101
|
Lessner FH, Jennings ME, Hirata A, Duin EC, Lessner DJ. Subunit D of RNA polymerase from Methanosarcina acetivorans contains two oxygen-labile [4Fe-4S] clusters: implications for oxidant-dependent regulation of transcription. J Biol Chem 2012; 287:18510-23. [PMID: 22457356 DOI: 10.1074/jbc.m111.331199] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit D of multisubunit RNA polymerase from many species of archaea is predicted to bind one to two iron-sulfur (Fe-S) clusters, the function of which is unknown. A survey of encoded subunit D in the genomes of sequenced archaea revealed six distinct groups based on the number of complete or partial [4Fe-4S] cluster motifs within domain 3. Only subunit D from strictly anaerobic archaea, including all members of the Methanosarcinales, are predicted to bind two [4Fe-4S] clusters. We report herein the purification and characterization of Methanosarcina acetivorans subunit D in complex with subunit L. Expression of subunit D and subunit L in Escherichia coli resulted in the purification of a D-L heterodimer with only partial [4Fe-4S] cluster content. Reconstitution in vitro with iron and sulfide revealed that the M. acetivorans D-L heterodimer is capable of binding two redox-active [4Fe-4S] clusters. M. acetivorans subunit D deleted of domain 3 (DΔD3) was still capable of co-purifying with subunit L but was devoid of [4Fe-4S] clusters. Affinity purification of subunit D or subunit DΔD3 from M. acetivorans resulted in the co-purification of endogenous subunit L with each tagged subunit D. Overall, these results suggest that domain 3 of subunit D is required for [4Fe-4S] cluster binding, but the [4Fe-4S] clusters and domain 3 are not required for the formation of the D-L heterodimer. However, exposure of two [4Fe-4S] cluster-containing D-L heterodimer to oxygen resulted in loss of the [4Fe-4S] clusters and subsequent protein aggregation, indicating that the [4Fe-4S] clusters influence the stability of the D-L heterodimer and therefore have the potential to regulate the assembly and/or activity of RNA polymerase in an oxidant-dependent manner.
Collapse
Affiliation(s)
- Faith H Lessner
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | | | |
Collapse
|
102
|
Role of Mediator in regulating Pol II elongation and nucleosome displacement in Saccharomyces cerevisiae. Genetics 2012; 191:95-106. [PMID: 22377631 DOI: 10.1534/genetics.111.135806] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mediator is a modular multisubunit complex that functions as a critical coregulator of RNA polymerase II (Pol II) transcription. While it is well accepted that Mediator plays important roles in the assembly and function of the preinitiation complex (PIC), less is known of its potential roles in regulating downstream steps of the transcription cycle. Here we use a combination of genetic and molecular approaches to investigate Mediator regulation of Pol II elongation in the model eukaryote, Saccharomyces cerevisiae. We find that ewe (expression without heat shock element) mutations in conserved Mediator subunits Med7, Med14, Med19, and Med21-all located within or adjacent to the middle module-severely diminish heat-shock-induced expression of the Hsf1-regulated HSP82 gene. Interestingly, these mutations do not impede Pol II recruitment to the gene's promoter but instead impair its transit through the coding region. This implies that a normal function of Mediator is to regulate a postinitiation step at HSP82. In addition, displacement of histones from promoter and coding regions, a hallmark of activated heat-shock genes, is significantly impaired in the med14 and med21 mutants. Suggestive of a more general role, ewe mutations confer hypersensitivity to the anti-elongation drug 6-azauracil (6-AU) and one of them-med21-impairs Pol II processivity on a GAL1-regulated reporter gene. Taken together, our results suggest that yeast Mediator, acting principally through its middle module, can regulate Pol II elongation at both heat-shock and non-heat-shock genes.
