
Plochowietz A, El-Sagheer AH, Brown T, Kapanidis AN. Stable end-sealed DNA as robust nano-rulers for in vivo single-molecule fluorescence. Chem Sci 2016; 7:4418-4422. [PMID: 30155088 PMCID: PMC6014160 DOI: 10.1039/c6sc00639f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/21/2016] [Indexed: 11/24/2022] Open
Abstract
Protected DNA standards with chemically linked ends were synthesized as robust in vivo nano-rulers for smFRET studies.
Single-molecule fluorescence and Förster resonance energy transfer (smFRET) are important tools for studying molecular heterogeneity, cellular organization, and protein structure in living cells. However, in vivo smFRET studies are still very challenging, and a standardized approach for robust in vivo smFRET measurements is still missing. Here, we synthesized protected DNAs with chemically linked ends as robust in vivo nano-rulers. We efficiently internalized doubly-labeled end-sealed DNA standards into live bacteria using electroporation and obtained stable and long-lasting smFRET signatures. Single-molecule fluorescence signals could be extended to ∼1 min by studying multi-fluorophore DNA standards. The high stability of protected DNA standards offers a general approach to evaluate single-molecule fluorescence and FRET signals, autofluorescence background, and fluorophore density, and hence, quality check the workflow for studying single-molecule trajectories and conformational dynamics of biomolecules in vivo.
Collapse
Affiliation(s)
- A Plochowietz
- Department of Physics , University of Oxford , Clarendon Laboratory , Parks Road , Oxford , OX1 3PU , UK . ;
| | - A H El-Sagheer
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , UK.,Chemistry Branch , Department of Chemistry , Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - T Brown
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford , OX1 3TA , UK
| | - A N Kapanidis
- Department of Physics , University of Oxford , Clarendon Laboratory , Parks Road , Oxford , OX1 3PU , UK . ;
| |
Collapse
|
129
|
Bacterial Transcription as a Target for Antibacterial Drug Development. Microbiol Mol Biol Rev 2016; 80:139-60. [PMID: 26764017 DOI: 10.1128/mmbr.00055-15] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design.
Collapse
|
130
|
Chander M, Lee A, Vallery TK, Thandar M, Jiang Y, Hsu LM. Mechanisms of Very Long Abortive Transcript Release during Promoter Escape. Biochemistry 2015; 54:7393-408. [PMID: 26610896 DOI: 10.1021/acs.biochem.5b00712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A phage T5 N25 promoter variant, DG203, undergoes the escape transition at the +16 to +19 positions after transcription initiation. By specifically examining the abortive activity of the initial transcribing complex at position +19 (ITC19), we observe the production of both GreB-sensitive and GreB-resistant VLAT19. This suggests that ITC19, which is perched on the brink of escape, is highly unstable and can achieve stabilization through either backtracking or forward translocation. Of the forward-tracked fraction, only a small percentage escapes normally (followed by stepwise elongation) to produce full-length RNA; the rest presumably hypertranslocates to release GreB-resistant VLATs. VLAT formation is dependent not only on consensus -35/-10 promoters with 17 bp spacing but also on sequence characteristics of the spacer DNA. Analysis of DG203 promoter variants containing different spacer sequences reveals that AT-rich spacers intrinsically elevate the level of VLAT formation. The AT-rich spacer of DG203 joined to the -10 box presents an UP element sequence capable of interacting with the polymerase α subunit C-terminal domain (αCTD) during the escape transition, which in turn enhances VLAT release. Utilization of the spacer/-10 region UP element by αCTD subunits requires a 10-15 bp hypertranslocation. We document the physical occurrence of hyper forward translocation using ExoIII footprinting analysis.
