101
|
Bheda P, Schneider R. Epigenetics reloaded: the single-cell revolution. Trends Cell Biol 2014; 24:712-23. [PMID: 25283892 DOI: 10.1016/j.tcb.2014.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 01/15/2023]
Abstract
Mechanistically, how epigenetic states are inherited through cellular divisions remains an important open question in the chromatin field and beyond. Defining the heritability of epigenetic states and the underlying chromatin-based mechanisms within a population of cells is complicated due to cell heterogeneity combined with varying levels of stability of these states; thus, efforts must be focused toward single-cell analyses. The approaches presented here constitute the forefront of epigenetics research at the single-cell level using classic and innovative methods to dissect epigenetics mechanisms from the limited material available in a single cell. This review further outlines exciting future avenues of research to address the significance of epigenetic heterogeneity and the contributions of microfluidics technologies to single-cell isolation and analysis.
Collapse
Affiliation(s)
- Poonam Bheda
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104/Inserm U964/Université de Strasbourg, 67400 Illkirch, France
| | - Robert Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104/Inserm U964/Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
102
|
Chen X, Wang T, Lv Q, Wang A, Ouyang H, Li Z. DNA methylation-mediated silencing of neuronatin (NNAT) in pig parthenogenetic fetuses. Gene 2014; 552:204-8. [PMID: 25240791 DOI: 10.1016/j.gene.2014.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/29/2014] [Accepted: 09/16/2014] [Indexed: 11/15/2022]
Abstract
It is generally believed that aberrant expression of imprinted genes participates in growth retardation of mammalian parthenogenesis. Neuronatin (NNAT), a paternally expressed gene, plays important roles in neuronal growth and metabolic regulation. Here we have compared the gene expression and promoter methylation pattern of NNAT between pig normally fertilized (Con) and parthenogenetic (PA) embryos. The results showed loss of NNAT expression (p<0.001) and hypermethylation of NNAT promoter in PA samples. Additionally, partial methylation was observed in Con fetuses, while almost full methylation and unmethylation of NNAT promoter were apparent in Metaphase II (MII) oocytes and mature sperms, respectively, which identified the CpG promoter region as a putative differentially methylated region (DMR) of NNAT. The data demonstrate that promoter hypermethylation is associated with the silencing of NNAT in pig PA fetuses, which may be related to developmental failure of pig parthenogenesis at early stages.
Collapse
Affiliation(s)
- Xianju Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, China
| | - Tiedong Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, China
| | - Qingyan Lv
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, China
| | - Anfeng Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, China.
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
103
|
Hyun BR, McElwee JL, Soloway PD. Single molecule and single cell epigenomics. Methods 2014; 72:41-50. [PMID: 25204781 DOI: 10.1016/j.ymeth.2014.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/19/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023] Open
Abstract
Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells.
Collapse
Affiliation(s)
- Byung-Ryool Hyun
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - John L McElwee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Paul D Soloway
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
104
|
Wang T, Sha H, Ji D, Zhang HL, Chen D, Cao Y, Zhu J. Polar body genome transfer for preventing the transmission of inherited mitochondrial diseases. Cell 2014; 157:1591-604. [PMID: 24949971 DOI: 10.1016/j.cell.2014.04.042] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/11/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