Collapse
|
103
|
The Mediator complex in thyroid hormone receptor action. Biochim Biophys Acta Gen Subj 2012; 1830:3867-75. [PMID: 22402254 DOI: 10.1016/j.bbagen.2012.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Mediator is an evolutionarily conserved multisubunit complex that plays an essential regulatory role in eukaryotic transcription of protein-encoding genes. The human complex was first isolated as a transcriptional coactivator bound to the thyroid hormone receptor (TR) and has since been shown to play a key coregulatory role for a broad range of nuclear hormone receptors (NRs) as well as other signal-activated transcription factors. SCOPE OF REVIEW We provide a general overview of Mediator structure and function, summarize the mechanisms by which Mediator is targeted to NRs, and outline recent evidence revealing Mediator as a regulatory axis for other distinct coregulatory factors, chromatin modifying enzymes and cellular signal transduction pathways. MAJOR CONCLUSIONS Besides serving as a functional interface with the RNA polymerase II basal transcription machinery, Mediator plays a more versatile role in regulating transcription including the ability to: a) facilitate gene-specific chromatin looping events; b) coordinate chromatin modification events with preinitiation complex assembly; and c) regulate critical steps that occur during transcriptional elongation. The variably associated MED1 subunit continues to emerge as a pivotal player in Mediator function, not only as the primary interaction site for NRs, but also as a crucial interaction hub for other coregulatory factors, and as an important regulatory target for signal-activated kinases. GENERAL SIGNIFICANCE Mediator plays an integral coregulatory role at NR target genes by functionally interacting with the basal transcription apparatus and by coordinating the action of chromatin modifying enzymes and transcription elongation factors. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
|
104
|
Larivière L, Seizl M, Cramer P. A structural perspective on Mediator function. Curr Opin Cell Biol 2012; 24:305-13. [PMID: 22341791 DOI: 10.1016/j.ceb.2012.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/18/2012] [Accepted: 01/22/2012] [Indexed: 11/16/2022]
Abstract
Gene transcription by RNA polymerase II requires the multiprotein coactivator complex Mediator. Mediator was identified two decades ago, but its molecular mechanisms remain poorly understood, because structural studies are hampered by its large size, modularity, and flexibility. Here we collect all available structural data on Mediator and discuss their functional implications. Progress was made in understanding the interactions of Mediator with gene-specific transcriptional regulators and the general transcription machinery. However, around 80% of the Mediator structure remains unknown and details on the Mediator-Pol II interface are lacking. In the future, an integrated structural biology approach may unravel the functional architecture of Mediator-regulated promoter assemblies and holds the promise of understanding a key mechanism of gene regulation.
Collapse
Affiliation(s)
- Laurent Larivière
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | | | | |
Collapse
|
105
|
Krishnamurthy M, Dugan A, Nwokoye A, Fung YH, Lancia JK, Majmudar CY, Mapp AK. Caught in the act: covalent cross-linking captures activator-coactivator interactions in vivo. ACS Chem Biol 2011; 6:1321-6. [PMID: 21977905 DOI: 10.1021/cb200308e] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently there are few methods suitable for the discovery and characterization of transient, moderate affinity protein-protein interactions in their native environment, despite their prominent role in a host of cellular functions including protein folding, signal transduction, and transcriptional activation. Here we demonstrate that a genetically encoded photoactivatable amino acid, p-benzoyl-l-phenylalanine, can be used to capture transient and/or low affinity binding partners in an in vivo setting. In this study, we focused on ensnaring the coactivator binding partners of the transcriptional activator VP16 in S. cerevisiae. The interactions between transcriptional activators and coactivators in eukaryotes are moderate in affinity and short-lived, and due in part to these characteristics, identification of the direct binding partners of activators in vivo has met with only limited success. We find through in vivo photo-cross-linking that VP16 contacts the Swi/Snf chromatin-remodeling complex through the ATPase Snf2(BRG1/BRM) and the subunit Snf5 with two distinct regions of the activation domain. An analogous experiment with Gal4 reveals that Snf2 is also a target of this activator. These results suggest that Snf2 may be a valuable target for small molecule probe discovery given the prominent role the Swi/Snf complex family plays in development and in disease. More significantly, the successful implementation of the in vivo cross-linking methodology in this setting demonstrates that it can be applied to the discovery and characterization of a broad range of transient and/or modest affinity protein-protein interactions.
Collapse
Affiliation(s)
- Malathy Krishnamurthy
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda Dugan
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adaora Nwokoye
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yik-Hong Fung
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jody K. Lancia
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chinmay Y. Majmudar
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Department of Chemistry, ‡Program in Chemical Biology, and §Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
106
|
Yearling MN, Radebaugh CA, Stargell LA. The Transition of Poised RNA Polymerase II to an Actively Elongating State Is a "Complex" Affair. GENETICS RESEARCH INTERNATIONAL 2011; 2011:206290. [PMID: 22567346 PMCID: PMC3335657 DOI: 10.4061/2011/206290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/31/2011] [Indexed: 12/02/2022]
Abstract
The initial discovery of the occupancy of RNA polymerase II at certain genes prior to their transcriptional activation occurred a quarter century ago in Drosophila. The preloading of these poised complexes in this inactive state is now apparent in many different organisms across the evolutionary spectrum and occurs at a broad and diverse set of genes. In this paper, we discuss the genetic and biochemical efforts in S. cerevisiae to describe the conversion of these poised transcription complexes to the active state for productive elongation. The accumulated evidence demonstrates that a multitude of coactivators and chromatin remodeling complexes are essential for this transition.
