101
|
Han KQ, Wu G, Lv F. Development of QSAR-Improved Statistical Potential for the Structure-Based Analysis of ProteinPeptide Binding Affinities. Mol Inform 2013; 32:783-92. [DOI: 10.1002/minf.201300064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022]
|
102
|
Lluis MW, Yin H. Engineering and utilization of reporter cell lines for cell-based assays of transmembrane receptors. Methods Mol Biol 2013; 1063:211-25. [PMID: 23975780 DOI: 10.1007/978-1-62703-583-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Transmembrane receptors, a subset of integral membrane proteins, are the receivers that transduce an extracellular chemical message into an intracellular response. Accordingly, these proteins are of particular interest in the scientific community and are probably best studied as part of a cellular system. Herein, we detail the engineering of a fluorescent and bioluminescent reporter cell line for a transmembrane receptor and how to employ it in a directed evolution screen that identifies peptide regulators of receptor activity.
Collapse
Affiliation(s)
- Matthew W Lluis
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | | |
Collapse
|
103
|
Krishnamurthy VM, Kumar K. Fluorination in the design of membrane protein assemblies. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 1063:227-43. [PMID: 23975781 DOI: 10.1007/978-1-62703-583-5_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Protein design approaches based on the binary patterning of nonpolar and polar amino acids have been successful in generating native-like protein structures of amphiphilic α-helices or idealized amphiphilic β-strands in aqueous solution. Such patterning is not possible in the nonpolar environment of biological membranes, precluding the application of conventional approaches to the design of membrane proteins that assemble into discrete aggregates. This review surveys a promising, new strategy for membrane protein design that exploits the unique properties of fluorocarbons-in particular, their ability to phase separate from both water (due to their hydrophobicity) and hydrocarbons (due to their lipophobicity)-to generate membrane protein assemblies. The ability to design such discrete assemblies should enable the disruption of protein-protein interactions and provide templates for novel biomaterials and therapeutics.
Collapse
|
104
|
Zhang C, Shen Q, Tang B, Lai L. Computational Design of Helical Peptides Targeting TNFα. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
105
|
Zhang C, Shen Q, Tang B, Lai L. Computational Design of Helical Peptides Targeting TNFα. Angew Chem Int Ed Engl 2013; 52:11059-62. [DOI: 10.1002/anie.201305963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Indexed: 12/12/2022]
|
106
|
Drew K, Renfrew PD, Craven TW, Butterfoss GL, Chou FC, Lyskov S, Bullock BN, Watkins A, Labonte JW, Pacella M, Kilambi KP, Leaver-Fay A, Kuhlman B, Gray JJ, Bradley P, Kirshenbaum K, Arora PS, Das R, Bonneau R. Adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design. PLoS One 2013; 8:e67051. [PMID: 23869206 PMCID: PMC3712014 DOI: 10.1371/journal.pone.0067051] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/13/2013] [Indexed: 11/19/2022] Open
Abstract
Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones), oligooxopiperazines, oligo-peptoids, [Formula: see text]-peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org). This work helps address the peptidomimetic community's need for an automated and expandable modeling tool for noncanonical backbones.
Collapse
Affiliation(s)
- Kevin Drew
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - P. Douglas Renfrew
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Timothy W. Craven
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Glenn L. Butterfoss
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Fang-Chieh Chou
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Sergey Lyskov
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Brooke N. Bullock
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Andrew Watkins
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Jason W. Labonte
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Michael Pacella
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Krishna Praneeth Kilambi
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Andrew Leaver-Fay
- Department of Biochemistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brian Kuhlman
- Department of Biochemistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Philip Bradley
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Paramjit S. Arora
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Richard Bonneau
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, United States of America
| |
Collapse
|
107
|
Gori A, Longhi R, Peri C, Colombo G. Peptides for immunological purposes: design, strategies and applications. Amino Acids 2013; 45:257-68. [DOI: 10.1007/s00726-013-1526-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/30/2022]
|
108
|
Kononova O, Litvinov RI, Zhmurov A, Alekseenko A, Cheng CH, Agarwal S, Marx KA, Weisel JW, Barsegov V. Molecular mechanisms, thermodynamics, and dissociation kinetics of knob-hole interactions in fibrin. J Biol Chem 2013; 288:22681-92. [PMID: 23720752 DOI: 10.1074/jbc.m113.472365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Polymerization of fibrin, the primary structural protein of blood clots and thrombi, occurs through binding of knobs 'A' and 'B' in the central nodule of fibrin monomer to complementary holes 'a' and 'b' in the γ- and β-nodules, respectively, of another monomer. We characterized the A:a and B:b knob-hole interactions under varying solution conditions using molecular dynamics simulations of the structural models of fibrin(ogen) fragment D complexed with synthetic peptides GPRP (knob 'A' mimetic) and GHRP (knob 'B' mimetic). The strength of A:a and B:b knob-hole complexes was roughly equal, decreasing with pulling force; however, the dissociation kinetics were sensitive to variations in acidity (pH 5-7) and temperature (T = 25-37 °C). There were similar structural changes in holes 'a' and 'b' during forced dissociation of the knob-hole complexes: elongation of loop I, stretching of the interior region, and translocation of the moveable flap. The disruption of the knob-hole interactions was not an "all-or-none" transition as it occurred through distinct two-step or single step pathways with or without intermediate states. The knob-hole bonds were stronger, tighter, and more brittle at pH 7 than at pH 5. The B:b knob-hole bonds were weaker, looser, and more compliant than the A:a knob-hole bonds at pH 7 but stronger, tighter, and less compliant at pH 5. Surprisingly, the knob-hole bonds were stronger, not weaker, at elevated temperature (T = 37 °C) compared with T = 25 °C due to the helix-to-coil transition in loop I that helps stabilize the bonds. These results provide detailed qualitative and quantitative characteristics underlying the most significant non-covalent interactions involved in fibrin polymerization.
