101
|
Rubin MA, Demichelis F. The Genomics of Prostate Cancer: emerging understanding with technologic advances. Mod Pathol 2018; 31:S1-11. [PMID: 29297493 DOI: 10.1038/modpathol.2017.166] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 01/06/2023]
Abstract
With the advent of next-generation sequencing technologies and large whole-exome and genome studies in prostate and other cancers, our understanding of the landscape of genomic alterations has dramatically been refined. In additional to well-known alterations in genomic regions involving 8p, 8q, 10q23, common ETS translocations and androgen receptor amplifications, newer technology have uncovered recurrent mutations in SPOP, FOXA1, MED12, IDH and complex large scale genomic alterations (eg, chromoplexy). This review surveys the enhanced landscape of genomic alterations in clinically localized and advanced prostate cancer.
Collapse
Affiliation(s)
- Mark A Rubin
- Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY, USA.,Sandra and Edward Meyer Cancer Center at Weill Cornell Medical College, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Francesca Demichelis
- Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY, USA.,Centre of Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
102
|
Gazdar AF, Bunn PA, Minna JD. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat Rev Cancer 2017; 17:725-737. [PMID: 29077690 DOI: 10.1038/nrc.2017.87] [Citation(s) in RCA: 490] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small-cell lung cancer (SCLC) is a deadly tumour accounting for approximately 15% of lung cancers and is pathologically, molecularly, biologically and clinically very different from other lung cancers. While the majority of tumours express a neuroendocrine programme (integrating neural and endocrine properties), an important subset of tumours have low or absent expression of this programme. The probable initiating molecular events are inactivation of TP53 and RB1, as well as frequent disruption of several signalling networks, including Notch signalling. SCLC, when diagnosed, is usually widely metastatic and initially responds to cytotoxic therapy but nearly always rapidly relapses with resistance to further therapies. There were no important therapeutic clinical advances for 30 years, leading SCLC to be designated a 'recalcitrant cancer'. Scientific studies are hampered by a lack of tissue availability. However, over the past 5 years, there has been a worldwide resurgence of studies on SCLC, including comprehensive molecular analyses, the development of relevant genetically engineered mouse models and the establishment of patient-derived xenografts. These studies have led to the discovery of new potential therapeutic vulnerabilities for SCLC and therefore to new clinical trials. Thus, while the past has been bleak, the future offers greater promise.
Collapse
Affiliation(s)
- Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75230-8593, USA
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75230-8593, USA
| | - Paul A Bunn
- Division of Medical Oncology, University of Colorado Cancer Center, 12801 East 17th Avenue, Aurora, Colorado 80045, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75230-8593, USA
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75230-8593, USA
| |
Collapse
|
103
|
Mathematical models in cancer therapy. Biosystems 2017; 162:12-23. [DOI: 10.1016/j.biosystems.2017.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/07/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
|
104
|
Vannini I, Wise PM, Challagundla KB, Plousiou M, Raffini M, Bandini E, Fanini F, Paliaga G, Crawford M, Ferracin M, Ivan C, Fabris L, Davuluri RV, Guo Z, Cortez MA, Zhang X, Chen L, Zhang S, Fernandez-Cymering C, Han L, Carloni S, Salvi S, Ling H, Murtadha M, Neviani P, Gitlitz BJ, Laird-Offringa IA, Nana-Sinkam P, Negrini M, Liang H, Amadori D, Cimmino A, Calin GA, Fabbri M. Transcribed ultraconserved region 339 promotes carcinogenesis by modulating tumor suppressor microRNAs. Nat Commun 2017; 8:1801. [PMID: 29180617 PMCID: PMC5703849 DOI: 10.1038/s41467-017-01562-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/27/2017] [Indexed: 01/05/2023] Open
Abstract
The transcribed ultraconserved regions (T-UCRs) encode long non-coding RNAs implicated in human carcinogenesis. Their mechanisms of action and the factors regulating their expression in cancers are poorly understood. Here we show that high expression of uc.339 correlates with lower survival in 210 non-small cell lung cancer (NSCLC) patients. We provide evidence from cell lines and primary samples that TP53 directly regulates uc.339. We find that transcribed uc.339 is upregulated in archival NSCLC samples, functioning as a decoy RNA for miR-339-3p, -663b-3p, and -95-5p. As a result, Cyclin E2, a direct target of all these microRNAs is upregulated, promoting cancer growth and migration. Finally, we find that modulation of uc.339 affects microRNA expression. However, overexpression or downregulation of these microRNAs causes no significant variations in uc.339 levels, suggesting a type of interaction for uc.339 that we call "entrapping". Our results support a key role for uc.339 in lung cancer.
Collapse
Affiliation(s)
- Ivan Vannini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Petra M Wise
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Meropi Plousiou
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Mirco Raffini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Erika Bandini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Francesca Fanini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Giorgia Paliaga
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Gene Therapy Unit, 47014, Meldola (FC), Italy
| | - Melissa Crawford
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, 40126, Bologna, Italy
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Linda Fabris
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Ramana V Davuluri
- Departments of Preventive Medicine and Neurological Surgery, Northwestern University-Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhiyi Guo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maria Angelica Cortez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinna Zhang
- The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA.,Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lu Chen
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shuxing Zhang
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cecilia Fernandez-Cymering
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Silvia Carloni
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Biosciences Laboratory Unit, 47014, Meldola (FC), Italy
| | - Samanta Salvi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, Biosciences Laboratory Unit, 47014, Meldola (FC), Italy
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mariam Murtadha
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Paolo Neviani
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Barbara J Gitlitz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ite A Laird-Offringa
- Departments of Surgery and Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dino Amadori
- Department of Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) S.r.l., IRCCS, 47014, Meldola (FC), Italy
| | - Amelia Cimmino
- Institute of Genetics and Biophysics, National Research Council, 80131, Naples, Italy
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA.
| | - Muller Fabbri
- Departments of Pediatrics and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.
| |
Collapse
|
105
|
Chakraborty A, Ay F. Identification of copy number variations and translocations in cancer cells from Hi-C data. Bioinformatics 2017; 34:338-345. [PMID: 29048467 DOI: 10.1093/bioinformatics/btx664] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/21/2017] [Accepted: 10/17/2017] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Eukaryotic chromosomes adapt a complex and highly dynamic three-dimensional (3D) structure, which profoundly affects different cellular functions and outcomes including changes in epigenetic landscape and in gene expression. Making the scenario even more complex, cancer cells harbor chromosomal abnormalities [e.g. copy number variations (CNVs) and translocations] altering their genomes both at the sequence level and at the level of 3D organization. High-throughput chromosome conformation capture techniques (e.g. Hi-C), which are originally developed for decoding the 3D structure of the chromatin, provide a great opportunity to simultaneously identify the locations of genomic rearrangements and to investigate the 3D genome organization in cancer cells. Even though Hi-C data has been used for validating known rearrangements, computational methods that can distinguish rearrangement signals from the inherent biases of Hi-C data and from the actual 3D conformation of chromatin, and can precisely detect rearrangement locations de novo have been missing. RESULTS In this work, we characterize how intra and inter-chromosomal Hi-C contacts are distributed for normal and rearranged chromosomes to devise a new set of algorithms (i) to identify genomic segments that correspond to CNV regions such as amplifications and deletions (HiCnv), (ii) to call inter-chromosomal translocations and their boundaries (HiCtrans) from Hi-C experiments and (iii) to simulate Hi-C data from genomes with desired rearrangements and abnormalities (AveSim) in order to select optimal parameters for and to benchmark the accuracy of our methods. Our results on 10 different cancer cell lines with Hi-C data show that we identify a total number of 105 amplifications and 45 deletions together with 90 translocations, whereas we identify virtually no such events for two karyotypically normal cell lines. Our CNV predictions correlate very well with whole genome sequencing data among chromosomes with CNV events for a breast cancer cell line (r = 0.89) and capture most of the CNVs we simulate using Avesim. For HiCtrans predictions, we report evidence from the literature for 30 out of 90 translocations for eight of our cancer cell lines. Furthermore, we show that our tools identify and correctly classify relatively understudied rearrangements such as double minutes and homogeneously staining regions. Considering the inherent limitations of existing techniques for karyotyping (i.e. missing balanced rearrangements and those near repetitive regions), the accurate identification of CNVs and translocations in a cost-effective and high-throughput setting is still a challenge. Our results show that the set of tools we develop effectively utilize moderately sequenced Hi-C libraries (100-300 million reads) to identify known and de novo chromosomal rearrangements/abnormalities in well-established cancer cell lines. With the decrease in required number of cells and the increase in attainable resolution, we believe that our framework will pave the way towards comprehensive mapping of genomic rearrangements in primary cells from cancer patients using Hi-C. AVAILABILITY AND IMPLEMENTATION CNV calling: https://github.com/ay-lab/HiCnv, Translocation calling: https://github.com/ay-lab/HiCtrans and Hi-C simulation: https://github.com/ay-lab/AveSim. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Abhijit Chakraborty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Ferhat Ay
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| |
Collapse
|
106
|
Jiang L, Zhang W, Li W, Ling C, Jiang M. Anti-inflammatory drug, leflunomide and its metabolite teriflunomide inhibit NSCLC proliferation in vivo and in vitro. Toxicol Lett 2017; 282:154-165. [PMID: 29050931 DOI: 10.1016/j.toxlet.2017.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 01/03/2023]
Abstract
Lung cancer causes more than 150000 deaths annually in the United States alone, of which non-small cell lung cancer (NSCLC) accounts for 80%. Our studies demonstrated that NSCLC cells were sensitive to leflunomide and its metabolite teriflunomide, a FDA approved drug, which was a well-known immunomodulatory drug for relapsing multiple sclerosis (MS). In the present studies, we found first time that they displayed anti-tumor activity of NSCLC in vitro and in vivo. Potent anti-cancer effects in NSCLC in vitro, including inhibiting NSCLC cells viability, arresting cell cycle at the G0/G1 phase, inducing cell apoptosis, delaying and suppressing NSCLC cells colony-forming ability and cell motility, could be achieved with this agent. Meanwhile, we provided evidence that these effects were applicable in vivo by using H460 cells xenograft model in nude mice. In addition, to comprehensively clarify the mechanisms of teriflunomide in NSCLC, we explored a genome-wide transcriptomic analysis, and found that teriflunomide was involved in multiple signaling pathways and cellular processes, such as cell cycle, apoptosis, MAPK and p53 signaling pathway. Taken together, the results of our studies provided insights into a novel anti-cancer effect of leflunomide and teriflunomide on NSCLC and might open new therapeutic avenues for the treatment of NSCLC.