Collapse
Affiliation(s)
- Monica Chander
- Biology Department, Bryn Mawr College , Bryn Mawr, Pennsylvania 19010, United States
| | - Ahri Lee
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Tenaya K Vallery
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Mya Thandar
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Yunnan Jiang
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Lilian M Hsu
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| |
Collapse
|
131
|
Abstract
As of 2015, it has been 26 years since the first optical detection and spectroscopy of single molecules in condensed matter. This area of science has expanded far beyond the early low temperature studies in crystals to include single molecules in cells, polymers, and in solution. The early steps relied upon high-resolution spectroscopy of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral fine structure arising directly from the position-dependent fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, a variety of fascinating physical effects were observed for individual molecules, including imaging of the light from single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency. In the room temperature regime, researchers showed that bursts of light from single molecules could be detected in solution, leading to imaging and microscopy by a variety of methods. Studies of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. All of these early steps provided important fundamentals underpinning the development of super-resolution microscopy based on single-molecule localization and active control of emitting concentration. Current thrust areas include extensions to three-dimensional imaging with high precision, orientational analysis of single molecules, and direct measurements of photodynamics and transport properties for single molecules trapped in solution by suppression of Brownian motion. Without question, a huge variety of studies of single molecules performed by many talented scientists all over the world have extended our knowledge of the nanoscale and many microscopic mechanisms previously hidden by ensemble averaging.
Collapse
Affiliation(s)
- W E Moerner
- Department of Chemistry, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
132
|
Liu J, Hanne J, Britton BM, Shoffner M, Albers AE, Bennett J, Zatezalo R, Barfield R, Rabuka D, Lee JB, Fishel R. An Efficient Site-Specific Method for Irreversible Covalent Labeling of Proteins with a Fluorophore. Sci Rep 2015; 5:16883. [PMID: 26582263 PMCID: PMC4652282 DOI: 10.1038/srep16883] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/07/2015] [Indexed: 11/09/2022] Open
Abstract
Fluorophore labeling of proteins while preserving native functions is essential for bulk Förster resonance energy transfer (FRET) interaction and single molecule imaging analysis. Here we describe a versatile, efficient, specific, irreversible, gentle and low-cost method for labeling proteins with fluorophores that appears substantially more robust than a similar but chemically distinct procedure. The method employs the controlled enzymatic conversion of a central Cys to a reactive formylglycine (fGly) aldehyde within a six amino acid Formylglycine Generating Enzyme (FGE) recognition sequence in vitro. The fluorophore is then irreversibly linked to the fGly residue using a Hydrazinyl-Iso-Pictet-Spengler (HIPS) ligation reaction. We demonstrate the robust large-scale fluorophore labeling and purification of E.coli (Ec) mismatch repair (MMR) components. Fluorophore labeling did not alter the native functions of these MMR proteins in vitro or in singulo. Because the FGE recognition sequence is easily portable, FGE-HIPS fluorophore-labeling may be easily extended to other proteins.
Collapse
Affiliation(s)
- Jiaquan Liu
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210
| | - Jeungphill Hanne
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210
| | - Brooke M Britton
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210
| | - Matthew Shoffner
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210
| | | | - Jared Bennett
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210
| | - Rachel Zatezalo
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210
| | | | | | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Korea
| | - Richard Fishel
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210.,Physics Department, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
133
|
Kapanidis A, Majumdar D, Heilemann M, Nir E, Weiss S. Alternating Laser Excitation for Solution-Based Single-Molecule FRET. Cold Spring Harb Protoc 2015; 2015:979-987. [PMID: 26527772 DOI: 10.1101/pdb.top086405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) has been widely applied to the study of fluorescently labeled biomolecules on surfaces and in solution. Sorting single molecules based on fluorescent dye stoichiometry provides one with further layers of information and also enables "filtering" of unwanted molecules from the analysis. We accomplish this sorting by using alternating laser excitation (ALEX) in combination with smFRET measurements; here we describe the implementation of these methodologies for the study of biomolecules in solution.