Collapse
Affiliation(s)
- Olga Kononova
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Li LH, Hsu HJ, Fischer WB. Assembling viral channel forming proteins: Vpu from HIV-1. Biopolymers 2013; 99:517-29. [DOI: 10.1002/bip.22210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 10/17/2012] [Accepted: 12/22/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Li-Hua Li
- Institute of Biophotonics, School of Biomedical Science and Engineering and Biophotonics and Molecular Imaging Research Center (BMIRC); National Yang-Ming University; Taipei 112; Taiwan
| | - Hao-Jen Hsu
- Institute of Biophotonics, School of Biomedical Science and Engineering and Biophotonics and Molecular Imaging Research Center (BMIRC); National Yang-Ming University; Taipei 112; Taiwan
| | - Wolfgang B. Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering and Biophotonics and Molecular Imaging Research Center (BMIRC); National Yang-Ming University; Taipei 112; Taiwan
| |
Collapse
|
110
|
Kiss G, Çelebi-Ölçüm N, Moretti R, Baker D, Houk KN. Computational enzyme design. Angew Chem Int Ed Engl 2013; 52:5700-25. [PMID: 23526810 DOI: 10.1002/anie.201204077] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Indexed: 11/07/2022]
Abstract
Recent developments in computational chemistry and biology have come together in the "inside-out" approach to enzyme engineering. Proteins have been designed to catalyze reactions not previously accelerated in nature. Some of these proteins fold and act as catalysts, but the success rate is still low. The achievements and limitations of the current technology are highlighted and contrasted to other protein engineering techniques. On its own, computational "inside-out" design can lead to the production of catalytically active and selective proteins, but their kinetic performances fall short of natural enzymes. When combined with directed evolution, molecular dynamics simulations, and crowd-sourced structure-prediction approaches, however, computational designs can be significantly improved in terms of binding, turnover, and thermal stability.
Collapse
Affiliation(s)
- Gert Kiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
111
|
Kiss G, Çelebi-Ölçüm N, Moretti R, Baker D, Houk KN. Computerbasiertes Enzymdesign. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201204077] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
112
|
Abstract
The context of the membrane is crucial for the interaction of many membrane proteins with their ligands. However, many detailed studies cannot be carried out in living cells. Therefore, studying these interactions requires model membrane systems that are compatible with the used analytical method. A big variety of these methods is available, each of which has its advantages and disadvantages. This chapter gives an overview over the existing techniques, a basic introduction into work with lipids, and detailed protocols for selected methods.
Collapse
Affiliation(s)
- Heiko Keller
- BIOTEC, Dresden University of Technology, Dresden, Germany
| | | | | |
Collapse
|
113
|
Caputo GA. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy. Methods Mol Biol 2013; 1063:95-116. [PMID: 23975773 DOI: 10.1007/978-1-62703-583-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrophobic matching between transmembrane protein segments and the lipid bilayer in which they are embedded is a significant factor in the behavior and orientation of such transmembrane segments. The condition of hydrophobic mismatch occurs when the hydrophobic thickness of a lipid bilayer is significantly different than the length of the membrane spanning segment of a protein, resulting in a mismatch. This mismatch can result in altered function of proteins as well as nonnative structural arrangements including effects on transmembrane α-helix tilt angles, oligomerization state, and/or the formation of non-transmembrane topographies. Here, a fluorescence-based protocol is described for testing model transmembrane α-helices and their sensitivity to hydrophobic mismatch by measuring the propensity of these helices to form non-transmembrane structures. Overall, good hydrophobic matching between the bilayer and transmembrane segments is an important factor that must be considered when designing membrane proteins or peptides.
Collapse
Affiliation(s)
- Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USA
| |
Collapse
|
114
|
Cristian L, Zhang Y. Use of thiol-disulfide exchange method to study transmembrane peptide association in membrane environments. Methods Mol Biol 2013; 1063:3-18. [PMID: 23975769 DOI: 10.1007/978-1-62703-583-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The development of methods for reversibly folding membrane proteins in a two-state manner remains a considerable challenge for studies of membrane protein stability. In recent years, a variety of techniques have been established and studies of membrane protein folding thermodynamics in the native bilayer environments have become feasible. Here we present the thiol-disulfide exchange method, a promising experimental approach for investigating the thermodynamics of transmembrane (TM) helix-helix association in membrane-mimicking environments. The method involves initiating disulfide cross-linking of a protein under reversible redox conditions in a thiol-disulfide buffer and quantitative assessment of the extent of cross-linking at equilibrium. This experimental method provides a broadly applicable tool for thermodynamic studies of folding, oligomerization, and helix-helix interactions of membrane proteins.
Collapse
|
115
|
Nanda V, Hsieh D, Davis A. Prediction and design of outer membrane protein-protein interactions. Methods Mol Biol 2013; 1063:183-96. [PMID: 23975778 DOI: 10.1007/978-1-62703-583-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein-protein interactions (PPI) play central roles in biological processes, motivating us to understand the structural basis underlying affinity and specificity. In this chapter, we focus on biochemical and computational design strategies of assessing and detecting PPIs of β-barrel outer membrane proteins (OMPs). A few case studies are presented highlighting biochemical techniques used to dissect the energetics of oligomerization and determine amino acids forming the key interactions of the PPI sites. Current computational strategies for detecting/predicting PPIs are introduced, and examples of computational and rational engineering strategies applied to OMPs are presented.