Collapse
Affiliation(s)
- Marie N Yearling
- Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | |
Collapse
|
107
|
Blattner C, Jennebach S, Herzog F, Mayer A, Cheung AC, Witte G, Lorenzen K, Hopfner KP, Heck AJ, Aebersold R, Cramer P. Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth. Genes Dev 2011; 25:2093-105. [PMID: 21940764 PMCID: PMC3197207 DOI: 10.1101/gad.17363311] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/24/2011] [Indexed: 01/24/2023]
Abstract
Cell growth is regulated during RNA polymerase (Pol) I transcription initiation by the conserved factor Rrn3/TIF-IA in yeast/humans. Here we provide a structure-function analysis of Rrn3 based on a combination of structural biology with in vivo and in vitro functional assays. The Rrn3 crystal structure reveals a unique HEAT repeat fold and a surface serine patch. Phosphorylation of this patch represses human Pol I transcription, and a phospho-mimetic patch mutation prevents Rrn3 binding to Pol I in vitro and reduces cell growth and Pol I gene occupancy in vivo. Cross-linking indicates that Rrn3 binds Pol I between its subcomplexes, AC40/19 and A14/43, which faces the serine patch. The corresponding region of Pol II binds the Mediator head that cooperates with transcription factor (TF) IIB. Consistent with this, the Rrn3-binding factor Rrn7 is predicted to be a TFIIB homolog. This reveals the molecular basis of Rrn3-regulated Pol I initiation and cell growth, and indicates a general architecture of eukaryotic transcription initiation complexes.
Collapse
Affiliation(s)
- Claudia Blattner
- Gene Center, Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Stefan Jennebach
- Gene Center, Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Franz Herzog
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland
| | - Andreas Mayer
- Gene Center, Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Alan C.M. Cheung
- Gene Center, Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Gregor Witte
- Gene Center, Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Kristina Lorenzen
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Karl-Peter Hopfner
- Gene Center, Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland
- Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
| | - Patrick Cramer
- Gene Center, Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
108
|
Abstract
How is specificity transmitted over long distances at the molecular level? REs (regulatory elements) are often far from transcription start sites. In the present review we discuss possible mechanisms to explain how information from specific REs is conveyed to the basal transcription machinery through TFs (transcription factors) and the Mediator complex. We hypothesize that this occurs through allosteric pathways: binding of a TF to a RE results in changes in the AD (activation domain) of the TF, which binds to Mediator and alters the distribution of the Mediator conformations, thereby affecting transcription initiation/activation. We argue that Mediator is formed by highly disordered proteins with large densely packed interfaces that make efficient long-range signal propagation possible. We suggest two possible general mechanisms for Mediator action: one in which Mediator influences PIC (pre-initiation complex) assembly and transcription initiation, and another in which Mediator exerts its effect on the already assembled but stalled transcription complex. We summarize (i) relevant information from the literature about Mediator composition, organization and structure; (ii) Mediator interaction partners and their effect on Mediator conformation, function and correlation to the RNA Pol II (polymerase II) CTD (C-terminal domain) phosphorylation; and (iii) propose that different allosteric signal propagation pathways in Mediator relate to PIC assembly and polymerase activation of the stalled transcription complex. The emerging picture provides for the first time a mechanistic view of allosteric signalling from the RE sequence to transcription activation, and an insight into how gene specificity and signal transmission can take place in transcription initiation.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Basic Science Program, SAIC-Frederick, Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702, U.S.A
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702, U.S.A
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
109
|
The conserved foot domain of RNA pol II associates with proteins involved in transcriptional initiation and/or early elongation. Genetics 2011; 189:1235-48. [PMID: 21954159 DOI: 10.1534/genetics.111.133215] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
RNA polymerase (pol) II establishes many protein-protein interactions with transcriptional regulators to coordinate different steps of transcription. Although some of these interactions have been well described, little is known about the existence of RNA pol II regions involved in contact with transcriptional regulators. We hypothesize that conserved regions on the surface of RNA pol II contact transcriptional regulators. We identified such an RNA pol II conserved region that includes the majority of the "foot" domain and identified interactions of this region with Mvp1, a protein required for sorting proteins to the vacuole, and Spo14, a phospholipase D. Deletion of MVP1 and SPO14 affects the transcription of their target genes and increases phosphorylation of Ser5 in the carboxy-terminal domain (CTD). Genetic, phenotypic, and functional analyses point to a role for these proteins in transcriptional initiation and/or early elongation, consistent with their genetic interactions with CEG1, a guanylyltransferase subunit of the Saccharomyces cerevisiae capping enzyme.