Collapse
|
134
|
Metalloregulator CueR biases RNA polymerase's kinetic sampling of dead-end or open complex to repress or activate transcription. Proc Natl Acad Sci U S A 2015; 112:13467-72. [PMID: 26483469 DOI: 10.1073/pnas.1515231112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metalloregulators respond to metal ions to regulate transcription of metal homeostasis genes. MerR-family metalloregulators act on σ(70)-dependent suboptimal promoters and operate via a unique DNA distortion mechanism in which both the apo and holo forms of the regulators bind tightly to their operator sequence, distorting DNA structure and leading to transcription repression or activation, respectively. It remains unclear how these metalloregulator-DNA interactions are coupled dynamically to RNA polymerase (RNAP) interactions with DNA for transcription regulation. Using single-molecule FRET, we study how the copper efflux regulator (CueR)--a Cu(+)-responsive MerR-family metalloregulator--modulates RNAP interactions with CueR's cognate suboptimal promoter PcopA, and how RNAP affects CueR-PcopA interactions. We find that RNAP can form two noninterconverting complexes at PcopA in the absence of nucleotides: a dead-end complex and an open complex, constituting a branched interaction pathway that is distinct from the linear pathway prevalent for transcription initiation at optimal promoters. Capitalizing on this branched pathway, CueR operates via a "biased sampling" instead of "dynamic equilibrium shifting" mechanism in regulating transcription initiation; it modulates RNAP's binding-unbinding kinetics, without allowing interconversions between the dead-end and open complexes. Instead, the apo-repressor form reinforces the dominance of the dead-end complex to repress transcription, and the holo-activator form shifts the interactions toward the open complex to activate transcription. RNAP, in turn, locks CueR binding at PcopA into its specific binding mode, likely helping amplify the differences between apo- and holo-CueR in imposing DNA structural changes. Therefore, RNAP and CueR work synergistically in regulating transcription.
Collapse
|
135
|
Crystal Structure of a Transcribing RNA Polymerase II Complex Reveals a Complete Transcription Bubble. Mol Cell 2015; 59:258-69. [PMID: 26186291 DOI: 10.1016/j.molcel.2015.06.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/13/2015] [Accepted: 06/25/2015] [Indexed: 11/24/2022]
Abstract
Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF-stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop 1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the trigger loop (TL), allowing visualization of its open state. Overall, our observations suggest that "open/closed" conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation.
Collapse
|
136
|
Bae B, Feklistov A, Lass-Napiorkowska A, Landick R, Darst SA. Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife 2015; 4. [PMID: 26349032 PMCID: PMC4593229 DOI: 10.7554/elife.08504] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/03/2015] [Indexed: 01/17/2023] Open
Abstract
Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full transcription bubble. The structures, combined with biochemical analyses, reveal key features supporting the formation and maintenance of the double-strand/single-strand DNA junction at the upstream edge of the −10 element where bubble formation initiates. The results also reveal RNAP interactions with duplex DNA just upstream of the −10 element and potential protein/DNA interactions that direct the DNA template strand into the RNAP active site. Addition of an RNA primer to yield a 4 base-pair post-translocated RNA:DNA hybrid mimics an initially transcribing complex at the point where steric clash initiates abortive initiation and σA dissociation. DOI:http://dx.doi.org/10.7554/eLife.08504.001 Inside cells, molecules of double-stranded DNA encode the instructions needed to make proteins. To make a protein, the two strands of DNA that make up a gene are separated and one strand acts as a template to make molecules of messenger ribonucleic acid (or mRNA for short). This process is called transcription. The mRNA is