Collapse
Affiliation(s)
- Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School-UMDNJ, Piscataway, NJ, USA
| | | | | |
Collapse
|
116
|
Prasanna X, Praveen PJ, Sengupta D. Sequence dependent lipid-mediated effects modulate the dimerization of ErbB2 and its associative mutants. Phys Chem Chem Phys 2013; 15:19031-41. [DOI: 10.1039/c3cp52447g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
117
|
Godfroy JI, Roostan M, Moroz YS, Korendovych IV, Yin H. Isolated Toll-like receptor transmembrane domains are capable of oligomerization. PLoS One 2012; 7:e48875. [PMID: 23155421 PMCID: PMC3498381 DOI: 10.1371/journal.pone.0048875] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/01/2012] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) act as the first line of defense against bacterial and viral pathogens by initiating critical defense signals upon dimer activation. The contribution of the transmembrane domain in the dimerization and signaling process has heretofore been overlooked in favor of the extracellular and intracellular domains. As mounting evidence suggests that the transmembrane domain is a critical region in several protein families, we hypothesized that this was also the case for Toll-like receptors. Using a combined biochemical and biophysical approach, we investigated the ability of isolated Toll-like receptor transmembrane domains to interact independently of extracellular domain dimerization. Our results showed that the transmembrane domains had a preference for the native dimer partners in bacterial membranes for the entire receptor family. All TLR transmembrane domains showed strong homotypic interaction potential. The TLR2 transmembrane domain demonstrated strong heterotypic interactions in bacterial membranes with its known interaction partners, TLR1 and TLR6, as well as with a proposed interaction partner, TLR10, but not with TLR4, TLR5, or unrelated transmembrane receptors providing evidence for the specificity of TLR2 transmembrane domain interactions. Peptides for the transmembrane domains of TLR1, TLR2, and TLR6 were synthesized to further study this subfamily of receptors. These peptides validated the heterotypic interactions seen in bacterial membranes and demonstrated that the TLR2 transmembrane domain had moderately strong interactions with both TLR1 and TLR6. Combined, these results suggest a role for the transmembrane domain in Toll-like receptor oligomerization and as such, may be a novel target for further investigation of new therapeutic treatments of Toll-like receptor mediated diseases.
Collapse
Affiliation(s)
- James I. Godfroy
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Mohammad Roostan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Yurii S. Moroz
- Department of Chemistry, Syracuse University, Syracuse, New York, United States of America
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, Syracuse, New York, United States of America
| | - Hang Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
118
|
Lluis MW, Godfroy JI, Yin H. Protein engineering methods applied to membrane protein targets. Protein Eng Des Sel 2012; 26:91-100. [DOI: 10.1093/protein/gzs079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
119
|
Schramm CA, Hannigan BT, Donald JE, Keasar C, Saven JG, Degrado WF, Samish I. Knowledge-based potential for positioning membrane-associated structures and assessing residue-specific energetic contributions. Structure 2012; 20:924-35. [PMID: 22579257 DOI: 10.1016/j.str.2012.03.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/28/2012] [Accepted: 03/07/2012] [Indexed: 01/27/2023]
Abstract
The complex hydrophobic and hydrophilic milieus of membrane-associated proteins pose experimental and theoretical challenges to their understanding. Here, we produce a nonredundant database to compute knowledge-based asymmetric cross-membrane potentials from the per-residue distributions of C(β), C(γ) and functional group atoms. We predict transmembrane and peripherally associated regions from genomic sequence and position peptides and protein structures relative to the bilayer (available at http://www.degradolab.org/ez). The pseudo-energy topological landscapes underscore positional stability and functional mechanisms demonstrated here for antimicrobial peptides, transmembrane proteins, and viral fusion proteins. Moreover, experimental effects of point mutations on the relative ratio changes of dual-topology proteins are quantitatively reproduced. The functional group potential and the membrane-exposed residues display the largest energetic changes enabling to detect native-like structures from decoys. Hence, focusing on the uniqueness of membrane-associated proteins and peptides, we quantitatively parameterize their cross-membrane propensity, thus facilitating structural refinement, characterization, prediction, and design.
Collapse
Affiliation(s)
- Chaim A Schramm
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Kim C, Ye F, Hu X, Ginsberg MH. Talin activates integrins by altering the topology of the β transmembrane domain. ACTA ACUST UNITED AC 2012; 197:605-11. [PMID: 22641344 PMCID: PMC3365499 DOI: 10.1083/jcb.201112141] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Talin binding to the integrin β tail alters the β transmembrane domain’s topology, resulting in integrin activation. Talin binding to integrin β tails increases ligand binding affinity (activation). Changes in β transmembrane domain (TMD) topology that disrupt α–β TMD interactions are proposed to mediate integrin activation. In this paper, we used membrane-embedded integrin β3 TMDs bearing environmentally sensitive fluorophores at inner or outer membrane water interfaces to monitor talin-induced β3 TMD motion in model membranes. Talin binding to the β3 cytoplasmic domain increased amino acid side chain embedding at the inner and outer borders of the β3 TMD, indicating altered topology of the β3 TMD. Talin’s capacity to effect this change depended on its ability to bind to both the integrin β tail and the membrane. Introduction of a flexible hinge at the midpoint of the β3 TMD decoupled the talin-induced change in intracellular TMD topology from the extracellular side and blocked talin-induced activation of integrin αIIbβ3. Thus, we show that talin binding to the integrin β TMD alters the topology of the TMD, resulting in integrin activation.
Collapse
Affiliation(s)
- Chungho Kim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
121
|
Polyansky AA, Volynsky PE, Efremov RG. Multistate Organization of Transmembrane Helical Protein Dimers Governed by the Host Membrane. J Am Chem Soc 2012; 134:14390-400. [DOI: 10.1021/ja303483k] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Anton A. Polyansky
- Department of Structural and
Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna, AT-1030,
Austria
- M.M. Shemyakin
and Yu.A. Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Pavel E. Volynsky
- M.M. Shemyakin
and Yu.A. Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Roman G. Efremov
- M.M. Shemyakin
and Yu.A. Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny,
Moscow Region, 141700, Russia
| |
Collapse
|
122
|
Schindler C, Fischer WB. Sequence alignment of viral channel proteins with cellular ion channels. J Comput Biol 2012; 19:1060-72. [PMID: 22891808 DOI: 10.1089/cmb.2011.0297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sequence alignment is an important tool for identifying regions of similarities among proteins and for, thus, establishing functional and structural relationships between different proteins. Here, alignments of transmembrane domains (TMDs) of viral channel forming proteins with host ion channels and toxins are evaluated. The following representatives of polytopic viral channel proteins are chosen: (i) p7 of HCV and 2B of Polio virus (two TMDs) and (ii) 3a of SARS-CoV (three TMDs). Using ClustalW2, each of the TMDs of the viral channels is aligned, and the overlap is mapped onto structural models of the host channels and toxins focusing on the pore-lining TMDs. The analysis reveals that p7 and 2B TMDs align with the pore-facing TMD of MscL, and 3a-TMDs align with those of ligand-gated ion channels. Possible implications concerning the mechanism of function of the viral proteins are discussed.