Inherited mtDNA diseases transmit maternally and cause severe phenotypes. Currently, there is no effective therapy or genetic screens for these diseases; however, nuclear genome transfer between patients' and healthy eggs to replace mutant mtDNAs holds promises. Considering that a polar body contains few mitochondria and shares the same genomic material as an oocyte, we perform polar body transfer to prevent the transmission of mtDNA variants. We compare the effects of different types of germline genome transfer, including spindle-chromosome transfer, pronuclear transfer, and first and second polar body transfer, in mice. Reconstructed embryos support normal fertilization and produce live offspring. Importantly, genetic analysis confirms that the F1 generation from polar body transfer possesses minimal donor mtDNA carryover compared to the F1 generation from other procedures. Moreover, the mtDNA genotype remains stable in F2 progeny after polar body transfer. Our preclinical model demonstrates polar body transfer has great potential to prevent inherited mtDNA diseases.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, Institutes of Brain Science, School of Basic Medical Sciences and Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongying Sha
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, Institutes of Brain Science, School of Basic Medical Sciences and Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Dongmei Ji
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the First Hospital Affiliated for Anhui Medical University, Hefei 230022, China
| | - Helen L Zhang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Dawei Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the First Hospital Affiliated for Anhui Medical University, Hefei 230022, China
| | - Yunxia Cao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the First Hospital Affiliated for Anhui Medical University, Hefei 230022, China
| | - Jianhong Zhu
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, Institutes of Brain Science, School of Basic Medical Sciences and Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
105
|
Advances in the profiling of DNA modifications: cytosine methylation and beyond. Nat Rev Genet 2014; 15:647-61. [PMID: 25159599 DOI: 10.1038/nrg3772] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemical modifications of DNA have been recognized as key epigenetic mechanisms for maintenance of the cellular state and memory. Such DNA modifications include canonical 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC). Recent advances in detection and quantification of DNA modifications have enabled epigenetic variation to be connected to phenotypic consequences on an unprecedented scale. These methods may use chemical or enzymatic DNA treatment, may be targeted or non-targeted and may utilize array-based hybridization or sequencing. Key considerations in the choice of assay are cost, minimum sample input requirements, accuracy and throughput. This Review discusses the principles behind recently developed techniques, compares their respective strengths and limitations and provides general guidelines for selecting appropriate methods for specific experimental contexts.
Collapse
|
106
|
Müller-Ott K, Erdel F, Matveeva A, Mallm JP, Rademacher A, Hahn M, Bauer C, Zhang Q, Kaltofen S, Schotta G, Höfer T, Rippe K. Specificity, propagation, and memory of pericentric heterochromatin. Mol Syst Biol 2014; 10:746. [PMID: 25134515 PMCID: PMC4299515 DOI: 10.15252/msb.20145377] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cell establishes heritable patterns of active and silenced chromatin via interacting factors
that set, remove, and read epigenetic marks. To understand how the underlying networks operate, we
have dissected transcriptional silencing in pericentric heterochromatin (PCH) of mouse fibroblasts.
We assembled a quantitative map for the abundance and interactions of 16 factors related to PCH in
living cells and found that stably bound complexes of the histone methyltransferase SUV39H1/2
demarcate the PCH state. From the experimental data, we developed a predictive mathematical model
that explains how chromatin-bound SUV39H1/2 complexes act as nucleation sites and propagate a
spatially confined PCH domain with elevated histone H3 lysine 9 trimethylation levels via chromatin
dynamics. This “nucleation and looping” mechanism is particularly robust toward
transient perturbations and stably maintains the PCH state. These features make it an attractive
model for establishing functional epigenetic domains throughout the genome based on the localized
immobilization of chromatin-modifying enzymes.