then used as a template to assemble the protein. An enzyme called RNA polymerase carries out transcription and is found in all cells ranging from bacteria to humans and other animals. Bacteria have the simplest form of RNA polymerase and provide an excellent system to study how it controls transcription. It is made up of several proteins that work together to make RNA using DNA as a template. However, it requires the help of another protein called sigma factor to direct it to regions of DNA called promoters, which are just before the start of the gene. When RNA polymerase and the sigma factor interact the resulting group of proteins is known as the RNA polymerase ‘holoenzyme’. Transcription takes place in several stages. To start with, the RNA polymerase holoenzyme locates and binds to promoter DNA. Next, it separates the two strands of DNA and exposes a portion of the template strand. At this point, the DNA and the holoenzyme are said to be in an ‘open promoter complex’ and the section of promoter DNA that is within it is known as a ‘transcription bubble’. However, it is not clear how RNA polymerase holoenzyme interacts with DNA in the open promoter complex. Bae, Feklistov et al. have now used X-ray crystallography to reveal the three-dimensional structure of the open promoter complex with an entire transcription bubble from a bacterium called Thermus aquaticus. The experiments show that there are several important interactions between RNA polymerase holoenzyme and promoter DNA. In particular, the sigma factor inserts into a region of the DNA at the start of the transcription bubble. This rearranges the DNA in a manner that allows the DNA to be exposed and contact the main part of the RNA polymerase. If the holoenyzyme fails to contact the DNA in this way, the holoenzyme does not bind properly to the promoter and transcription does not start. These findings build on previous work to provide a detailed structural framework for understanding how the RNA polymerase holoenzyme and DNA interact to form the open promoter complex. Another study by Bae et al.—which involved some of the same researchers as this study—reveals how another protein called CarD also binds to DNA at the start of the transcription bubble to stabilize the open promoter complex. DOI:http://dx.doi.org/10.7554/eLife.08504.002
Collapse
Affiliation(s)
- Brian Bae
- Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
| | - Andrey Feklistov
- Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
| | - Agnieszka Lass-Napiorkowska
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-madison, Madison, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, United States
| | - Seth A Darst
- Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
| |
Collapse
|
137
|
Fazal FM, Meng CA, Murakami K, Kornberg RD, Block SM. Real-time observation of the initiation of RNA polymerase II transcription. Nature 2015; 525:274-7. [PMID: 26331540 PMCID: PMC4624315 DOI: 10.1038/nature14882] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/03/2015] [Indexed: 01/22/2023]
Abstract
Biochemical and structural studies have shown that the initiation of RNA polymerase II (pol II) transcription proceeds in the following stages: assembly of pol II with general transcription factors (GTFs) and promoter DNA in a “closed” preinitiation complex (PIC)1,2; unwinding about 15 bp of the promoter DNA to form an “open” complex3,4; scanning downstream to a transcription start site; synthesis of a short transcript, believed to be about 10 nucleotides; and promoter escape. We have assembled a 32-protein, 1.5 megadalton PIC5 derived from Saccharomyces cerevisiae and observed subsequent initiation processes in real time with optical tweezers6. Contrary to expectation, scanning driven by transcription factor IIH (TFIIH)7-12 entailed the rapid opening of an extended bubble, averaging 85 bp, accompanied by the synthesis of a transcript up to the entire length of the extended bubble, followed by promoter escape. PICs that failed to achieve promoter escape nevertheless formed open complexes and extended bubbles, which collapsed back to closed or open complexes, resulting in repeated futile scanning.