Collapse
Affiliation(s)
- Christina Schindler
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
123
|
Zuo Z, Gandhi NS, Arndt KM, Mancera RL. Free energy calculations of the interactions of c-Jun-based synthetic peptides with the c-Fos protein. Biopolymers 2012; 97:899-909. [DOI: 10.1002/bip.22099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
124
|
Naturally evolved G protein-coupled receptors adopt metastable conformations. Proc Natl Acad Sci U S A 2012; 109:13284-9. [PMID: 22847407 DOI: 10.1073/pnas.1205512109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A wide range of membrane receptors signal through conformational changes, and the resulting protein conformational flexibility often hinders their structural studies. Because the determinants of membrane receptor conformational stability are still poorly understood, identifying a minimal set of perturbations stabilizing a membrane protein in a given conformation remains a major challenge in membrane protein structure determination. We present a novel approach integrating bioinformatics, computational design and experimental techniques that identifies and stabilizes metastable receptor regions. When applied to the beta1-adrenergic receptor, the method generated 13 novel receptor variants stabilized in the intended inactive state among which two exhibit an apparent thermostability higher than WT and M23 (a receptor variant previously stabilized by extensive scanning mutagenesis) by more than 30 °C and 11 °C, respectively. Targeted regions involve nonconserved unsatisfied polar residues or exhibit significant packing defects, features found in all class A G protein-coupled receptor structures. These findings suggest that natural G protein-coupled receptor sequences have evolved to be conformationally metastable through the design of suboptimal polar and van der Waals tertiary interactions. Given sufficiently accurate structural models, our approach should prove useful for designing stabilized variants of many uncharacterized membrane receptors.
Collapse
|
125
|
Chua GL, Tang XY, Patra AT, Tan SM, Bhattacharjya S. Structure and binding interface of the cytosolic tails of αXβ2 integrin. PLoS One 2012; 7:e41924. [PMID: 22844534 PMCID: PMC3406025 DOI: 10.1371/journal.pone.0041924] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/26/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Integrins are signal transducer proteins involved in a number of vital physiological processes including cell adhesion, proliferation and migration. Integrin molecules are hetero-dimers composed of two distinct subunits, α and β. In humans, 18 α and 8 β subunits are combined into 24 different integrin molecules. Each of the subunit comprises a large extracellular domain, a single pass transmembrane segment and a cytosolic tail (CT). The CTs of integrins are vital for bidirectional signal transduction and in maintaining the resting state of the receptors. A large number of intracellular proteins have been found to interact with the CTs of integrins linking integrins to the cytoskeleton. METHODOLOGY/PRINCIPAL FINDINGS In this work, we have investigated structure and interactions of CTs of the leukocyte specific integrin αXβ2. We determined the atomic resolution structure of a myristoylated CT of αX in perdeuterated dodecylphosphocholine (DPC) by NMR spectroscopy. Our results reveal that the 35-residue long CT of αX adopts an α-helical conformation for residues F4-N17 at the N-terminal region. The remaining residues located at the C-terminal segment of αX delineate a long loop of irregular conformations. A segment of the loop maintains packing interactions with the helical structure by an extended non-polar surface of the αX CT. Interactions between αX and β2 CTs are demonstrated by (15)N-(1)H HSQC NMR experiments. We find that residues constituting the polar face of the helical conformation of αX are involved in interactions with the N-terminal residues of β2 CT. A docked structure of the CT complex indicates that a network of polar and/or salt-bridge interactions may sustain the heteromeric interactions. CONCLUSIONS/SIGNIFICANCE The current study provides important insights into the conservation of interactions and structures among different CTs of integrins.
Collapse
Affiliation(s)
- Geok-Lin Chua
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiao-Yan Tang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alok Tanala Patra
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
126
|
Fleishman SJ, Baker D. Role of the biomolecular energy gap in protein design, structure, and evolution. Cell 2012; 149:262-73. [PMID: 22500796 DOI: 10.1016/j.cell.2012.03.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Indexed: 01/29/2023]
Abstract
The folding of natural biopolymers into unique three-dimensional structures that determine their function is remarkable considering the vast number of alternative states and requires a large gap in the energy of the functional state compared to the many alternatives. This Perspective explores the implications of this energy gap for computing the structures of naturally occurring biopolymers, designing proteins with new structures and functions, and optimally integrating experiment and computation in these endeavors. Possible parallels between the generation of functional molecules in computational design and natural evolution are highlighted.
Collapse
Affiliation(s)
- Sarel J Fleishman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
127
|
Targeting the lateral interactions of transmembrane domain 5 of Epstein-Barr virus latent membrane protein 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2282-9. [PMID: 22609737 DOI: 10.1016/j.bbamem.2012.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/02/2012] [Accepted: 05/10/2012] [Indexed: 01/10/2023]
Abstract
The lateral transmembrane protein-protein interaction has been regarded as "undruggable" despite its importance in many biological processes. The homo-trimerization of transmembrane domain 5 (TMD-5) of latent membrane protein 1 (LMP-1) is critical for the constitutive oncogenic activation of the Epstein-Barr virus (EBV). Herein, we report a small molecule agent, NSC 259242 (compound 1), to be a TMD-5 self-association disruptor. Both the positively charged acetimidamide functional groups and the stilbene backbone of compound 1 are essential for its inhibitory activity. Furthermore, cell-based assays revealed that compound 1 inhibits full-length LMP-1 signaling in EBV infected B cells. These studies demonstrated a new strategy for identifying small molecule disruptors for investigating transmembrane protein-protein interactions.
Collapse
|
128
|
Perez-Aguilar JM, Saven JG. Computational design of membrane proteins. Structure 2012; 20:5-14. [PMID: 22244752 DOI: 10.1016/j.str.2011.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 11/26/2022]
Abstract
Membrane proteins are involved in a wide variety of cellular processes, and are typically part of the first interaction a cell has with extracellular molecules. As a result, these proteins comprise a majority of known drug targets. Membrane proteins are among the most difficult proteins to obtain and characterize, and a structure-based understanding of their properties can be difficult to elucidate. Notwithstanding, the design of membrane proteins can provide stringent tests of our understanding of these crucial biological systems, as well as introduce novel or targeted functionalities. Computational design methods have been particularly helpful in addressing these issues, and this review discusses recent studies that tailor membrane proteins to display specific structures or functions and examines how redesigned membrane proteins are being used to facilitate structural and functional studies.