Collapse
Affiliation(s)
- Liyang Jiang
- Department of Respiratory Diseases, The First Affiliated Hospital of Soochow University, 215006, China
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, 215131, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chunhua Ling
- Department of Respiratory Diseases, The First Affiliated Hospital of Soochow University, 215006, China.
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
107
|
Kuo WT, Tu DG, Chiu LY, Sheu GT, Wu MF. High pemetrexed sensitivity of docetaxel-resistant A549 cells is mediated by TP53 status and downregulated thymidylate synthase. Oncol Rep 2017; 38:2787-2795. [PMID: 28901493 PMCID: PMC5780031 DOI: 10.3892/or.2017.5951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
The chemoresistance of non-small cell lung cancer (NSCLC) that occurs in docetaxel (DOC) chemotherapy substantially decreases the survival of patients. To overcome DOC-induced chemoresistance, we established DOC-selected A549 lung cancer sublines (A549/D16 and A549/D32) and revealed that both sublines were cross-resistant to vincristine (VCR) and doxorubicin (DXR). Notably, both sublines were more sensitive to pemetrexed (PEM) than parental cells according to MTT and clonogenic assays. The expression levels of thymidylate synthase (TS) and γ-glutamyl hydrolase (GGH) were downregulated in DOC-resistant sublines. When exogenous TS was overexpressed in A549/D16 cells, PEM sensitivity was significantly decreased, however it was not decreased by overexpression of exogenous GGH. PEM treatment induced more apoptotic sub-G1 cells in both DOC-resistant sublines and in the in vivo PEM sensitivities of A549/D16 cells. These findings were further confirmed by a xenografted tumor model. To unmask the mediator of TS downregulation, we investigated human lung cancer cell lines that have various TP53 statuses using DOC treatment. The level of TS protein was significantly decreased in wild-type TP53-containing cells with DOC treatment; TS expression levels were not affected in mutant-TP53 and TP53-null cells under the same conditions. Furthermore, when the expression of TP53 was inhibited in A549 cells, the expression level of TS was increased. Our data indicated that DOC activated wild-type TP53 and suppressed TS expression under continuous DOC exposure. Therefore, the expression of TS remained at low levels in DOC-resistant A549 cancer cells. Our data revealed that for lung cancer with DOC resistance and wild-type TP53 status, the administration of PEM as a second-line agent to overcome DOC-resistance may benefit patients.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Dom-Gene Tu
- Department of Nuclear Medicine, Ditmanson Medical Foundation, Chia‑Yi Christian Hospital, Chiayi City 60002, Taiwan, R.O.C
| | - Ling-Yen Chiu
- Institute of Medicine, Chung Shan Medical University Hospital, Taichung City 402, Taiwan, R.O.C
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University Hospital, Taichung City 402, Taiwan, R.O.C
| | - Ming-Fang Wu
- School of Medicine, Chung Shan Medical University Hospital, Taichung City 402, Taiwan, R.O.C
| |
Collapse
|
108
|
Leroy B, Ballinger ML, Baran-Marszak F, Bond GL, Braithwaite A, Concin N, Donehower LA, El-Deiry WS, Fenaux P, Gaidano G, Langerød A, Hellstrom-Lindberg E, Iggo R, Lehmann-Che J, Mai PL, Malkin D, Moll UM, Myers JN, Nichols KE, Pospisilova S, Ashton-Prolla P, Rossi D, Savage SA, Strong LC, Tonin PN, Zeillinger R, Zenz T, Fraumeni JF, Taschner PEM, Hainaut P, Soussi T. Recommended Guidelines for Validation, Quality Control, and Reporting of TP53 Variants in Clinical Practice. Cancer Res 2017; 77:1250-1260. [PMID: 28254861 DOI: 10.1158/0008-5472.can-16-2179] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/12/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
Accurate assessment of TP53 gene status in sporadic tumors and in the germline of individuals at high risk of cancer due to Li-Fraumeni Syndrome (LFS) has important clinical implications for diagnosis, surveillance, and therapy. Genomic data from more than 20,000 cancer genomes provide a wealth of information on cancer gene alterations and have confirmed TP53 as the most commonly mutated gene in human cancer. Analysis of a database of 70,000 TP53 variants reveals that the two newly discovered exons of the gene, exons 9β and 9γ, generated by alternative splicing, are the targets of inactivating mutation events in breast, liver, and head and neck tumors. Furthermore, germline rearrange-ments in intron 1 of TP53 are associated with LFS and are frequently observed in sporadic osteosarcoma. In this context of constantly growing genomic data, we discuss how screening strategies must be improved when assessing TP53 status in clinical samples. Finally, we discuss how TP53 alterations should be described by using accurate nomenclature to avoid confusion in scientific and clinical reports. Cancer Res; 77(6); 1250-60. ©2017 AACR.
Collapse
Affiliation(s)
- Bernard Leroy
- Sorbonne Université, UPMC Univ Paris 06, Paris, France
| | - Mandy L Ballinger
- Cancer Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Fanny Baran-Marszak
- Hôpital Avicenne, Assistance Publique-Hôpitaux De Paris, Bobigny, Service D'H ematologie Biologique, France
| | - Gareth L Bond
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford, United Kingdom
| | - Antony Braithwaite
- Dept of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Children's Medical Research Institute, University of Sydney, Westmead NSW, Australia
| | - Nicole Concin
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | | | - Wafik S El-Deiry
- Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Pierre Fenaux
- Service d'hématologie séniors, Hôpital St Louis/Université Paris 7, 1 avenue Claude Vellefaux, Paris, France
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Anita Langerød
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eva Hellstrom-Lindberg
- Karolinska Institute, Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Iggo
- Bergonié Cancer Institute University of Bordeaux 229 cours de l'Argonne 33076 Bordeaux, France
| | | | - Phuong L Mai
- Cancer Genetics Program, Magee Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Jeffrey N Myers
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kim E Nichols
- Department of Oncology, Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sarka Pospisilova
- Masaryk University, CEITEC - Molecular Medicine and University Hospital Brno, Department of Internal Medicine - Hematology and Oncology, Brno, Czech Republic
| | - Patricia Ashton-Prolla
- Universidade Federal do Rio Grande do Sul (UFRGS) e Serviço deGenética Médica-HCPA, Rua Ramiro Barcelos, Porto Alegre, Brasil
| | - Davide Rossi
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Louise C Strong
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia N Tonin
- Departments of Medicine and Human Genetics, McGill University and Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Thorsten Zenz
- University of Heidelberg, Department of Medicine V, Heidelberg, Germany; Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Peter E M Taschner
- Generade Centre of Expertise Genomics and University of Applied Sciences Leiden, Leiden, the Netherlands
| | - Pierre Hainaut
- Institut Albert Bonniot, Inserm 823, Université Grenoble Alpes, Rond Point de la Chantourne, La Tronche, France
| | - Thierry Soussi
- Sorbonne Université, UPMC Univ Paris 06, Paris, France. .,Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Stockholm, Sweden.,INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
109
|
Chang LC, Vural S, Sonkin D. Detection of homozygous deletions in tumor-suppressor genes ranging from dozen to hundreds nucleotides in cancer models. Hum Mutat 2017; 38:1449-1453. [PMID: 28762582 DOI: 10.1002/humu.23308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 01/21/2023]
Abstract
Tumor-suppressor genes can be inactivated by several mechanisms and, in a majority of cases, both alleles need to be affected. One of the mechanisms of inactivation is due to deletions ranging from dozen to hundreds of nucleotides; such deletions are often missed by variant callers. HomDelDetect is a method to detect such homozygous deletions in cancer models, such as cancer cell lines and potentially patient tumor-derived xenografts. This method can be applied to partial exome, whole-exome sequencing, whole-genome sequencing, and RNA-seq data. We applied our method across a panel of CCLE cancer cell lines and observed good concordance with SNP array-based analysis and also detected deletions that have been missed by variant callers and by SNP arrays, demonstrating the ability of HomDelDetect to improve the annotations of tumor-suppressor genes in cancer models.