Collapse
Affiliation(s)
- Katharina Müller-Ott
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Fabian Erdel
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Anna Matveeva
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Division Theoretical Systems Biology, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Anne Rademacher
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Matthias Hahn
- Munich Center for Integrated Protein Science and Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Caroline Bauer
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Qin Zhang
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Division Theoretical Systems Biology, Heidelberg, Germany
| | - Sabine Kaltofen
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Gunnar Schotta
- Munich Center for Integrated Protein Science and Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Thomas Höfer
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Division Theoretical Systems Biology, Heidelberg, Germany
| | - Karsten Rippe
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Research Group Genome Organization & Function, Heidelberg, Germany
| |
Collapse
|
107
|
Shojaei Saadi HA, O'Doherty AM, Gagné D, Fournier É, Grant JR, Sirard MA, Robert C. An integrated platform for bovine DNA methylome analysis suitable for small samples. BMC Genomics 2014; 15:451. [PMID: 24912542 PMCID: PMC4092217 DOI: 10.1186/1471-2164-15-451] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/28/2014] [Indexed: 01/16/2023] Open
Abstract
Background Oocytes and early embryos contain minute amounts of DNA, RNA and proteins, making the study of early mammalian development highly challenging. The study of the embryo epigenome, in particular the DNA methylome, has been made accessible thanks to the possibility of amplifying specific sequences according to their initial methylation status. This paper describes a novel platform dedicated to the genome-wide study of bovine DNA methylation, including a complete pipeline for data analysis and visualization. The platform allows processing and integrating of DNA methylome and transcriptome data from the same sample. Procedures were optimized for genome-wide analysis of 10 ng of DNA (10 bovine blastocysts). Bovine sperm and blastocysts were compared as a test of platform capability. Results The hypermethylation of bovine sperm DNA compared to the embryo genome was confirmed. Differentially methylated regions were distributed across various classes of bovine sperm genomic feature including primarily promoter, intronic and exonic regions, non-CpG-island regions (shore, shelf and open-sea) and CpG islands with low-to-intermediate CpG density. The blastocyst genome bore more methylation marks than sperm DNA only in CpG islands with high CpG density. Long-terminal-repeat retrotransposons (LTR), LINE and SINE were more methylated in sperm DNA, as were low-complexity repetitive elements in blastocysts. Conclusions This is the first early embryo compatible genome-wide epigenetics platform for bovine. Such platforms should improve the study of the potential epigenetic risks of assisted reproductive technologies (ART), the establishment sequence of embryonic cell lines and potential deviations in both gene expression and DNA methylation capable of having long-term impact. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-451) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claude Robert
- Laboratory of Functional Genomics of Early Embryonic Development, Institut des nutraceutiques et des aliments fonctionnels, Faculté des sciences de l'agriculture et de l'alimentation, Pavillon des services, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|
108
|
Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 2014; 28:812-28. [PMID: 24736841 PMCID: PMC4003274 DOI: 10.1101/gad.234294.113] [Citation(s) in RCA: 474] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Methylation of DNA is an essential epigenetic control mechanism in mammals. Messerschmidt et al. review the current understanding of epigenetic dynamics regulating the molecular processes that prepare the mammalian embryo for normal development. Methylation of DNA is an essential epigenetic control mechanism in mammals. During embryonic development, cells are directed toward their future lineages, and DNA methylation poses a fundamental epigenetic barrier that guides and restricts differentiation and prevents regression into an undifferentiated state. DNA methylation also plays an important role in sex chromosome dosage compensation, the repression of retrotransposons that threaten genome integrity, the maintenance of genome stability, and the coordinated expression of imprinted genes. However, DNA methylation marks must be globally removed to allow for sexual reproduction and the adoption of the specialized, hypomethylated epigenome of the primordial germ cell and the preimplantation embryo. Recent technological advances in genome-wide DNA methylation analysis and the functional description of novel enzymatic DNA demethylation pathways have provided significant insights into the molecular processes that prepare the mammalian embryo for normal development.