Collapse
|
129
|
He L, Friedman AM, Bailey-Kellogg C. A divide-and-conquer approach to determine the Pareto frontier for optimization of protein engineering experiments. Proteins 2012; 80:790-806. [PMID: 22180081 PMCID: PMC4939273 DOI: 10.1002/prot.23237] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/06/2011] [Accepted: 10/21/2011] [Indexed: 01/07/2023]
Abstract
In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability versus novelty, affinity versus specificity, activity versus immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not "dominated"; that is, no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, Protein Engineering Pareto FRontier (PEPFR), that hierarchically subdivides the objective space, using appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria.
Collapse
Affiliation(s)
- Lu He
- Department of Computer Science, Dartmouth College, Hanover NH 03755
| | - Alan M. Friedman
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue Cancer Center, and Bindley Bioscience Center, Purdue University
| | | |
Collapse
|
130
|
Polyansky AA, Volynsky PE, Efremov RG. Structural, dynamic, and functional aspects of helix association in membranes: a computational view. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 83:129-61. [PMID: 21570667 DOI: 10.1016/b978-0-12-381262-9.00004-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review surveys recent achievements of molecular computer modeling in understanding spatial structure, dynamics, and mechanisms of functioning of transmembrane α-helical dimers in membranes. The factors driving self-association of hydrophobic helices in the membrane milieu are considered with examples of their applications to biologically relevant problems. The emphasis is made on the recent results, which help to understand important aspects of structure-function relations for these systems and their biological activity. Limitations and shortcomings of the methods, along with their perspectives in design of new membrane active agents, are discussed.
Collapse
Affiliation(s)
- Anton A Polyansky
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
131
|
Shinde S, Cordova JM, Woodrum BW, Ghirlanda G. Modulation of function in a minimalist heme-binding membrane protein. J Biol Inorg Chem 2012; 17:557-64. [PMID: 22307279 DOI: 10.1007/s00775-012-0876-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/14/2012] [Indexed: 12/21/2022]
Abstract
De novo designed heme-binding proteins have been used successfully to recapitulate features of natural hemoproteins. This approach has now been extended to membrane-soluble model proteins. Our group designed a functional hemoprotein, ME1, by engineering a bishistidine binding site into a natural membrane protein, glycophorin A (Cordova et al. in J Am Chem Soc 129:512-518, 2007). ME1 binds iron(III) protoporphyrin IX with submicromolar affinity, has a redox potential of -128 mV, and displays peroxidase activity. Here, we show the effect of aromatic residues in modulating the redox potential in the context of a membrane-soluble model system. We designed aromatic interactions with the heme through a single-point mutant, G25F, in which a phenylalanine is designed to dock against the porphyrin ring. This mutation results in roughly tenfold tighter binding to iron(III) protoporphyrin IX (K(d,app) = 6.5 × 10(-8) M), and lowers the redox potential of the cofactor to -172 mV. This work demonstrates that specific design features aimed at controlling the properties of bound cofactors can be introduced in a minimalist membrane hemoprotein model. The ability to modulate the redox potential of cofactors embedded in artificial membrane proteins is crucial for the design of electron transfer chains across membranes in functional photosynthetic devices.
Collapse
Affiliation(s)
- Sandip Shinde
- Department of Chemistry and Biochemistry, ASU, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
132
|
Prakash A, Janosi L, Doxastakis M. GxxxG motifs, phenylalanine, and cholesterol guide the self-association of transmembrane domains of ErbB2 receptors. Biophys J 2012; 101:1949-58. [PMID: 22004749 DOI: 10.1016/j.bpj.2011.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 11/28/2022] Open
Abstract
GxxxG motifs are common in transmembrane domains of membrane proteins and are often introduced to artificial peptides to inhibit or promote association to stable structures. The transmembrane domain of ErbB2 presents two separate such motifs that are proposed to be connected to stability and activity of the dimer. Using molecular simulations, we show that these sequences play a critical role during the recognition stage, forming transient complexes that lead to stable dimers. In pure phospholipid bilayers association occurs by contacts formed at the C-terminus promoted by the presence of phenylalanine residues. Helices subsequently rotate to eventually pack at short separations favored by lipid entropic contributions. In contrast, at intermediate cholesterol concentrations, a different pathway is followed that involves dimers with a weaker interface toward the N-terminus. However, at high cholesterol content, a switch toward the C-terminus is observed with an overall nonmonotonic change of the dimerization affinity. This conformational switch modulated by cholesterol has important implications on the thermodynamic, structural, and kinetic characteristics of helix-helix association in lipid membranes.
Collapse
Affiliation(s)
- Anupam Prakash
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | | | | |
Collapse
|
133
|
Zhou J, Zhang Z, Mi Z, Wang X, Zhang Q, Li X, Liang C, Cen S. Characterization of the interface of the bone marrow stromal cell antigen 2-Vpu protein complex via computational chemistry. Biochemistry 2012; 51:1288-96. [PMID: 22264038 DOI: 10.1021/bi2015986] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bone marrow stromal cell antigen 2 (BST-2) inhibits the release of enveloped viruses from the cell surface. Various viral counter measures have been discovered, which allow viruses to escape BST-2 restriction. Human immunodeficiency virus type 1 (HIV-1) encodes viral protein U (Vpu) that interacts with BST-2 through their transmembrane domains and causes the downregulation of cell surface BST-2. In this study, we used a computer modeling method to establish a molecular model to investigate the binding interface of the transmembrane domains of BST-2 and Vpu. The model predicts that the interface is composed of Vpu residues I6, A10, A14, A18, V25, and W22 and BST-2 residues L23, I26, V30, I34, V35, L41, I42, and T45. Introduction of mutations that have been previously reported to disrupt the Vpu-BST-2 interaction led to a calculated higher binding free energy (MMGBSA), which supports our molecular model. A pharmacophore was also generated on the basis of this model. Our results provide a precise model that predicts the detailed interaction occurring between the transmembrane domains of Vpu and BST-2 and should facilitate the design of anti-HIV agents that are able to disrupt this interaction.