Collapse
Affiliation(s)
- Lun-Ching Chang
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Biometric Research Program, Computational and Systems Biology Branch, Rockville, Maryland
| | - Suleyman Vural
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Biometric Research Program, Computational and Systems Biology Branch, Rockville, Maryland
| | - Dmitriy Sonkin
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Biometric Research Program, Computational and Systems Biology Branch, Rockville, Maryland
| |
Collapse
|
110
|
Gu Y, Wang Y, Wang X, Gao L, Yu W, Dong WF. Opposite Effects of SET7/9 on Apoptosis of Human Acute Myeloid Leukemia Cells and Lung Cancer Cells. J Cancer 2017; 8:2069-2078. [PMID: 28819408 PMCID: PMC5559969 DOI: 10.7150/jca.19143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/01/2017] [Indexed: 12/31/2022] Open
Abstract
SET7/9 is a protein lysine methyltransferases (PLMTs or PKMTs) which methylates both histone H3K4 and non-histone proteins including transcriptional factors, tumor suppressors, and membrane-associated receptors. Methylation of these proteins alters protein activity and leads to changes in cellular behavior and a series of biological processes. This study aims to investigate the role of SET7/9 in human acute myeloid leukemia (AML) and non-small-cell lung cancer (NSCLC). We examined the expression of SET7/9 in AML cells and NSCLC cells and detected the methylation status of the SET7/9 promoter region. To evaluate the effect of SET7/9 expression changes on cell apoptosis, cell apoptosis rates were determined after SET7/9 overexpression or down-regulation. Our results showed that SET7/9 induces apoptosis of AML cells and inhibits apoptosis of NSCLC cells, suggesting differential effects of SET7/9 on cellular apoptosis and carcinogenesis depending on different cancer types and genetic contexts. Furthermore, we also demonstrated that SET7/9 suppresses cell apoptosis via modulation of E2F1 under circumstance of p53 deficiency in NSCLC cells.
Collapse
Affiliation(s)
- Ye Gu
- Department of Pathophysiology, Medical school of Southeast University, Nanjing, Jiangsu, China, 210009
| | - Yuan Wang
- Department of Pathophysiology, Medical school of Southeast University, Nanjing, Jiangsu, China, 210009
| | - Xinling Wang
- Department of Pathophysiology, Medical school of Southeast University, Nanjing, Jiangsu, China, 210009
| | - Lili Gao
- Department of Pathophysiology, Medical school of Southeast University, Nanjing, Jiangsu, China, 210009
| | - Weiping Yu
- Department of Pathophysiology, Medical school of Southeast University, Nanjing, Jiangsu, China, 210009
| | - Wei-Feng Dong
- Department of Laboratory Medicine, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
111
|
Roche J, Gemmill RM, Drabkin HA. Epigenetic Regulation of the Epithelial to Mesenchymal Transition in Lung Cancer. Cancers (Basel) 2017; 9:cancers9070072. [PMID: 28672805 PMCID: PMC5532608 DOI: 10.3390/cancers9070072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/17/2017] [Accepted: 06/17/2017] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. It is an aggressive and devastating cancer because of metastasis triggered by enhanced migration and invasion, and resistance to cytotoxic chemotherapy. The epithelial to mesenchymal transition (EMT) is a fundamental developmental process that is reactivated in wound healing and a variety of diseases including cancer where it promotes migration/invasion and metastasis, resistance to treatment, and generation and maintenance of cancer stem cells. The induction of EMT is associated with reprogramming of the epigenome. This review focuses on major mechanisms of epigenetic regulation mainly in lung cancer with recent data on EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit ), the catalytic subunit of the PRC2 (Polycomb Group PcG), that behaves as an oncogene in lung cancer associated with gene repression, non-coding RNAs and the epitranscriptome.
Collapse
Affiliation(s)
- Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions, Equipe SEVE, Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers, France.
| | - Robert M Gemmill
- Division of Hematology-Oncology, Medical University of South Carolina, 39 Sabin St., MSC 635, Charleston, SC 29425, USA.
| | - Harry A Drabkin
- Division of Hematology-Oncology, Medical University of South Carolina, 39 Sabin St., MSC 635, Charleston, SC 29425, USA.
| |
Collapse
|
112
|
Sundaresan V, Lin VT, Liang F, Kaye FJ, Kawabata-Iwakawa R, Shiraishi K, Kohno T, Yokota J, Zhou L. Significantly mutated genes and regulatory pathways in SCLC-a meta-analysis. Cancer Genet 2017; 216-217:20-28. [PMID: 29025592 DOI: 10.1016/j.cancergen.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/06/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023]
Abstract
Small cell lung cancer (SCLC) accounts for approximately 15% of all lung cancers and demands effective targeted therapeutic strategies. In this meta-analysis study, we aim to identify significantly mutated genes and regulatory pathways to help us better understand the progression of SCLC and to identify potential biomarkers. Besides ranking genes based on their mutation frequencies, we sought to identify statistically significant mutations in SCLC with the MutSigCV software. Our analysis identified several genes with relatively low mutation frequency, including PTEN, as highly significant (p < 0.001), suggesting these genes may play an important role in the progression of SCLC. Our results also indicated mutations in genes involved in the axon guidance pathways likely play an important role in SCLC progression. In addition, we observed that the mutation rate was significantly higher in samples with RB1 gene mutated when compared to samples with wild type RB1, suggesting that RB1 status has significant impact on the mutation profile and disease progression in SCLC.
Collapse
Affiliation(s)
- Varsha Sundaresan
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA; UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Victor T Lin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Faming Liang
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Frederic J Kaye
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA; Department of Medicine, University of Florida, Gainesville, FL, USA; UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Reika Kawabata-Iwakawa
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo 104-0045, Japan
| | - Jun Yokota
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Cancer Genome Biology Group, Institute of Predictive and Personalized Medicine of Cancer, Barcelona 08916, Spain
| | - Lei Zhou
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA; UF Health Cancer Center, University of Florida, Gainesville, FL, USA; UF Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
113
|
Deneka AY, Haber L, Kopp MC, Gaponova AV, Nikonova AS, Golemis EA. Tumor-targeted SN38 inhibits growth of early stage non-small cell lung cancer (NSCLC) in a KRas/p53 transgenic mouse model. PLoS One 2017; 12:e0176747. [PMID: 28453558 PMCID: PMC5409145 DOI: 10.1371/journal.pone.0176747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/14/2017] [Indexed: 11/19/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide, with a 5-year survival of only ~16%. Potential strategies to address NSCLC mortality include improvements in early detection and prevention, and development of new therapies suitable for use in patients with early and late stage diagnoses. Controlling the growth of early stage tumors could yield significant clinical benefits for patients with comorbidities that make them poor candidates for surgery: however, many drugs that limit cancer growth are not useful in the setting of long-term use or in comorbid patients, because of associated toxicities. In this study, we explored the use of a recently described small molecule agent, STA-8666, as a potential agent for controlling early stage tumor growth. STA-8666 uses a cleavable linker to merge a tumor-targeting moiety that binds heat shock protein 90 (HSP90) with the cytotoxic chemical SN38, and has been shown to have high efficacy and low toxicity, associated with efficient tumor targeting, in preclinical studies using patient-derived and other xenograft models for pancreatic, bladder, and small cell lung cancer. Using a genetically engineered model of NSCLC arising from induced mutation of KRas and knockout of Trp53, we continuously dosed mice with STA-8666 from immediately after tumor induction for 15 weeks. STA-8666 significantly slowed the rate of tumor growth, and was well tolerated over this extended dosing period. STA-8666 induced DNA damage and apoptosis, and reduced proliferation and phosphorylation of the proliferation-associated protein ERK1/2, selectively in tumor tissue. In contrast, STA-8666 did not affect tumor features, such as degree of vimentin staining, associated with epithelial-mesenchymal transition (EMT), or downregulate tumor expression of HSP90. These data suggest STA-8666 and other similar targeted compounds may be useful additions to control the growth of early stage NSCLC in patient populations.