Collapse
|
110
|
Hashimoto S, Boissel S, Zarhrate M, Rio M, Munnich A, Egly JM, Colleaux L. MED23 mutation links intellectual disability to dysregulation of immediate early gene expression. Science 2011; 333:1161-3. [PMID: 21868677 DOI: 10.1126/science.1206638] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MED23 is a subunit of the Mediator complex, a key regulator of protein-coding gene expression. Here, we report a missense mutation (p. R617Q) in MED23 that cosegregates with nonsyndromic autosomal recessive intellectual disability. This mutation specifically impaired the response of JUN and FOS immediate early genes (IEGs) to serum mitogens by altering the interaction between enhancer-bound transcription factors (TCF4 and ELK1, respectively) and Mediator. Transcriptional dysregulation of these genes was also observed in cells derived from patients presenting with other neurological disorders linked to mutations in other Mediator subunits or proteins interacting with MED. These findings highlight the crucial role of Mediator in brain development and functioning and suggest that altered IEG expression might be a common molecular hallmark of cognitive deficit.
Collapse
Affiliation(s)
- Satoru Hashimoto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, BP 163, 67404 Illkirch Cedex, C. U. Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
111
|
Ries D, Meisterernst M. Control of gene transcription by Mediator in chromatin. Semin Cell Dev Biol 2011; 22:735-40. [PMID: 21864698 DOI: 10.1016/j.semcdb.2011.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/02/2011] [Accepted: 08/08/2011] [Indexed: 01/07/2023]
Abstract
The Mediator complex serves as an adaptor for regulatory factors, recruits and controls RNA polymerase II promotes preinitiation complex formation and functions post initiation. There is increasing evidence for further coordinating roles of the Mediator complex in chromatin. Here we summarize interactions with regulatory, general and accessory factors that function in transcription and chromatin.
Collapse
Affiliation(s)
- David Ries
- Institute of Molecular Tumor Biology, Westfalian Wilhelms University, Münster, Germany, Robert-Koch Strasse 43, 48149 Münster, Germany
| | | |
Collapse
|
112
|
Mediator and human disease. Semin Cell Dev Biol 2011; 22:776-87. [PMID: 21840410 DOI: 10.1016/j.semcdb.2011.07.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 01/21/2023]
Abstract
Since the identification of a metazoan counterpart to yeast Mediator nearly 15 years ago, a convergent body of biochemical and molecular genetic studies have confirmed their structural and functional relationship as an integrative hub through which regulatory information conveyed by signal activated transcription factors is transduced to RNA polymerase II. Nonetheless, metazoan Mediator complexes have been shaped during evolution by substantive diversification and expansion in both the number and sequence of their constituent subunits, with important implications for the development of multicellular organisms. The appearance of unique interaction surfaces within metazoan Mediator complexes for transcription factors of diverse species-specific origins extended the role of Mediator to include an essential function in coupling developmentally coded signals with precise gene expression output sufficient to specify cell fate and function. The biological significance of Mediator in human development, suggested by genetic studies in lower metazoans, is emphatically illustrated by an expanding list of human pathologies linked to genetic variation or aberrant expression of its individual subunits. Here, we review our current body of knowledge concerning associations between individual Mediator subunits and specific pathological disorders. When established, molecular etiologies underlying genotype-phenotype correlations are addressed, and we anticipate that future progress in this critical area will help identify therapeutic targets across a range of human pathologies.
Collapse
|
113
|
Caton-Williams J, Smith M, Carrasco N, Huang Z. Protection-free one-pot synthesis of 2'-deoxynucleoside 5'-triphosphates and DNA polymerization. Org Lett 2011; 13:4156-9. [PMID: 21790120 DOI: 10.1021/ol201073e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By differentiating the functional groups on nucleosides, we have designed and developed a one-pot synthesis of deoxyribonucleoside 5'-triphosphates without any protection on the nucleosides. A facile synthesis is achieved by generating an in situ phosphitylating reagent that reacts selectively with the 5'-hydroxyl groups of the unprotected nucleosides. The synthesized triphosphates are of high quality and can be effectively incorporated into DNAs by DNA polymerase. This novel approach is straightforward and cost-effective for triphosphate synthesis.
Collapse
|