Collapse
Affiliation(s)
- Jinming Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Abstract
Mortality from ischemic cardiac disease in adults has been dramatically reduced by the development of novel therapies for inhibiting platelet function. Circulating platelets are maintained in a resting state and are activated at sites of vascular injury by exquisitely controlled mechanisms, thereby maintaining vascular integrity without causing intravascular thrombosis. As it became clear that platelets play a central role in arterial thrombosis, the processes of platelet activation, adhesion, and aggregation became logical targets for the development of antithrombotic agents.
Collapse
Affiliation(s)
- Karen M Hook
- The Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, USA.
| | | |
Collapse
|
135
|
Hsieh D, Davis A, Nanda V. A knowledge-based potential highlights unique features of membrane α-helical and β-barrel protein insertion and folding. Protein Sci 2011; 21:50-62. [PMID: 22031179 DOI: 10.1002/pro.758] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/06/2011] [Accepted: 10/19/2011] [Indexed: 12/16/2022]
Abstract
Outer membrane β-barrel proteins differ from α-helical inner membrane proteins in lipid environment, secondary structure, and the proposed processes of folding and insertion. It is reasonable to expect that outer membrane proteins may contain primary sequence information specific for their folding and insertion behavior. In previous work, a depth-dependent insertion potential, E(z) , was derived for α-helical inner membrane proteins. We have generated an equivalent potential for TM β-barrel proteins. The similarities and differences between these two potentials provide insight into unique aspects of the folding and insertion of β-barrel membrane proteins. This potential can predict orientation within the membrane and identify functional residues involved in intermolecular interactions.
Collapse
Affiliation(s)
- Daniel Hsieh
- BioMaPS Institute and the Graduate Program in Computational Biology and Molecular Biophysics, Rutgers University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
136
|
Computational studies of membrane proteins: models and predictions for biological understanding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:927-41. [PMID: 22051023 DOI: 10.1016/j.bbamem.2011.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 01/26/2023]
Abstract
We discuss recent progresses in computational studies of membrane proteins based on physical models with parameters derived from bioinformatics analysis. We describe computational identification of membrane proteins and prediction of their topology from sequence, discovery of sequence and spatial motifs, and implications of these discoveries. The detection of evolutionary signal for understanding the substitution pattern of residues in the TM segments and for sequence alignment is also discussed. We further discuss empirical potential functions for energetics of inserting residues in the TM domain, for interactions between TM helices or strands, and their applications in predicting lipid-facing surfaces of the TM domain. Recent progresses in structure predictions of membrane proteins are also reviewed, with further discussions on calculation of ensemble properties such as melting temperature based on simplified state space model. Additional topics include prediction of oligomerization state of membrane proteins, identification of the interfaces for protein-protein interactions, and design of membrane proteins. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
|
137
|
Correia BE, Holmes MA, Huang PS, Strong RK, Schief WR. High-resolution structure prediction of a circular permutation loop. Protein Sci 2011; 20:1929-34. [PMID: 21898647 DOI: 10.1002/pro.725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/10/2011] [Accepted: 08/12/2011] [Indexed: 01/12/2023]
Abstract
Methods for rapid and reliable design and structure prediction of linker loops would facilitate a variety of protein engineering applications. Circular permutation, in which the existing termini of a protein are linked by the polypeptide chain and new termini are created, is one such application that has been employed for decreasing proteolytic susceptibility and other functional purposes. The length and sequence of the linker can impact the expression level, solubility, structure and function of the permuted variants. Hence it is desirable to achieve atomic-level accuracy in linker design. Here, we describe the use of RosettaRemodel for design and structure prediction of circular permutation linkers on a model protein. A crystal structure of one of the permuted variants confirmed the accuracy of the computational prediction, where the all-atom rmsd of the linker region was 0.89 Å between the model and the crystal structure. This result suggests that RosettaRemodel may be generally useful for the design and structure prediction of protein loop regions for circular permutations or other structure-function manipulations.
Collapse
Affiliation(s)
- Bruno E Correia
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
138
|
Abstract
Integrins are integral membrane proteins that mediate cell-matrix and cell-cell adhesion. They are important for vascular development and hematopoiesis, immune and inflammatory responses, and hemostasis. Integrins are also signaling receptors that can transmit information bidirectionally across plasma membranes. Research in the past 2 decades has made progress in unraveling the mechanisms of integrin signaling and brings the field to the moment of attempting synthetic reconstruction of the signaling pathways in vitro. Reconstruction of biologic processes provides stringent tests of our understanding of the process, as evidenced by studies of other biologic machines, such as ATP synthase, lactose permease, and G-protein-coupled receptors. Here, we review recent progress in reconstructing integrin signaling and the insights that we have gained through these experiments.
Collapse
|
139
|
Gutten O, Beššeová I, Rulíšek L. Interaction of Metal Ions with Biomolecular Ligands: How Accurate Are Calculated Free Energies Associated with Metal Ion Complexation? J Phys Chem A 2011; 115:11394-402. [DOI: 10.1021/jp205442p] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ondrej Gutten
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6
| | - Ivana Beššeová
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6
| |
Collapse
|
140
|
Shandler SJ, Korendovych IV, Moore DT, Smith-Dupont KB, Streu CN, Litvinov RI, Billings PC, Gai F, Bennett JS, DeGrado WF. Computational design of a β-peptide that targets transmembrane helices. J Am Chem Soc 2011; 133:12378-81. [PMID: 21780757 PMCID: PMC3155016 DOI: 10.1021/ja204215f] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of β-peptide foldamers targeting the transmembrane (TM) domains of complex natural membrane proteins has been a formidable challenge. A series of β-peptides was designed to stably insert in TM orientations in phospholipid bilayers. Their secondary structures and orientation in the phospholipid bilayer was characterized using biophysical methods. Computational methods were then devised to design a β-peptide that targeted a TM helix of the integrin α(IIb)β(3). The designed peptide (β-CHAMP) interacts with the isolated target TM domain of the protein and activates the intact integrin in vitro.