Collapse
Affiliation(s)
- Alexander Y. Deneka
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry, Kazan Federal University, Kazan, Russia
- * E-mail: (EG); (AD)
| | - Leora Haber
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Meghan C. Kopp
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Anna V. Gaponova
- Laboratory of Genome Engineering, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Immanuel Kant Baltic Federal University, Konigsberg, Russia
| | - Anna S. Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Erica A. Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail: (EG); (AD)
| |
Collapse
|
114
|
Chuang CH, Greenside PG, Rogers ZN, Brady JJ, Yang D, Ma RK, Caswell DR, Chiou SH, Winters AF, Grüner BM, Ramaswami G, Spencley AL, Kopecky KE, Sayles LC, Sweet-Cordero EA, Li JB, Kundaje A, Winslow MM. Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis. Nat Med 2017; 23:291-300. [PMID: 28191885 DOI: 10.1038/nm.4285] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, with the majority of mortality resulting from metastatic spread. However, the molecular mechanism by which cancer cells acquire the ability to disseminate from primary tumors, seed distant organs, and grow into tissue-destructive metastases remains incompletely understood. We combined tumor barcoding in a mouse model of human lung adenocarcinoma with unbiased genomic approaches to identify a transcriptional program that confers metastatic ability and predicts patient survival. Small-scale in vivo screening identified several genes, including Cd109, that encode novel pro-metastatic factors. We uncovered signaling mediated by Janus kinases (Jaks) and the transcription factor Stat3 as a critical, pharmacologically targetable effector of CD109-driven lung cancer metastasis. In summary, by coupling the systematic genomic analysis of purified cancer cells in distinct malignant states from mouse models with extensive human validation, we uncovered several key regulators of metastatic ability, including an actionable pro-metastatic CD109-Jak-Stat3 axis.
Collapse
Affiliation(s)
- Chen-Hua Chuang
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Peyton G Greenside
- Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, California, USA
| | - Zoë N Rogers
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer J Brady
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Dian Yang
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA
| | - Rosanna K Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Deborah R Caswell
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA
| | - Shin-Heng Chiou
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Aidan F Winters
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Barbara M Grüner
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew L Spencley
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA
| | - Kimberly E Kopecky
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Leanne C Sayles
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - E Alejandro Sweet-Cordero
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,Department of Computer Science, Stanford University, Stanford, California, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
115
|
Liu Z, Yanagisawa K, Griesing S, Iwai M, Kano K, Hotta N, Kajino T, Suzuki M, Takahashi T. TTF-1/NKX2-1 binds to DDB1 and confers replication stress resistance to lung adenocarcinomas. Oncogene 2017; 36:3740-3748. [PMID: 28192407 DOI: 10.1038/onc.2016.524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 01/19/2023]
Abstract
TTF-1, also known as NKX2-1, is a transcription factor that has indispensable roles in both lung development and physiology. We and others have reported that TTF-1 frequently exhibits high expression with increased copy number in lung adenocarcinomas, and also has a role as a lineage-survival oncogene through transcriptional activation of crucial target genes including ROR1 and LMO3. In the present study, we employed a global proteomic search for proteins that interact with TTF-1 in order to provide a more comprehensive picture of this still enigmatic lineage-survival oncogene. Our results unexpectedly revealed a function independent of its transcriptional activity, as TTF-1 was found to interact with DDB1 and block its binding to CHK1, which in turn attenuated ubiquitylation and subsequent degradation of CHK1. Furthermore, TTF-1 overexpression conferred resistance to cellular conditions under DNA replication stress (RS) and prevented an increase in consequential DNA double-strand breaks, as reflected by attenuated induction of pCHK2 and γH2AX. Our findings suggest that the novel non-transcriptional function of TTF-1 identified in this study may contribute to lung adenocarcinoma development by conferring tolerance to DNA RS, which is known to be inherently elicited by activation of various oncogenes.
Collapse
Affiliation(s)
- Z Liu
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Yanagisawa
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - S Griesing
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Iwai
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Kano
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - N Hotta
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Kajino
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Suzuki
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
116
|
Gao W, Jin J, Yin J, Land S, Gaither-Davis A, Christie N, Luketich JD, Siegfried JM, Keohavong P. KRAS and TP53 mutations in bronchoscopy samples from former lung cancer patients. Mol Carcinog 2017; 56:381-388. [PMID: 27182622 DOI: 10.1002/mc.22501] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 11/12/2022]
Abstract
Mutations in the KRAS and TP53 genes have been found frequently in lung tumors and specimens from individuals at high risk for lung cancer and have been suggested as predictive markers for lung cancer. In order to assess the prognostic value of these two genes' mutations in lung cancer recurrence, we analyzed mutations in codon 12 of the KRAS gene and in hotspot codons of the TP53 gene in 176 bronchial biopsies obtained from 77 former lung cancer patients. Forty-seven patients (61.0%) showed mutations, including 35/77 (45.5%) in the KRAS gene and 25/77 (32.5%) in the TP53 gene, among them 13/77 (16.9%) had mutations in both genes. When grouped according to past or current smoking status, a higher proportion of current smokers showed mutations, in particular those in the TP53 gene (P = 0.07), compared with ex-smokers. These mutations were found in both abnormal lesions (8/20 or 40%) and histologically normal tissues (70/156 or 44.9%) (P = 0.812). They consisted primarily of G to A transition and G to T transversion in both the KRAS (41/56 or 73.2%) and TP53 (24/34 or 70.6%) genes, consistent with mutations found in lung tumors of smoking lung cancer patients. Overall, recurrence-free survival (RFS) among all subjects could be explained by age at diagnosis, tumor stage, tumor subtype, and smoking (P < 0.05, Cox proportional hazard). Therefore, KRAS and TP53 mutations were frequently detected in bronchial tissues of former lung cancer patients. However, the presence of mutation of bronchial biopsies was not significantly associated with a shorter RFS time. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jide Jin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jinling Yin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephanie Land
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Neil Christie
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James D Luketich
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jill M Siegfried
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Phouthone Keohavong
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
117
|
Runx3 and Cell Fate Decisions in Pancreas Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:333-352. [PMID: 28299667 DOI: 10.1007/978-981-10-3233-2_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RUNX family transcription factors are critical regulators of development and frequently dysregulated in cancer. RUNX3, the least well characterized of the three family members, has been variously described as a tumor promoter or suppressor, sometimes with conflicting results and opinions in the same cancer and likely reflecting a complex role in oncogenesis. We recently identified RUNX3 expression as a crucial determinant of the predilection for pancreatic ductal adenocarcinoma (PDA) cells to proliferate locally or promulgate throughout the body. High RUNX3 expression induces the production and secretion of soluble factors that support metastatic niche construction and stimulates PDA cells to migrate and invade, while simultaneously suppressing proliferation through increased expression of cell cycle regulators such as CDKN1A/p21 WAF1/CIP1 . RUNX3 expression and function are coordinated by numerous transcriptional and post-translational inputs, and interactions with diverse cofactors influence whether the resulting RUNX3 complexes enact tumor suppressive or tumor promoting programs. Understanding these exquisitely context-dependent tumor cell behaviors has the potential to inform clinical decision-making including the most appropriate timing and sequencing of local vs. systemic therapies.