Collapse
Affiliation(s)
- Furqan M Fazal
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Cong A Meng
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Kenji Murakami
- Department of Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University, Stanford, California 94305, USA
| | - Steven M Block
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA.,Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
138
|
Strobel EJ, Roberts JW. Two transcription pause elements underlie a σ70-dependent pause cycle. Proc Natl Acad Sci U S A 2015; 112:E4374-80. [PMID: 26216999 PMCID: PMC4538648 DOI: 10.1073/pnas.1512986112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The movement of RNA polymerase (RNAP) during transcription elongation is modulated by DNA-encoded elements that cause the elongation complex to pause. One of the best-characterized pause sequences is a binding site for the σ(70) initiation factor that induces pausing at a site near lambdoid phage late-gene promoters. An essential component of this σ(70)-dependent pause is the elemental pause site (EPS), a sequence that itself induces transcription pausing throughout the Escherichia coli genome and underlies other complex regulatory pause elements, such as the ops and his operon pauses. Here, we identify and provide a detailed kinetic analysis of a transcription cycle analogous to abortive cycling that underlies the σ(70)-dependent pause. We show that, in σ(70)-dependent pausing, the elemental pause acts primarily to modulate the rate at which complexes attempt to disengage the σ(70):DNA interaction. Our findings establish the σ(70)-dependent pause-encoding region as a multipartite element in which several pause-inducing components make distinct mechanistic contributions to the induction and maintenance of a regulatory transcription pause.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Jeffrey W Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
139
|
Winkelman JT, Winkelman BT, Boyce J, Maloney MF, Chen AY, Ross W, Gourse RL. Crosslink Mapping at Amino Acid-Base Resolution Reveals the Path of Scrunched DNA in Initial Transcribing Complexes. Mol Cell 2015; 59:768-80. [PMID: 26257284 DOI: 10.1016/j.molcel.2015.06.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022]
Abstract
RNA polymerase binds tightly to DNA to recognize promoters with high specificity but then releases these contacts during the initial stage of transcription. We report a site-specific crosslinking approach to map the DNA path in bacterial transcription intermediates at amino acid and nucleotide resolution. After validating the approach by showing that the DNA path in open complexes (RPO) is the same as in high-resolution X-ray structures, we define the path following substrate addition in "scrunched" complexes (RPITC). The DNA bulges that form within the transcription bubble in RPITC are positioned differently on the two strands. Our data suggest that the non-template strand bulge is extruded into solvent in complexes containing a 5-mer RNA, whereas the template strand bulge remains within the template strand tunnel, exerting stress on interactions between the β flap, β' clamp, and σ3.2. We propose that this stress contributes to σ3.2 displacement from the RNA exit channel, facilitating promoter escape.
Collapse
Affiliation(s)
- Jared T Winkelman
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Bradford T Winkelman
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Julian Boyce
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Michael F Maloney
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Albert Y Chen
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
140
|
Skancke J, Bar N, Kuiper M, Hsu LM. Sequence-Dependent Promoter Escape Efficiency Is Strongly Influenced by Bias for the Pretranslocated State during Initial Transcription. Biochemistry 2015; 54:4267-75. [PMID: 26083830 DOI: 10.1021/acs.biochem.5b00272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abortive transcription initiation can be rate-limiting for promoter escape and therefore represents a barrier to productive gene expression. The mechanism for abortive initiation is unknown, but the amount of abortive transcript is known to vary with the composition of the initial transcribed sequence (ITS). Here, we used a thermodynamic model of translocation combined with experimental validation to investigate the relationship between ITS and promoter escape on a set of phage T5 N25 promoters. We found a strong, negative correlation between RNAP's propensity to occupy the pretranslocated state during initial transcription and the efficiency of promoter escape (r = -0.67; p < 10(-6)). This correlation was almost entirely caused by free energy changes due to variation in the RNA 3' dinucleotide sequence at each step, implying that this sequence element controls the disposition of initial transcribing complexes. We tested our model experimentally by constructing a set of novel N25-ITS promoter variants; quantitative transcription analysis again showed a strong correlation (r = -0.81; p < 10(-6)). Our results support a model in which sequence-directed bias for the pretranslocated state during scrunching results in increased backtracking, which limits the efficiency of promoter escape. This provides an answer to the long-standing issue of how sequence composition of the ITS affects promoter escape efficiency.