Collapse
Affiliation(s)
- Scott J. Shandler
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ivan V. Korendovych
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David T. Moore
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Hematology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kathryn B. Smith-Dupont
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Craig N. Streu
- Department of Hematology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rustem I. Litvinov
- Department of Hematology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Paul C. Billings
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joel S. Bennett
- Department of Hematology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - William F. DeGrado
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
141
|
Senes A. Computational design of membrane proteins. Curr Opin Struct Biol 2011; 21:460-6. [PMID: 21763125 DOI: 10.1016/j.sbi.2011.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/06/2011] [Accepted: 06/15/2011] [Indexed: 11/28/2022]
Abstract
This article reviews the recent successes of computational protein design techniques applied to integral membrane proteins. This emerging area is still handicapped by significant difficulties in the experimental characterization of the stability and structure of the designed proteins. Nevertheless, by focusing on oligomeric complexes of single-span transmembrane (TM) peptides with detectable activity, the computational design of membrane proteins has already produced very exciting results. The 'take-home message' is that optimization of van der Waals packing and hydrogen bonding (both 'canonical' and weak Cα-H⋯O bonds) can produce functional structures of remarkable stability and specificity in the membrane.
Collapse
Affiliation(s)
- Alessandro Senes
- University of Wisconsin-Madison, Department of Biochemistry, 433 Babcock Dr., Madison, WI 53706, USA.
| |
Collapse
|
142
|
Ingale S, Gach JS, Zwick MB, Dawson PE. Synthesis and analysis of the membrane proximal external region epitopes of HIV-1. J Pept Sci 2011; 16:716-22. [PMID: 21104968 DOI: 10.1002/psc.1325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The membrane proximal external region (MPER) of gp41 abuts the viral membrane at the base of HIV-1 envelope glycoprotein spikes. The MPER is highly conserved and is rich in Trp and other lipophilic residues. The MPER is also required for the infection of host cells by HIV-1 and is the target of the broadly neutralizing antibodies, 4E10, 2F5, and Z13e1. These neutralizing antibodies are valuable tools for understanding relevant conformations of the MPER and for studying HIV-1 neutralization, but multiple approaches used to elicit MPER binding antibodies with similar neutralization properties have failed. Here we report our efforts to mimic the MPER using linear as well as constrained peptides. Unnatural amino acids were also introduced into the core epitope of 4E10 to probe requirements of antibody binding. Peptide analogs with C-terminal Api or Aib residues designed to be helical transmembrane (TM) domain surrogates exhibit enhanced binding to the 4E10 and Z13e1 antibodies. However, we find that placement of constrained amino acids at nonbinding sites within the core epitope significantly reduce binding. These results are relevant to an understanding of native MPER structure on HIV-1, and form a basis for a chemical synthesis approach to mimic MPER stricture and to construct an MPER-based vaccine.
Collapse
Affiliation(s)
- Sampat Ingale
- Department of Chemistry and Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
143
|
Meruelo AD, Samish I, Bowie JU. TMKink: a method to predict transmembrane helix kinks. Protein Sci 2011; 20:1256-64. [PMID: 21563225 DOI: 10.1002/pro.653] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/22/2011] [Indexed: 01/24/2023]
Abstract
A hallmark of membrane protein structure is the large number of distorted transmembrane helices. Because of the prevalence of bends, it is important to not only understand how they are generated but also to learn how to predict their occurrence. Here, we find that there are local sequence preferences in kinked helices, most notably a higher abundance of proline, which can be exploited to identify bends from local sequence information. A neural network predictor identifies over two-thirds of all bends (sensitivity 0.70) with high reliability (specificity 0.89). It is likely that more structural data will allow for better helix distortion predictors with increased coverage in the future. The kink predictor, TMKink, is available at http://tmkinkpredictor.mbi.ucla.edu/.
Collapse
Affiliation(s)
- Alejandro D Meruelo
- Medical Scientist Training Program, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1570, USA
| | | | | |
Collapse
|
144
|
Structural plasticity of a transmembrane peptide allows self-assembly into biologically active nanoparticles. Proc Natl Acad Sci U S A 2011; 108:9798-803. [PMID: 21628584 DOI: 10.1073/pnas.1014598108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significant efforts have been devoted to the development of nanoparticular delivering systems targeting tumors. However, clinical application of nanoparticles is hampered by insufficient size homogeneity, difficulties in reproducible synthesis and manufacturing, frequent high uptake in the liver, systemic toxicity of the carriers (particularly for inorganic nanoparticles), and insufficient selectivity for tumor cells. We have found that properly modified synthetic analogs of transmembrane domains of membrane proteins can self-assemble into remarkably uniform spherical nanoparticles with innate biological activity. Self-assembly is driven by a structural transition of the peptide that adopts predominantly a beta-hairpin conformation in aqueous solutions, but folds into an alpha-helix upon spontaneous fusion of the nanoparticles with cell membrane. A 24-amino acid peptide corresponding to the second transmembrane helix of the CXCR4 forms self-assembled particles that inhibit CXCR4 function in vitro and hamper CXCR4-dependent tumor metastasis in vivo. Furthermore, such nanoparticles can encapsulate hydrophobic drugs, thus providing a delivery system with the potential for dual biological activity.