Collapse
|
118
|
Horie M, Saito A, Ohshima M, Suzuki HI, Nagase T. YAP and TAZ modulate cell phenotype in a subset of small cell lung cancer. Cancer Sci 2016; 107:1755-1766. [PMID: 27627196 PMCID: PMC5198951 DOI: 10.1111/cas.13078] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 02/02/2023] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive and metastatic malignancy that shows rapid development of chemoresistance and a high rate of recurrence. Recent genome and transcriptome studies have provided the whole landscape of genomic alterations and gene expression changes in SCLC. In light of the inter‐individual heterogeneity of SCLC, subtyping of SCLC might be helpful for prediction of therapeutic response and prognosis. Based on the transcriptome data of SCLC cell lines, we undertook transcriptional network‐defined SCLC classification and identified a unique SCLC subgroup characterized by relatively high expression of Hippo pathway regulators Yes‐associated protein (YAP) and transcriptional coactivator with PDZ‐binding motif (TAZ) (YAP/TAZ subgroup). The YAP/TAZ subgroup displayed adherent cell morphology, lower expression of achaete‐scute complex homolog 1 (ASCL1) and neuroendocrine markers, and higher expression of laminin and integrin. YAP knockdown caused cell morphological alteration reminiscent of floating growth pattern in many SCLC cell lines, and microarray analyses revealed a subset of genes regulated by YAP, including Ajuba LIM protein (AJUBA). AJUBA also contributed to cell morphology regulation. Of clinical importance, SCLC cell lines of the YAP/TAZ subgroup showed unique patterns of drug sensitivity. Our findings shed light on a subtype of SCLC with YAP and TAZ expression, and delineate molecular networks underlying the heterogeneity of SCLC.
Collapse
Affiliation(s)
- Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Ohshima
- Department of Biochemistry, Ohu University School of Pharmaceutical Sciences, Koriyama, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
119
|
DHX33 Transcriptionally Controls Genes Involved in the Cell Cycle. Mol Cell Biol 2016; 36:2903-2917. [PMID: 27601587 DOI: 10.1128/mcb.00314-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023] Open
Abstract
The RNA helicase DHX33 has been shown to be a critical regulator of cell proliferation and growth. However, the underlying mechanisms behind DHX33 function remain incompletely understood. We present original evidence in multiple cell lines that DHX33 transcriptionally controls the expression of genes involved in the cell cycle, notably cyclin, E2F1, cell division cycle (CDC), and minichromosome maintenance (MCM) genes. DHX33 physically associates with the promoters of these genes and controls the loading of active RNA polymerase II onto these promoters. DHX33 deficiency abrogates cell cycle progression and DNA replication and leads to cell apoptosis. In zebrafish, CRISPR-mediated knockout of DHX33 results in downregulation of cyclin A2, cyclin B2, cyclin D1, cyclin E2, cdc6, cdc20, E2F1, and MCM complexes in DHX33 knockout embryos. Additionally, we found the overexpression of DHX33 in a subset of non-small-cell lung cancers and in Ras-mutated human lung cancer cell lines. Forced reduction of DHX33 in these cancer cells abolished tumor formation in vivo Our study demonstrates for the first time that DHX33 acts as a direct transcriptional regulator to promote cell cycle progression and plays an important role in driving cell proliferation during both embryo development and tumorigenesis.
Collapse
|
120
|
Hainaut P, Pfeifer GP. Somatic TP53 Mutations in the Era of Genome Sequencing. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026179. [PMID: 27503997 DOI: 10.1101/cshperspect.a026179] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amid the complexity of genetic alterations in human cancer, TP53 mutation appears as an almost invariant component, representing by far the most frequent genetic alteration overall. Compared with previous targeted sequencing studies, recent integrated genomics studies offer a less biased view of TP53 mutation patterns, revealing that >20% of mutations occur outside the DNA-binding domain. Among the 12 mutations representing each at least 1% of all mutations, five occur at residues directly involved in specific DNA binding, four affect the tertiary fold of the DNA-binding domain, and three are nonsense mutations, two of them in the carboxyl terminus. Significant mutations also occur in introns, affecting alternative splicing events or generating rearrangements (e.g., in intron 1 in sporadic osteosarcoma). In aggressive cancers, mutation is so common that it may not have prognostic value (all these cancers have impaired p53 function caused by mutation or by other mechanisms). In several other cancers, however, mutation makes a clear difference for prognostication, as, for example, in HER2-enriched breast cancers and in lung adenocarcinoma with EGFR mutations. Thus, the clinical significance of TP53 mutation is dependent on tumor subtype and context. Understanding the clinical impact of mutation will require integrating mutation-specific information (type, frequency, and predicted impact) with data on haplotypes and on loss of heterozygosity.
Collapse
Affiliation(s)
- Pierre Hainaut
- University Grenoble Alpes, Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale (INSERM), 823 Grenoble, France
| | - Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
121
|
Karachaliou N, Sosa AE, Rosell R. Unraveling the genomic complexity of small cell lung cancer. Transl Lung Cancer Res 2016; 5:363-6. [PMID: 27650513 DOI: 10.21037/tlcr.2016.07.02] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Niki Karachaliou
- University Hospital Sagrat Cor, Oncology Institute Rosell, Barcelona, Spain;; Autonomous University of Barcelona, Germans Trias i Pujol Health Sciences Research Institute, Badalona, Spain
| | - Aaron E Sosa
- University Hospital Sagrat Cor, Oncology Institute Rosell, Barcelona, Spain
| | - Rafael Rosell
- Autonomous University of Barcelona, Germans Trias i Pujol Health Sciences Research Institute, Badalona, Spain;; Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
122
|
Maggi EC, Trillo-Tinoco J, Struckhoff AP, Vijayaraghavan J, Del Valle L, Crabtree JS. Retinoblastoma-binding protein 2 (RBP2) is frequently expressed in neuroendocrine tumors and promotes the neoplastic phenotype. Oncogenesis 2016; 5:e257. [PMID: 27548814 PMCID: PMC5007832 DOI: 10.1038/oncsis.2016.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Neuroendocrine tumors (NETs), which can have survival rates as low as 4%, currently have limited therapeutic interventions available highlighting the dire need for the identification of novel biological targets for use as new potential drug targets. One such potential target is retinoblastoma-binding protein 2 (RBP2), an H3K4 demethylase whose overexpression has been linked to cancer formation and metastasis in non-endocrine tumor types. We measured RBP2 mRNA and protein levels in enteropancreatic NETs by measuring RBP2 in matched human normal and NET tissue samples. Further, proliferation, migration, invasion and colony formation assays were performed in the physiologically relevant NET cell lines βlox5, H727 and QGP-1 to understand the role of RBP2 and its demethylase activity on end points of tumorigenesis. Our data indicate a strong correlation between RBP2 mRNA and protein expression in NET specimens. RBP2 was overexpressed relative to tissue-matched normal controls in 80% of the human tumors measured. In vitro studies showed RBP2 overexpression significantly increased proliferation, migration, invasion and colony formation, whereas knockdown significantly decreases the same parameters in a demethylase-independent manner. The cell cycle inhibitors p21 and p57 decreased with RBP2 overexpression and increased upon its depletion, suggesting a regulatory role for RBP2 in cellular proliferation. Taken together, our results support the hypothesis that the aberrant overexpression of RBP2 is a frequent contributing factor to tumor formation and metastasis in enteropancreatic NETs.
Collapse
Affiliation(s)
- E C Maggi
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J Trillo-Tinoco
- Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, LA, USA
| | - A P Struckhoff
- Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, LA, USA
| | - J Vijayaraghavan
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Del Valle
- Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, LA, USA.,Departments of Medicine and Pathology, Louisiana State University Health, New Orleans, LA, USA
| | - J S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, LA, USA
| |
Collapse
|
123
|
Abstract
Precision medicine relies on validated biomarkers with which to better classify patients by their probable disease risk, prognosis and/or response to treatment. Although affordable 'omics'-based technology has enabled faster identification of putative biomarkers, the validation of biomarkers is still stymied by low statistical power and poor reproducibility of results. This Review summarizes the successes and challenges of using different types of molecule as biomarkers, using lung cancer as a key illustrative example. Efforts at the national level of several countries to tie molecular measurement of samples to patient data via electronic medical records are the future of precision medicine research.
Collapse
Affiliation(s)
- Ashley J Vargas
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Room 3068A, MSC 425, 837 Convent Drive, Bethesda, Maryland 20892-4258, USA
- Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland 20850, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Room 3068A, MSC 425, 837 Convent Drive, Bethesda, Maryland 20892-4258, USA
| |
Collapse
|
124
|
Musashi-2 (MSI2) supports TGF-β signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis. Proc Natl Acad Sci U S A 2016; 113:6955-60. [PMID: 27274057 DOI: 10.1073/pnas.1513616113] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of Kras(LA1/+);P53(R172HΔG/+) (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial-mesenchymal transition, including the TGF-β receptor 1 (TGFβR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFβRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial-mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFβR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.