Collapse
Affiliation(s)
- Jørgen Skancke
- †Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Sælandsvei 4, 7491 Trondheim, Norway
| | - Nadav Bar
- †Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Sælandsvei 4, 7491 Trondheim, Norway
| | - Martin Kuiper
- ‡Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Lilian M Hsu
- §Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| |
Collapse
|
141
|
A dynamic DNA-repair complex observed by correlative single-molecule nanomanipulation and fluorescence. Nat Struct Mol Biol 2015; 22:452-7. [PMID: 25961799 DOI: 10.1038/nsmb.3019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 04/03/2015] [Indexed: 01/20/2023]
Abstract
We characterize in real time the composition and catalytic state of the initial Escherichia coli transcription-coupled repair (TCR) machinery by using correlative single-molecule methods. TCR initiates when RNA polymerase (RNAP) stalled by a lesion is displaced by the Mfd DNA translocase, thus giving repair components access to the damage. We previously used DNA nanomanipulation to obtain a nanomechanical readout of protein-DNA interactions during TCR initiation. Here we correlate this signal with simultaneous single-molecule fluorescence imaging of labeled components (RNAP, Mfd or RNA) to monitor the composition and localization of the complex. Displacement of stalled RNAP by Mfd results in loss of nascent RNA but not of RNAP, which remains associated with Mfd as a long-lived complex on the DNA. This complex translocates at ∼4 bp/s along the DNA, in a manner determined by the orientation of the stalled RNAP on the DNA.
Collapse
|
142
|
Kim JY, Kim C, Lee NK. Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering. Nat Commun 2015; 6:6992. [PMID: 25908552 PMCID: PMC4421855 DOI: 10.1038/ncomms7992] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 03/23/2015] [Indexed: 01/15/2023] Open
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) is one of the powerful techniques for deciphering the dynamics of unsynchronized biomolecules. However, smFRET is limited in its temporal resolution for observing dynamics. Here, we report a novel method for observing real-time dynamics with submillisecond resolution by tethering molecules to freely diffusing 100-nm-sized liposomes. The observation time for a diffusing molecule is extended to 100 ms with a submillisecond resolution, which allows for direct analysis of the transition states from the FRET time trace using hidden Markov modelling. We measure transition rates of up to 1,500 s–1 between two conformers of a Holliday junction. The rapid diffusional migration of Deinococcus radiodurans single-stranded DNA-binding protein (SSB) on single-stranded DNA is resolved by FRET, faster than that of Escherichia coli SSB by an order of magnitude. Our approach is a powerful method for studying the dynamics and movements of biomolecules at submillisecond resolution. Single-molecule fluorescence resonance energy transfer is widely used to probe biomolecular dynamics, but is limited by its temporal resolution. Here, Kim et al. push the limit to submillisecond for the duration of tens of milliseconds by tethering target molecules to liposomes in buffer solutions.
Collapse
Affiliation(s)
- Jae-Yeol Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Cheolhee Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Nam Ki Lee
- 1] Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea [2] School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
143
|
Schulz S, Kramm K, Werner F, Grohmann D. Fluorescently labeled recombinant RNAP system to probe archaeal transcription initiation. Methods 2015; 86:10-8. [PMID: 25912642 DOI: 10.1016/j.ymeth.2015.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 10/24/2022] Open
Abstract
The transcriptional apparatus is one of the most complex cellular machineries and in order to fully appreciate the behavior of these protein-nucleic acid assemblies one has to understand the molecular details of the system. In addition to classical biochemical and structural studies, fluorescence-based techniques turned out as an important--and sometimes the critical--tool to obtain information about the molecular mechanisms of transcription. Fluorescence is not only a multi-modal parameter that can report on molecular interactions, environment and oligomerization status. Measured on the single-molecule level it also informs about the heterogeneity of the system and gives access to distances and distance changes in the molecular relevant nanometer regime. A pre-requisite for fluorescence-based measurements is the site-specific incorporation of one or multiple fluorescent dyes. In this respect, the archaeal transcription system is ideally suited as it is available in a fully recombinant form and thus allows for site-specific modification via sophisticated labeling schemes. The application of fluorescence based approaches to the archaeal transcription apparatus changed our understanding of the molecular mechanisms and dynamics that drive archaeal transcription and unraveled the architecture of transcriptional complexes not amenable to structural interrogation.