Collapse
|
145
|
Samish I, MacDermaid CM, Perez-Aguilar JM, Saven JG. Theoretical and Computational Protein Design. Annu Rev Phys Chem 2011; 62:129-49. [DOI: 10.1146/annurev-physchem-032210-103509] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
146
|
Lo A, Cheng CW, Chiu YY, Sung TY, Hsu WL. TMPad: an integrated structural database for helix-packing folds in transmembrane proteins. Nucleic Acids Res 2011; 39:D347-55. [PMID: 21177659 PMCID: PMC3013749 DOI: 10.1093/nar/gkq1255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
α-Helical transmembrane (TM) proteins play an important role in many critical and diverse biological processes, and specific associations between TM helices are important determinants for membrane protein folding, dynamics and function. In order to gain insights into the above phenomena, it is necessary to investigate different types of helix-packing modes and interactions. However, such information is difficult to obtain because of the experimental impediment and a lack of a well-annotated source of helix-packing folds in TM proteins. We have developed the TMPad (TransMembrane Protein Helix-Packing Database) which addresses the above issues by integrating experimentally observed helix–helix interactions and related structural information of membrane proteins. Specifically, the TMPad offers pre-calculated geometric descriptors at the helix-packing interface including residue backbone/side-chain contacts, interhelical distances and crossing angles, helical translational shifts and rotational angles. The TMPad also includes the corresponding sequence, topology, lipid accessibility, ligand-binding information and supports structural classification, schematic diagrams and visualization of the above structural features of TM helix-packing. Through detailed annotations and visualizations of helix-packing, this online resource can serve as an information gateway for deciphering the relationship between helix–helix interactions and higher levels of organization in TM protein structure and function. The website of the TMPad is freely accessible to the public at http://bio-cluster.iis.sinica.edu.tw/TMPad.
Collapse
Affiliation(s)
- Allan Lo
- Bioinformatics Laboratory, Institute of Information Science, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
147
|
Saven JG. Computational protein design: engineering molecular diversity, nonnatural enzymes, nonbiological cofactor complexes, and membrane proteins. Curr Opin Chem Biol 2011; 15:452-7. [PMID: 21493122 DOI: 10.1016/j.cbpa.2011.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 11/18/2022]
Abstract
Computational and theoretical methods are advancing protein design as a means to create and investigate proteins. Such efforts further our capacity to control, design and understand biomolecular structure, sequence and function. Herein, the focus is on some recent applications that involve using theoretical and computational methods to guide the design of protein sequence ensembles, new enzymes, proteins with novel cofactors, and membrane proteins.
Collapse
Affiliation(s)
- Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
148
|
Sharabi O, Yanover C, Dekel A, Shifman JM. Optimizing energy functions for protein-protein interface design. J Comput Chem 2011; 32:23-32. [PMID: 20623647 DOI: 10.1002/jcc.21594] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein design methods have been originally developed for the design of monomeric proteins. When applied to the more challenging task of protein–protein complex design, these methods yield suboptimal results. In particular, they often fail to recapitulate favorable hydrogen bonds and electrostatic interactions across the interface. In this work, we aim to improve the energy function of the protein design program ORBIT to better account for binding interactions between proteins. By using the advanced machine learning framework of conditional random fields, we optimize the relative importance of all the terms in the energy function, attempting to reproduce the native side-chain conformations in protein–protein interfaces. We evaluate the performance of several optimized energy functions, each describes the van der Waals interactions using a different potential. In comparison with the original energy function, our best energy function (a) incorporates a much “softer” repulsive van der Waals potential, suitable for the discrete rotameric representation of amino acid side chains; (b) does not penalize burial of polar atoms, reflecting the frequent occurrence of polar buried residues in protein–protein interfaces; and (c) significantly up-weights the electrostatic term, attesting to the high importance of these interactions for protein–protein complex formation. Using this energy function considerably improves side chain placement accuracy for interface residues in a large test set of protein–protein complexes. Moreover, the optimized energy function recovers the native sequences of protein–protein interface at a higher rate than the default function and performs substantially better in predicting changes in free energy of binding due to mutations.
Collapse
Affiliation(s)
- Oz Sharabi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
149
|
Transmembrane orientation and possible role of the fusogenic peptide from parainfluenza virus 5 (PIV5) in promoting fusion. Proc Natl Acad Sci U S A 2011; 108:3958-63. [PMID: 21321234 DOI: 10.1073/pnas.1019668108] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane fusion is required for diverse biological functions ranging from viral infection to neurotransmitter release. Fusogenic proteins increase the intrinsically slow rate of fusion by coupling energetically downhill conformational changes of the protein to kinetically unfavorable fusion of the membrane-phospholipid bilayers. Class I viral fusogenic proteins have an N-terminal hydrophobic fusion peptide (FP) domain, important for interaction with the target membrane, plus a C-terminal transmembrane (C-term-TM) helical membrane anchor. The role of the water-soluble regions of fusogenic proteins has been extensively studied, but the contributions of the membrane-interacting FP and C-term-TM peptides are less well characterized. Typically, FPs are thought to bind to membranes at an angle that allows helix penetration but not traversal of the lipid bilayer. Here, we show that the FP from the paramyxovirus parainfluenza virus 5 fusogenic protein, F, forms an N-terminal TM helix, which self-associates into a hexameric bundle. This FP also interacts strongly with the C-term-TM helix. Thus, the fusogenic F protein resembles SNARE proteins involved in vesicle fusion by having water-soluble coiled coils that zipper during fusion and TM helices in both membranes. By analogy to mechanosensitive channels, the force associated with zippering of the water-soluble coiled-coil domain is expected to lead to tilting of the FP helices, promoting interaction with the C-term-TM helices. The energetically unfavorable dehydration of lipid headgroups of opposing bilayers is compensated by thermodynamically favorable interactions between the FP and C-term-TM helices as the coiled coils zipper into the membrane phase, leading to a pore lined by both lipid and protein.
Collapse
|
150
|
Vanhee P, van der Sloot AM, Verschueren E, Serrano L, Rousseau F, Schymkowitz J. Computational design of peptide ligands. Trends Biotechnol 2011; 29:231-9. [PMID: 21316780 DOI: 10.1016/j.tibtech.2011.01.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 12/19/2022]
Abstract
Peptides possess several attractive features when compared to small molecule and protein therapeutics, such as high structural compatibility with target proteins, the ability to disrupt protein-protein interfaces, and small size. Efficient design of high-affinity peptide ligands via rational methods has been a major obstacle to the development of this potential drug class. However, structural insights into the architecture of protein-peptide interfaces have recently culminated in several computational approaches for the rational design of peptides that target proteins. These methods provide a valuable alternative to experimental high-resolution structures of target protein-peptide complexes, bringing closer the dream of in silico designed peptides for therapeutic applications.
Collapse
Affiliation(s)
- Peter Vanhee
- VIB SWITCH Laboratory, Flanders Institute of Biotechnology (VIB), Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|