Collapse
Affiliation(s)
- Daniel M Messerschmidt
- Developmental Epigenetics and Disease, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), 138673 Singapore,
| | | | | |
Collapse
|
109
|
Maeda T, Higashimoto K, Jozaki K, Yatsuki H, Nakabayashi K, Makita Y, Tonoki H, Okamoto N, Takada F, Ohashi H, Migita M, Kosaki R, Matsubara K, Ogata T, Matsuo M, Hamasaki Y, Ohtsuka Y, Nishioka K, Joh K, Mukai T, Hata K, Soejima H. Comprehensive and quantitative multilocus methylation analysis reveals the susceptibility of specific imprinted differentially methylated regions to aberrant methylation in Beckwith-Wiedemann syndrome with epimutations. Genet Med 2014; 16:903-12. [PMID: 24810686 PMCID: PMC4262761 DOI: 10.1038/gim.2014.46] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/07/2014] [Indexed: 01/20/2023] Open
Abstract
Purpose: Expression of imprinted genes is regulated by DNA methylation of differentially methylated regions (DMRs). Beckwith–Wiedemann syndrome is an imprinting disorder caused by epimutations of DMRs at 11p15.5. To date, multiple methylation defects have been reported in Beckwith–Wiedemann syndrome patients with epimutations; however, limited numbers of DMRs have been analyzed. The susceptibility of DMRs to aberrant methylation, alteration of gene expression due to aberrant methylation, and causative factors for multiple methylation defects remain undetermined. Methods: Comprehensive methylation analysis with two quantitative methods, matrix-assisted laser desorption/ionization mass spectrometry and bisulfite pyrosequencing, was conducted across 29 DMRs in 54 Beckwith–Wiedemann syndrome patients with epimutations. Allelic expressions of three genes with aberrant methylation were analyzed. All DMRs with aberrant methylation were sequenced. Results: Thirty-four percent of KvDMR1–loss of methylation patients and 30% of H19DMR–gain of methylation patients showed multiple methylation defects. Maternally methylated DMRs were susceptible to aberrant hypomethylation in KvDMR1–loss of methylation patients. Biallelic expression of the genes was associated with aberrant methylation. Cis-acting pathological variations were not found in any aberrantly methylated DMR. Conclusion: Maternally methylated DMRs may be vulnerable to DNA demethylation during the preimplantation stage, when hypomethylation of KvDMR1 occurs, and aberrant methylation of DMRs affects imprinted gene expression. Cis-acting variations of the DMRs are not involved in the multiple methylation defects.
Collapse
Affiliation(s)
- Toshiyuki Maeda
- 1] Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan [2] Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Kosuke Jozaki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoshio Makita
- Education Center, Asahikawa Medical University, Asahikawa, Japan
| | - Hidefumi Tonoki
- Department of Pediatrics, Maternal, Perinatal, and Child Medical Center, Tenshi Hospital, Sapporo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan
| | - Fumio Takada
- Department of Medical Genetics, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Makoto Migita
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuhei Hamasaki
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasufumi Ohtsuka
- 1] Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan [2] Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenichi Nishioka
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Keiichiro Joh
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | | | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
110
|
Novo FJ. Habit acquisition in the context of neuronal genomic and epigenomic mosaicism. Front Hum Neurosci 2014; 8:255. [PMID: 24795609 PMCID: PMC4007014 DOI: 10.3389/fnhum.2014.00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/07/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- Francisco J Novo
- Biochemistry and Genetics, University of Navarra Pamplona, Spain
| |
Collapse
|
111
|
Miranda A, López-Cardona AP, Laguna-Barraza R, Calle A, López-Vidriero I, Pintado B, Gutiérrez-Adán A. Transcriptome profiling of liver of non-genetic low birth weight and long term health consequences. BMC Genomics 2014; 15:327. [PMID: 24884990 PMCID: PMC4229907 DOI: 10.1186/1471-2164-15-327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 04/23/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It is believed that the main factors of low prenatal growth in mammals are genetic and environmental. We used isogenic mice maintained in standard conditions to analyze how natural non-genetic microsomia (low birth weight) is produced in inbred mice and its long term effect on health. To better understand the molecular basis of non-genetic microsomia, we undertook transcriptome profiling of both male and female livers from small and normal size mice at birth. RESULTS Naturally occurring neonatal microsomia was defined as a gender-specific weanling weight under the 10th percentile of the colony. Birth weight variation was similar in inbred and outbred lines. Mice were phenotyped by weight, size, blood pressure, organ size, their response to a glucose challenge, and survival rates. Regardless of diet, adult mice born with microsomia showed a significantly lower body weight and size, and differences in the weight of several organs of microsomic adult mice compared to normal birth weight adults were found. After a high-fat diet, microsomic mice were less prone to obesity, showing a better glucose tolerance and lower blood pressure. Through a transcriptome analysis, we detected a different pattern of mRNA transcription in the liver at birth comparing male vs female and microsomic vs normal mice, noting some modifications in epigenetic regulatory genes in females and modifications in some growth factor genes in males. Finally, using embryo transfer of embryos of different quality and age, we identified a putative preimplantation origin of this non-genetic microsomia. CONCLUSIONS (1) neonatal microsomia is not always a risk factor for adult metabolic syndrome, (2) neonatal non-genetic microsomia displays changes in the expression of important epigenetic genes and changes in liver mRNA transcription profile at birth, exaggerating sexual dimorphism, and (3) random preimplantation phenotypic variability could partially explain body birth weight variation in isogenic lines.