Collapse
Affiliation(s)
- Sarah Schulz
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig, Germany
| | - Kevin Kramm
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig, Germany
| | - Finn Werner
- RNAP Laboratory, University College London, Institute of Structural and Molecular Biology, Division of Biosciences, Gower St, London WC1E 6BT, UK
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Straße 10, 38106 Braunschweig, Germany.
| |
Collapse
|
144
|
Zuo Y, Steitz TA. Crystal structures of the E. coli transcription initiation complexes with a complete bubble. Mol Cell 2015; 58:534-40. [PMID: 25866247 DOI: 10.1016/j.molcel.2015.03.010] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/12/2015] [Accepted: 03/06/2015] [Indexed: 11/15/2022]
Abstract
During transcription initiation, RNA polymerase binds to promoter DNA to form an initiation complex containing a DNA bubble and enters into abortive cycles of RNA synthesis before escaping the promoter to transit into the elongation phase for processive RNA synthesis. Here we present the crystal structures of E. coli transcription initiation complexes containing a complete transcription bubble and de novo synthesized RNA oligonucleotides at about 6-Å resolution. The structures show how RNA polymerase recognizes DNA promoters that contain spacers of different lengths and reveal a bridging interaction between the 5'-triphosphate of the nascent RNA and the σ factor that may function to stabilize the short RNA-DNA hybrids during the early stage of transcription initiation. The conformation of the RNA oligonucleotides and the paths of the DNA strands in the complete initiation complexes provide insights into the mechanism that controls both the abortive and productive RNA synthesis.
Collapse
Affiliation(s)
- Yuhong Zuo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, New Haven, CT 06510, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
145
|
Jonkers I, Lis JT. Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2015; 16:167-77. [PMID: 25693130 PMCID: PMC4782187 DOI: 10.1038/nrm3953] [Citation(s) in RCA: 619] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in sequencing techniques that measure nascent transcripts and that reveal the positioning of RNA polymerase II (Pol II) have shown that the pausing of Pol II in promoter-proximal regions and its release to initiate a phase of productive elongation are key steps in transcription regulation. Moreover, after the release of Pol II from the promoter-proximal region, elongation rates are highly dynamic throughout the transcription of a gene, and vary on a gene-by-gene basis. Interestingly, Pol II elongation rates affect co-transcriptional processes such as splicing, termination and genome stability. Increasing numbers of factors and regulatory mechanisms have been associated with the steps of transcription elongation by Pol II, revealing that elongation is a highly complex process. Elongation is thus now recognized as a key phase in the regulation of transcription by Pol II.
Collapse
Affiliation(s)
- Iris Jonkers
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, 416 Biotechnology Building, 14853, Ithaca, New York, USA
| |
Collapse
|
146
|
Sirbuly DJ, Friddle RW, Villanueva J, Huang Q. Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:024101. [PMID: 25629797 DOI: 10.1088/0034-4885/78/2/024101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function.
Collapse
Affiliation(s)
- Donald J Sirbuly
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA. Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | |
Collapse
|
147
|
Bordetella pertussis fim3 gene regulation by BvgA: phosphorylation controls the formation of inactive vs. active transcription complexes. Proc Natl Acad Sci U S A 2015; 112:E526-35. [PMID: 25624471 DOI: 10.1073/pnas.1421045112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Two-component systems [sensor kinase/response regulator (RR)] are major tools used by microorganisms to adapt to environmental conditions. RR phosphorylation is typically required for gene activation, but few studies have addressed how and if phosphorylation affects specific steps during transcription initiation. We characterized transcription complexes made with RNA polymerase and the Bordetella pertussis RR, BvgA, in its nonphosphorylated or phosphorylated (BvgA∼P) state at P(fim3), the promoter for the virulence gene fim3 (fimbrial subunit), using gel retardation, potassium permanganate and DNase I footprinting, cleavage reactions with protein conjugated with iron bromoacetamidobenzyl-EDTA, and in vitro transcription. Previous work has shown that the level of nonphosphorylated BvgA remains high in vivo under conditions in which BvgA is phosphorylated. Our results here indicate that surprisingly both BvgA and BvgA∼P form open and initiating complexes with RNA polymerase at P(fim3). However, phosphorylation of BvgA is needed to generate the correct conformation that can transition to competent elongation. Footprints obtained with the complexes made with nonphosphorylated BvgA are atypical; while the initiating complex with BvgA synthesizes short RNA, it does not generate full-length transcripts. Extended incubation of the BvgA/RNA polymerase initiated complex in the presence of heparin generates a stable, but defective species that depends on the initial transcribed sequence of fim3. We suggest that the presence of nonphosphorylated BvgA down-regulates P(fim3) activity when phosphorylated BvgA is present and may allow the bacterium to quickly adapt to the loss of inducing conditions by rapidly eliminating P(fim3) activation once the signal for BvgA phosphorylation is removed.