Collapse
|
125
|
Kohno S, Kitajima S, Sasaki N, Takahashi C. Retinoblastoma tumor suppressor functions shared by stem cell and cancer cell strategies. World J Stem Cells 2016; 8:170-84. [PMID: 27114748 PMCID: PMC4835675 DOI: 10.4252/wjsc.v8.i4.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/30/2015] [Accepted: 02/14/2016] [Indexed: 02/06/2023] Open
Abstract
Carcinogenic transformation of somatic cells resembles nuclear reprogramming toward the generation of pluripotent stem cells. These events share eternal escape from cellular senescence, continuous self-renewal in limited but certain population of cells, and refractoriness to terminal differentiation while maintaining the potential to differentiate into cells of one or multiple lineages. As represented by several oncogenes those appeared to be first keys to pluripotency, carcinogenesis and nuclear reprogramming seem to share a number of core mechanisms. The retinoblastoma tumor suppressor product retinoblastoma (RB) seems to be critically involved in both events in highly complicated manners. However, disentangling such complicated interactions has enabled us to better understand how stem cell strategies are shared by cancer cells. This review covers recent findings on RB functions related to stem cells and stem cell-like behaviors of cancer cells.
Collapse
Affiliation(s)
- Susumu Kohno
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Shunsuke Kitajima
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Nobunari Sasaki
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Chiaki Takahashi
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
126
|
Huang MC, Chuang TP, Chen CH, Wu JY, Chen YT, Li LH, Yang HC. An integrated analysis tool for analyzing hybridization intensities and genotypes using new-generation population-optimized human arrays. BMC Genomics 2016; 17:266. [PMID: 27029637 PMCID: PMC4815280 DOI: 10.1186/s12864-016-2478-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Affymetrix Axiom single nucleotide polymorphism (SNP) arrays provide a cost-effective, high-density, and high-throughput genotyping solution for population-optimized analyses. However, no public software is available for the integrated genomic analysis of hybridization intensities and genotypes for this new-generation population-optimized genotyping platform. RESULTS A set of statistical methods was developed for an integrated analysis of allele frequency (AF), allelic imbalance (AI), loss of heterozygosity (LOH), long contiguous stretch of homozygosity (LCSH), and copy number variation or alteration (CNV/CNA) on the basis of SNP probe hybridization intensities and genotypes. This study analyzed 3,236 samples that were genotyped using different SNP platforms. The proposed AF adjustment method considerably increased the accuracy of AF estimation. The proposed quick circular binary segmentation algorithm for segmenting copy number reduced the computation time of the original segmentation method by 30-67 %. The proposed CNV/CNA detection, which integrates AI and LOH/LCSH detection, had a promising true positive rate and well-controlled false positive rate in simulation studies. Moreover, our real-time quantitative polymerase chain reaction experiments successfully validated the CNVs/CNAs that were identified in the Axiom data analyses using the proposed methods; some of the validated CNVs/CNAs were not detected in the Affymetrix Array 6.0 data analysis using the Affymetrix Genotyping Console. All the analysis functions are packaged into the ALICE (AF/LOH/LCSH/AI/CNV/CNA Enterprise) software. CONCLUSIONS ALICE and the used genomic reference databases, which can be downloaded from http://hcyang.stat.sinica.edu.tw/software/ALICE.html , are useful resources for analyzing genomic data from the Axiom and other SNP arrays.
Collapse
Affiliation(s)
- Mei-Chu Huang
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan.,Institute of Statistical Science, Academia Sinica, No 128, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, 112, Taiwan
| | - Tzu-Po Chuang
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan.
| | - Hsin-Chou Yang
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan. .,Institute of Statistical Science, Academia Sinica, No 128, Academia Rd, Sec 2, Nankang, Taipei, 115, Taiwan. .,Institute of Public Health, National Yang Ming University, Taipei, 112, Taiwan. .,Department of Statistics, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Statistics, National Tsing Hua University, Hsinchu, 300, Taiwan. .,School of Public Health, National Defense Medical Center, Taipei, 114, Taiwan.
| |
Collapse
|
127
|
Feldman M, Hershkovitz I, Sklan EH, Kahila Bar-Gal G, Pap I, Szikossy I, Rosin-Arbesfeld R. Detection of a Tumor Suppressor Gene Variant Predisposing to Colorectal Cancer in an 18th Century Hungarian Mummy. PLoS One 2016; 11:e0147217. [PMID: 26863316 PMCID: PMC4749341 DOI: 10.1371/journal.pone.0147217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/30/2015] [Indexed: 01/23/2023] Open
Abstract
Mutations of the Adenomatous polyposis coli (APC) gene are common and strongly associated with the development of colorectal adenomas and carcinomas. While extensively studied in modern populations, reports on visceral tumors in ancient populations are scarce. To the best of our knowledge, genetic characterization of mutations associated with colorectal cancer in ancient specimens has not yet been described. In this study we have sequenced hotspots for mutations in the APC gene isolated from 18th century naturally preserved human Hungarian mummies. While wild type APC sequences were found in two mummies, we discovered the E1317Q missense mutation, known to be a colorectal cancer predisposing mutation, in a large intestine tissue of an 18th century mummy. Our data suggests that this genetic predisposition to cancer already existed in the pre-industrialization era. This study calls for similar investigations of ancient specimens from different periods and geographical locations to be conducted and shared for the purpose of obtaining a larger scale analysis that will shed light on past cancer epidemiology and on cancer evolution.
Collapse
Affiliation(s)
- Michal Feldman
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| | - Israel Hershkovitz
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ella H. Sklan
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gila Kahila Bar-Gal
- Koret School of Veterinary Medicine, The Robert H. Smith faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ildikó Pap
- Department of Anthropology, Hungarian Natural History Museum, Budapest, Hungary
| | - Ildikó Szikossy
- Department of Anthropology, Hungarian Natural History Museum, Budapest, Hungary
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
128
|
McConnell EJ, Devapatla B, Yaddanapudi K, Davis KR. The soybean-derived peptide lunasin inhibits non-small cell lung cancer cell proliferation by suppressing phosphorylation of the retinoblastoma protein. Oncotarget 2016; 6:4649-62. [PMID: 25609198 PMCID: PMC4467105 DOI: 10.18632/oncotarget.3080] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/27/2014] [Indexed: 12/22/2022] Open
Abstract
Lunasin, a soybean bioactive peptide, has both chemopreventive and chemotherapeutic activities. The aim of this study was to determine the chemotherapeutic potential of lunasin against human lung cancer. Treatment of non-small cell lung cancer (NSCLC) cells with highly purified soybean-derived lunasin caused limited, cell-line specific anti-proliferative effects on anchorage-dependent growth whereas two normal bronchial epithelial cell lines were unaffected. Lunasin's antiproliferative effects were potentiated upon utilization of anchorage-independent conditions. Furthermore, NSCLC cell lines that were unaffected by lunasin in anchorage-dependent assays exhibited a dose-dependent inhibition in colony formation or colony size. Mouse xenograft studies revealed that 30 mg lunasin/kg body weight per day decreased NSCLC H1299 tumor volume by 63.0% at day 32. Mechanistic studies using cultured NSCLC H661 cells showed that lunasin inhibited cell cycle progression at the G1/S phase interface without inducing apoptosis. Immunoblot analyses of key cell-cycle proteins demonstrated that lunasin altered the expression of the G1 specific cyclin-dependent kinase complex components, increased levels of p27Kip1, reduced levels of phosphorylated Akt, and ultimately inhibited the sequential phosphorylation of the retinoblastoma protein (RB). These results establish for the first time that lunasin can inhibit NSCLC proliferation by suppressing cell-cycle dependent phosphorylation of RB.