Collapse
Affiliation(s)
- Alberto Miranda
- Dpto, de Reproducción Animal, INIA, Avda Puerta de Hierro no, 12, Local 10, Madrid 28040, Spain.
| | | | | | | | | | | | | |
Collapse
|
112
|
Cruvinel E, Budinetz T, Germain N, Chamberlain S, Lalande M, Martins-Taylor K. Reactivation of maternal SNORD116 cluster via SETDB1 knockdown in Prader-Willi syndrome iPSCs. Hum Mol Genet 2014; 23:4674-85. [PMID: 24760766 DOI: 10.1093/hmg/ddu187] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Prader-Willi syndrome (PWS), a disorder of genomic imprinting, is characterized by neonatal hypotonia, hypogonadism, small hands and feet, hyperphagia and obesity in adulthood. PWS results from the loss of paternal copies of the cluster of SNORD116 C/D box snoRNAs and their host transcript, 116HG, on human chromosome 15q11-q13. We have investigated the mechanism of repression of the maternal SNORD116 cluster and 116HG. Here, we report that the zinc-finger protein ZNF274, in association with the histone H3 lysine 9 (H3K9) methyltransferase SETDB1, is part of a complex that binds to the silent maternal but not the active paternal alleles. Knockdown of SETDB1 in PWS-specific induced pluripotent cells (iPSCs) causes a decrease in the accumulation of H3K9 trimethylation (H3K9me3) at 116HG and corresponding accumulation of the active chromatin mark histone H3 lysine 4 dimethylation (H3K4me2). We also show that upon knockdown of SETDB1 in PWS-specific iPSCs, expression of maternally silenced 116HG RNA is partially restored. SETDB1 knockdown in PWS iPSCs also disrupts DNA methylation at the PWS-IC where a decrease in 5-methylcytosine is observed in association with a concomitant increase in 5-hydroxymethylcytosine. This observation suggests that the ZNF274/SETDB1 complex bound to the SNORD116 cluster may protect the PWS-IC from DNA demethylation during early development. Our findings reveal novel epigenetic mechanisms that function to repress the maternal 15q11-q13 region.
Collapse
Affiliation(s)
- Estela Cruvinel
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA Human Genome and Stem Cell Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Tara Budinetz
- Center for Advanced Reproductive Services, Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, USA
| | - Noelle Germain
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA
| | - Stormy Chamberlain
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA
| | - Marc Lalande
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA
| | - Kristen Martins-Taylor
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA
| |
Collapse
|
113
|
Satija R, Shalek AK. Heterogeneity in immune responses: from populations to single cells. Trends Immunol 2014; 35:219-29. [PMID: 24746883 DOI: 10.1016/j.it.2014.03.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 12/18/2022]
Abstract
The mammalian immune system is tasked with protecting the host against a broad range of threats. Understanding how immune populations leverage cellular diversity to achieve this breadth and flexibility, particularly during dynamic processes such as differentiation and antigenic response, is a core challenge that is well suited for single cell analysis. Recent years have witnessed transformative and intersecting advances in nanofabrication and genomics that enable deep profiling of individual cells, affording exciting opportunities to study heterogeneity in the immune response at an unprecedented scope. In light of these advances, here we review recent work exploring how immune populations generate and leverage cellular heterogeneity at multiple molecular and phenotypic levels. Additionally, we highlight opportunities for single cell technologies to shed light on the causes and consequences of heterogeneity in the immune system.