Collapse
|
148
|
Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation. Methods Mol Biol 2015; 1276:101-31. [PMID: 25665560 PMCID: PMC4677679 DOI: 10.1007/978-1-4939-2392-2_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A three-step procedure comprising (1) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (2) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (3) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a cross-linking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP.
Collapse
|
149
|
Davis E, Chen J, Leon K, Darst SA, Campbell EA. Mycobacterial RNA polymerase forms unstable open promoter complexes that are stabilized by CarD. Nucleic Acids Res 2014; 43:433-45. [PMID: 25510492 PMCID: PMC4288152 DOI: 10.1093/nar/gku1231] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has served as the archetypal organism on which the overwhelming majority of biochemical characterizations of bacterial RNA polymerase (RNAP) have been focused; the properties of E. coli RNAP have been accepted as generally representative for all bacterial RNAPs. Here, we directly compare the initiation properties of a mycobacterial transcription system with E. coli RNAP on two different promoters. The detailed characterizations include abortive transcription assays, RNAP/promoter complex stability assays and DNAse I and KMnO4 footprinting. Based on footprinting, we find that promoter complexes formed by E. coli and mycobacterial RNAPs use very similar protein/DNA interactions and generate the same transcription bubbles. However, we find that the open promoter complexes formed by E. coli RNAP on the two promoters tested are highly stable and essentially irreversible (with lifetimes much greater than 1 h), while the open promoter complexes on the same two promoters formed by mycobacterial RNAP are very unstable (lifetimes of about 2 min or less) and readily reversible. We show here that CarD, an essential mycobacterial transcription activator that is not found in E. coli, stabilizes the mycobacterial RNAP/open promoter complexes considerably by preventing transcription bubble collapse.
Collapse
Affiliation(s)
- Elizabeth Davis
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Katherine Leon
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
150
|
Kinetics of promoter escape by bacterial RNA polymerase: effects of promoter contacts and transcription bubble collapse. Biochem J 2014; 463:135-44. [PMID: 24995916 DOI: 10.1042/bj20140179] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Promoter escape by RNA polymerase, the transition between the initiation and elongation, is a critical step that defines transcription output at many promoters. In the present study we used a real-time fluorescence assay for promoter melting and escape to study the determinants of the escape. Perturbation of core promoter-polymerase contacts had opposing effects on the rates of melting and escape, demonstrating a direct role of core promoter elements sequence in setting not only the kinetics of promoter melting, but also the kinetics of promoter escape. The start of RNA synthesis is accompanied by an enlargement of the transcription bubble and pulling in of the downstream DNA into the enzyme, resulting in DNA scrunching. Promoter escape results in collapse of the enlarged bubble. To test whether the energy that could be potentially released by the collapse of the bubble plays a role in determining escape kinetics, we measured the rates of promoter escape in promoter constructs, in which the amount of this energy was perturbed by introducing sequence mismatches. We found no significant changes in the rate of promoter escape with these promoter constructs suggesting that the energy released upon bubble collapse does not play a critical role in determining the kinetics of promoter escape.
Collapse
|