Collapse
Affiliation(s)
- Elizabeth J McConnell
- Owensboro Cancer Research Program, Mitchell Memorial Cancer Center, Owensboro, Kentucky, USA
| | - Bharat Devapatla
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Kavitha Yaddanapudi
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Keith R Davis
- Owensboro Cancer Research Program, Mitchell Memorial Cancer Center, Owensboro, Kentucky, USA.,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
129
|
Mukherjee S, Ma Z, Wheeler S, Sathanoori M, Coldren C, Prescott JL, Kozyr N, Bouzyk M, Correll M, Ho H, Chandra PK, Lennon PA. Chromosomal microarray provides enhanced targetable gene aberration detection when paired with next generation sequencing panel in profiling lung and colorectal tumors. Cancer Genet 2016; 209:119-29. [PMID: 26880400 DOI: 10.1016/j.cancergen.2015.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/24/2015] [Accepted: 12/27/2015] [Indexed: 12/12/2022]
Abstract
The development of targeted therapies based on specific genomic alterations has altered the treatment and management of lung and colorectal cancers. Chromosomal microarray (CMA) has allowed identification of copy number variations (CNVs) in lung and colorectal cancers in great detail, and next-generation sequencing (NGS) is used extensively to analyze the genome of cancers for molecular subtyping and use of molecularly guided therapies. The main objective of this study was to evaluate the utility of combining CMA and NGS for a comprehensive genomic assessment of lung and colorectal adenocarcinomas, especially for detecting drug targets. We compared the results from NGS and CMA data from 60 lung and 51 colorectal tumors. From CMA analysis, 33% were amplified, 89% showed gains, 75% showed losses and 41% demonstrated loss of heterozygosity; pathogenic variants were identified in 81% of colon and 67% lung specimens through NGS. KRAS mutations commonly occurred with loss in TP53 and there was significant loss of BRCA1 and NF1 among male patients with lung cancer. For clinically actionable targets, 23% had targetable CNVs when no pathogenic variants were detected by NGS. The data thus indicate that combining the two approaches provides significant benefit in a routine clinical setting not available by NGS alone.
Collapse
Affiliation(s)
| | - Z Ma
- PathGroup, Nashville, TN, USA
| | | | | | | | | | | | | | | | - H Ho
- PathGroup, Nashville, TN, USA
| | | | | |
Collapse
|
130
|
Mittal V, El Rayes T, Narula N, McGraw TE, Altorki NK, Barcellos-Hoff MH. The Microenvironment of Lung Cancer and Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 890:75-110. [PMID: 26703800 DOI: 10.1007/978-3-319-24932-2_5] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment (TME) represents a milieu that enables tumor cells to acquire the hallmarks of cancer. The TME is heterogeneous in composition and consists of cellular components, growth factors, proteases, and extracellular matrix. Concerted interactions between genetically altered tumor cells and genetically stable intratumoral stromal cells result in an "activated/reprogramed" stroma that promotes carcinogenesis by contributing to inflammation, immune suppression, therapeutic resistance, and generating premetastatic niches that support the initiation and establishment of distant metastasis. The lungs present a unique milieu in which tumors progress in collusion with the TME, as evidenced by regions of aberrant angiogenesis, acidosis and hypoxia. Inflammation plays an important role in the pathogenesis of lung cancer, and pulmonary disorders in lung cancer patients such as chronic obstructive pulmonary disease (COPD) and emphysema, constitute comorbid conditions and are independent risk factors for lung cancer. The TME also contributes to immune suppression, induces epithelial-to-mesenchymal transition (EMT) and diminishes efficacy of chemotherapies. Thus, the TME has begun to emerge as the "Achilles heel" of the disease, and constitutes an attractive target for anti-cancer therapy. Drugs targeting the components of the TME are making their way into clinical trials. Here, we will focus on recent advances and emerging concepts regarding the intriguing role of the TME in lung cancer progression, and discuss future directions in the context of novel diagnostic and therapeutic opportunities.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents/therapeutic use
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Communication/drug effects
- Drug Resistance, Neoplasm/genetics
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Diseases, Obstructive/complications
- Lung Diseases, Obstructive/drug therapy
- Lung Diseases, Obstructive/genetics
- Lung Diseases, Obstructive/metabolism
- Lung Neoplasms/complications
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Pulmonary Emphysema/complications
- Pulmonary Emphysema/drug therapy
- Pulmonary Emphysema/genetics
- Pulmonary Emphysema/metabolism
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Vivek Mittal
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cardiothoracic Surgery, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
- Neuberger Berman Lung Cancer Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| | - Tina El Rayes
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cardiothoracic Surgery, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Navneet Narula
- Department of Pathology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Timothy E McGraw
- Department of Cardiothoracic Surgery, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, 566 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
131
|
From Mice to Men and Back: An Assessment of Preclinical Model Systems for the Study of Lung Cancers. J Thorac Oncol 2015; 11:287-99. [PMID: 26723239 DOI: 10.1016/j.jtho.2015.10.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Studies of preclinical models are essential for determining the biology of lung cancers and testing new and novel therapeutic approaches. We review the commonly used preclinical models for lung cancers and evaluate their strengths and weaknesses. METHODS We searched the MEDLINE database via PubMed using combinations of the following medical subject headings: lung cancer; animal models, mice; cell line, tumor; cell culture, mice; transgenic, mice; SCID, transplantation; heterologous; and genetic engineering. We reviewed the relevant published articles. RESULTS Multiple examples of the three major preclinical models-tumor cell lines, patient-derived xenografts, and genetically engineered mouse models-exist and have been used by investigators worldwide, with more than 15,000 relevant publications. Each model has its strengths and actual or potential weaknesses. In addition, newer forms of these models have been proposed or are in use as potential improvements over the conventional models. CONCLUSIONS A large number and variety of models have been developed and extensively used for the study of all major types of lung cancer. While they remain the cornerstone of preclinical studies, each model has its individual strengths and weaknesses. These must be carefully evaluated and applied to the proposed studies to obtain the maximum usefulness from the models.
Collapse
|
132
|
Adetiba E, Olugbara OO. Improved Classification of Lung Cancer Using Radial Basis Function Neural Network with Affine Transforms of Voss Representation. PLoS One 2015; 10:e0143542. [PMID: 26625358 PMCID: PMC4666594 DOI: 10.1371/journal.pone.0143542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/05/2015] [Indexed: 11/18/2022] Open
Abstract
Lung cancer is one of the diseases responsible for a large number of cancer related death cases worldwide. The recommended standard for screening and early detection of lung cancer is the low dose computed tomography. However, many patients diagnosed die within one year, which makes it essential to find alternative approaches for screening and early detection of lung cancer. We present computational methods that can be implemented in a functional multi-genomic system for classification, screening and early detection of lung cancer victims. Samples of top ten biomarker genes previously reported to have the highest frequency of lung cancer mutations and sequences of normal biomarker genes were respectively collected from the COSMIC and NCBI databases to validate the computational methods. Experiments were performed based on the combinations of Z-curve and tetrahedron affine transforms, Histogram of Oriented Gradient (HOG), Multilayer perceptron and Gaussian Radial Basis Function (RBF) neural networks to obtain an appropriate combination of computational methods to achieve improved classification of lung cancer biomarker genes. Results show that a combination of affine transforms of Voss representation, HOG genomic features and Gaussian RBF neural network perceptibly improves classification accuracy, specificity and sensitivity of lung cancer biomarker genes as well as achieving low mean square error.
Collapse
Affiliation(s)
- Emmanuel Adetiba
- ICT and Society Research Group, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Oludayo O. Olugbara
- ICT and Society Research Group, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
- * E-mail:
| |
Collapse
|
133
|
Hsu A, Han S. Synchronous neuroendocrine tumor and non-small-cell lung cancer in neurofibromatosis type 1. Clin Case Rep 2015; 3:990-6. [PMID: 26734134 PMCID: PMC4693697 DOI: 10.1002/ccr3.416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/15/2015] [Accepted: 09/18/2015] [Indexed: 11/07/2022] Open
Abstract
Neurofibromatosis type 1 is a common cancer predisposing condition. Tumors, particularly gastrointestinal tumors, are commonly associated with NF1 but are not widely known. In addition, the relationship between lung cancer and neurofibromatosis has been controversial until recently with the discovery of oncogenes such as p53.