Collapse
Affiliation(s)
- Rahul Satija
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.
| | - Alex K Shalek
- Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
114
|
Enhanced evolution by stochastically variable modification of epigenetic marks in the early embryo. Proc Natl Acad Sci U S A 2014; 111:6353-8. [PMID: 24733912 DOI: 10.1073/pnas.1402585111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Evolution by gene duplication is generally accepted as one of the crucial driving forces for the gain of new complexity and functions, but the formation of pseudogenes remains a problem for this mechanism. Here we expand on earlier ideas that epigenetic modifications can drive neo- and subfunctionalization in evolution by gene duplication. We explore the effects of stochastic epigenetic modifications on the evolution (and thus development) of complex organisms in a constant environment. Modeling is done both using a modified genetic drift analytical treatment and computer simulations, which were found to agree. A transposon silencing model is also explored. Some key assumptions made include (i) stochastic, incomplete removal (or addition) of repressive epigenetic marks takes place during a window(s) of opportunity in the zygote and early embryo; (ii) there is no statistical variation of the marks after the window closes; and (iii) the genes affected are sensitive to dosage. Our genetic drift treatment takes into account that after gene duplication the prevailing case upon which selection operates is a duplicate/singlet heterozygote; to the best of our knowledge, this has not been considered in previous treatments. We conclude from our modeling that stochastic epigenetic modifications, with rates consistent with experimental observation, can both increase the rate of gene fixation and decrease pseudogenization, thus dramatically improving the efficacy of evolution by gene duplication. We also find that a transposon silencing model is advantageous for fixation of recessive genes in diploid organisms, especially with large effective population sizes.
Collapse
|
115
|
Single cell analysis of cancer genomes. Curr Opin Genet Dev 2014; 24:82-91. [PMID: 24531336 DOI: 10.1016/j.gde.2013.12.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 12/15/2013] [Indexed: 12/19/2022]
Abstract
Genomic studies have provided key insights into how cancers develop, evolve, metastasize and respond to treatment. Cancers result from an interplay between mutation, selection and clonal expansions. In solid tumours, this Darwinian competition between subclones is also influenced by topological factors. Recent advances have made it possible to study cancers at the single cell level. These methods represent important tools to dissect cancer evolution and provide the potential to considerably change both cancer research and clinical practice. Here we discuss state-of-the-art methods for the isolation of a single cell, whole-genome and whole-transcriptome amplification of the cell's nucleic acids, as well as microarray and massively parallel sequencing analysis of such amplification products. We discuss the strengths and the limitations of the techniques, and explore single-cell methodologies for future cancer research, as well as diagnosis and treatment of the disease.
Collapse
|
116
|
Abstract
Advances in whole-genome and whole-transcriptome amplification have permitted the sequencing of the minute amounts of DNA and RNA present in a single cell, offering a window into the extent and nature of genomic and transcriptomic heterogeneity which occurs in both normal development and disease. Single-cell approaches stand poised to revolutionise our capacity to understand the scale of genomic, epigenomic, and transcriptomic diversity that occurs during the lifetime of an individual organism. Here, we review the major technological and biological breakthroughs achieved, describe the remaining challenges to overcome, and provide a glimpse into the promise of recent and future developments.
Collapse
|
117
|
Ning L, Liu G, Li G, Hou Y, Tong Y, He J. Current challenges in the bioinformatics of single cell genomics. Front Oncol 2014; 4:7. [PMID: 24478987 PMCID: PMC3902584 DOI: 10.3389/fonc.2014.00007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/12/2014] [Indexed: 11/13/2022] Open
Abstract
Single cell genomics is a rapidly growing field with many new techniques emerging in the past few years. However, few bioinformatics tools specific for single cell genomics analysis are available. Single cell DNA/RNA sequencing data usually have low genome coverage and high amplification bias, which makes bioinformatics analysis challenging. Many current bioinformatics tools developed for bulk cell sequencing do not work well with single cell sequencing data. Here, we summarize current challenges in the bioinformatics analysis of single cell genomic DNA sequencing and single cell transcriptomes. These challenges include calling copy number variations, identifying mutated genes in tumor samples, reconstructing cell lineages, recovering low abundant transcripts, and improving the accuracy of quantitative analysis of transcripts. Development in single cell genomics bioinformatics analysis will promote the application of this technology to basic biology and medical research.
Collapse
Affiliation(s)
- Luwen Ning
- Department of Biology, South University of Science and Technology of China , Shenzhen , China
| | | | | | | | - Yin Tong
- Department of Biology, South University of Science and Technology of China , Shenzhen , China
| | - Jiankui He
- Department of Biology, South University of Science and Technology of China , Shenzhen , China
| |
Collapse
|
118
|
Itzykson R, Kosmider O, Fenaux P. Somatic mutations and epigenetic abnormalities in myelodysplastic syndromes. Best Pract Res Clin Haematol 2014; 26:355-64. [PMID: 24507812 DOI: 10.1016/j.beha.2014.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During many years, very limited data had been available on specific gene mutations in MDS in particular due to the fact that balanced chromosomal translocations (which have allowed to discover many "leukemia" genes) are very rare in MDS, while chromosomal deletions are generally very large, making it difficult to identify genes of interest. Recently, the advent of next generation sequencing (NGS) techniques has helped identify somatic gene mutations in 75-80% of MDS, that cluster mainly in four functional groups, i.e. cytokine signaling (RAS genes), DNA methylation, (TET2, IDH1/2, DNMT3a genes) histone modifications (ASXL1 and EZH2 genes), and spliceosome (SF3B1 and SRSF2 genes) along with mutations of RUNX1 and TP 53 genes. Most of those mutations, except SF3B1 and TET2 mutations, are associated with an overall poorer prognosis, while some gene mutations (mainly TET2 mutation), may be associated to better response to hypomethylating agents. The frequent mutations of epigenetic modulators in MDS appear to largely contribute to the importance of epigenetic deregulation (in particular gene hypermethylation and histone deacetylation) in MDS progression, and may account at least partially for the efficacy of hypomethylating agents in the treatment of MDS.
Collapse
Affiliation(s)
- Raphael Itzykson
- Hematology Department, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), France; Université Paris 7, France; INSERM Unit U944, Hôpital St Louis, Paris, France
| | - Olivier Kosmider
- Laboratoire d'hématologie, Hôpital Cochin, Assistance Publique - Hôpitaux de Paris (AP-HP), France; Université Paris 5, France
| | - Pierre Fenaux
- Hematology Department, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), France; Université Paris 7, France; INSERM UMR-S-940, Hôpital St Louis, Paris, France.
| |
Collapse
|
119
|
Yu J, Zhou J, Sutherland A, Wei W, Shin YS, Xue M, Heath JR. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:275-95. [PMID: 24896308 DOI: 10.1146/annurev-anchem-071213-020323] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We review an emerging microfluidics-based toolkit for single-cell functional proteomics. Functional proteins include, but are not limited to, the secreted signaling proteins that can reflect the biological behaviors of immune cells or the intracellular phosphoproteins associated with growth factor-stimulated signaling networks. Advantages of the microfluidics platforms are multiple. First, 20 or more functional proteins may be assayed simultaneously from statistical numbers of single cells. Second, cell behaviors (e.g., motility) may be correlated with protein assays. Third, extensions to quantized cell populations can permit measurements of cell-cell interactions. Fourth, rare cells can be functionally identified and then separated for further analysis or culturing. Finally, certain assay types can provide a conduit between biology and the physicochemical laws. We discuss the history and challenges of the field then review design concepts and uses of the microchip platforms that have been reported, with an eye toward biomedical applications. We then look to the future of the field.
Collapse
Affiliation(s)
- Jing Yu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125;
| | | | | | | | | | | | | |
Collapse
|
120
|
|
121
|
Itzykson R, Fenaux P. Epigenetics of myelodysplastic syndromes. Leukemia 2013; 28:497-506. [DOI: 10.1038/leu.2013.343] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022]
|
122
|
Embryonic epigenetic chimerism. Nat Genet 2013. [DOI: 10.1038/ng.2782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|