Collapse
Affiliation(s)
- Andrew Hsu
- Department of Internal Medicine University of Massachusetts Medical School 55 Lake Avenue North Worcester Massachusetts 01655
| | - Samuel Han
- Department of Internal Medicine University of Massachusetts Medical School 55 Lake Avenue North Worcester Massachusetts 01655
| |
Collapse
|
134
|
|
135
|
Tai MC, Kajino T, Nakatochi M, Arima C, Shimada Y, Suzuki M, Miyoshi H, Yatabe Y, Yanagisawa K, Takahashi T. miR-342-3p regulates MYC transcriptional activity via direct repression of E2F1 in human lung cancer. Carcinogenesis 2015; 36:1464-73. [PMID: 26483346 DOI: 10.1093/carcin/bgv152] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/10/2015] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence indicates that altered miRNA expression is crucially involved in lung cancer development, though scant information is available regarding how MYC, an archetypical oncogene, is regulated by miRNAs, especially via a mechanism involving MYC cofactors. In this study, we attempted to identify miRNAs involved in regulation of MYC transcriptional activity in lung cancer. To this end, we utilized an integrative approach with combinatorial usage of miRNA and mRNA expression profile datasets of patient tumor tissues, as well as those of MYC-inducible cell lines in vitro. In addition to miRNAs previously reported to be directly regulated by MYC, including let-7 and miR-17-92, our strategy also helped to identify miR-342-3p as capable of indirectly regulating MYC activity via direct repression of E2F1, a MYC-cooperating molecule. Furthermore, miR-342-3p module activity, which we defined as a gene set reflecting the experimentally substantiated influence of miR-342-3p on mRNA expression, was found to be inversely correlated with MYC activity reflected by MYC module activity in three independent datasets of lung adenocarcinoma patients obtained from the Director's Challenge Consortium of the United States (P = 1.94 × 10(-73)), the National Cancer Center of Japan (P = 9.05 × 10(-34)) and the present study (P = 1.17 × 10(-19)). Our integrative approach appears to be useful to elucidate inter-regulatory relationships between miRNAs and protein coding genes of interest, even those present in patient tumor tissues, which remains a challenge to better understand the pathogenesis of this devastating disease.
Collapse
Affiliation(s)
| | | | - Masahiro Nakatochi
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | | | | | | | - Hiroyuki Miyoshi
- Subteam for Manipulation of Cell Fate, BioResource Center, RIKEN, Tsukuba, Japan and
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | | | | |
Collapse
|
136
|
Abstract
Lung cancer is the leading cause of cancer deaths, with small cell lung cancer (SCLC) representing the most aggressive subtype. Standard treatments have not changed in decades, and the 5-year survival rate has remained <7%. Genomic analyses have identified key driver mutations of SCLC that were subsequently validated in animal models of SCLC. To provide better treatment options, a deeper understanding of the cellular and molecular mechanisms underlying SCLC initiation, progression, metastasis, and acquisition of resistance is required. In this review, we describe the genetic landscape of SCLC, features of the cell of origin, and targeted therapeutic approaches.
Collapse
Affiliation(s)
- Ekaterina A Semenova
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Remco Nagel
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
137
|
Hou HA, Chou WC, Kuo YY, Liu CY, Lin LI, Tseng MH, Chiang YC, Liu MC, Liu CW, Tang JL, Yao M, Li CC, Huang SY, Ko BS, Hsu SC, Chen CY, Lin CT, Wu SJ, Tsay W, Chen YC, Tien HF. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J 2015; 5:e331. [PMID: 26230955 PMCID: PMC4526785 DOI: 10.1038/bcj.2015.59] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 12/23/2022] Open
Abstract
The TP53 mutation is frequently detected in acute myeloid leukemia (AML) patients with complex karyotype (CK), but the stability of this mutation during the clinical course remains unclear. In this study, TP53 mutations were identified in 7% of 500 patients with de novo AML and 58.8% of patients with CK. TP53 mutations were closely associated with older age, lower white blood cell (WBC) and platelet counts, FAB M6 subtype, unfavorable-risk cytogenetics and CK, but negatively associated with NPM1 mutation, FLT3/ITD and DNMT3A mutation. Multivariate analysis demonstrated that TP53 mutation was an independent poor prognostic factor for overall survival and disease-free survival among the total cohort and the subgroup of patients with CK. A scoring system incorporating TP53 mutation and nine other prognostic factors, including age, WBC counts, cytogenetics and gene mutations, into survival analysis proved to be very useful to stratify AML patients. Sequential study of 420 samples showed that TP53 mutations were stable during AML evolution, whereas the mutation was acquired only in 1 of the 126 TP53 wild-type patients when therapy-related AML originated from different clone emerged. In conclusion, TP53 mutations are associated with distinct clinic-biological features and poor prognosis in de novo AML patients and are rather stable during disease progression.
Collapse
Affiliation(s)
- H-A Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - W-C Chou
- 1] Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan [2] Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Y-Y Kuo
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C-Y Liu
- Biostatistics Consulting Laboratory, Department of Nursing, National Taipei College of Nursing, Taipei, Taiwan
| | - L-I Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - M-H Tseng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Y-C Chiang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - M-C Liu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - C-W Liu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - J-L Tang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - M Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - C-C Li
- 1] Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan [2] Tai-Chang Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - S-Y Huang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - B-S Ko
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - S-C Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - C-Y Chen
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - C-T Lin
- 1] Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan [2] Tai-Chang Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - S-J Wu
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - W Tsay
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Y-C Chen
- 1] Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan [2] Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - H-F Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
138
|
George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, Leenders F, Lu X, Fernández-Cuesta L, Bosco G, Müller C, Dahmen I, Jahchan NS, Park KS, Yang D, Karnezis AN, Vaka D, Torres A, Wang MS, Korbel JO, Menon R, Chun SM, Kim D, Wilkerson M, Hayes N, Engelmann D, Pützer B, Bos M, Michels S, Vlasic I, Seidel D, Pinther B, Schaub P, Becker C, Altmüller J, Yokota J, Kohno T, Iwakawa R, Tsuta K, Noguchi M, Muley T, Hoffmann H, Schnabel PA, Petersen I, Chen Y, Soltermann A, Tischler V, Choi CM, Kim YH, Massion PP, Zou Y, Jovanovic D, Kontic M, Wright GM, Russell PA, Solomon B, Koch I, Lindner M, Muscarella LA, la Torre A, Field JK, Jakopovic M, Knezevic J, Castaños-Vélez E, Roz L, Pastorino U, Brustugun OT, Lund-Iversen M, Thunnissen E, Köhler J, Schuler M, Botling J, Sandelin M, Sanchez-Cespedes M, Salvesen HB, Achter V, Lang U, Bogus M, Schneider PM, Zander T, Ansén S, Hallek M, Wolf J, Vingron M, Yatabe Y, Travis WD, Nürnberg P, Reinhardt C, Perner S, Heukamp L, Büttner R, Haas SA, Brambilla E, Peifer M, Sage J, Thomas RK. Comprehensive genomic profiles of small cell lung cancer. Nature 2015; 524:47-53. [PMID: 26168399 DOI: 10.1038/nature14664] [Citation(s) in RCA: 1645] [Impact Index Per Article: 164.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023]
Abstract
We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.
Collapse
Affiliation(s)
- Julie George
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Jing Shan Lim
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Se Jin Jang
- Department of Pathology and Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Yupeng Cun
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Luka Ozretić
- Department of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University. 222 Wangsimniro, Seongdong-gu, Seoul 133-791, Korea
| | - Frauke Leenders
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Xin Lu
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Lynnette Fernández-Cuesta
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Graziella Bosco
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Christian Müller
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ilona Dahmen
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Nadine S Jahchan
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Kwon-Sik Park
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Dian Yang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Anthony N Karnezis
- Vancouver General Hospital, Terry Fox laboratory, Vancouver, British Columbia V5Z 1L3, Canada
| | - Dedeepya Vaka
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Angela Torres
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Maia Segura Wang
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Roopika Menon
- Institute of Pathology, Center of Integrated Oncology Cologne-Bonn, University Hospital of Bonn, 53127 Bonn, Germany
| | - Sung-Min Chun
- Department of Pathology and Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Deokhoon Kim
- Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Matt Wilkerson
- Department of Genetics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, North Carolina 27599-7295, USA
| | - Neil Hayes
- UNC Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, North Carolina 27599-7295, USA
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Marc Bos
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Sebastian Michels
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany
| | - Ignacija Vlasic
- Department of Internal Medicine, University Hospital of Cologne, 50931 Cologne, Germany
| | - Danila Seidel
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Berit Pinther
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Philipp Schaub
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Christian Becker
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- 1] Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany. [2] Institute of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
| | - Jun Yokota
- 1] Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 1040045, Japan. [2] Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona 08916, Spain
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 1040045, Japan
| | - Reika Iwakawa
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 1040045, Japan
| | - Koji Tsuta
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital Chuo-ku, Tokyo 1040045, Japan
| | - Masayuki Noguchi
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Thomas Muley
- 1] Thoraxklinik at University Hospital Heidelberg, Amalienstrasse 5, 69126 Heidelberg, Germany. [2] Translational Lung Research Center Heidelberg (TLRC-H), Member of German Center for Lung Research (DZL), Amalienstrasse 5, 69126 Heidelberg, Germany
| | - Hans Hoffmann
- Thoraxklinik at University Hospital Heidelberg, Amalienstrasse 5, 69126 Heidelberg, Germany
| | - Philipp A Schnabel
- 1] Translational Lung Research Center Heidelberg (TLRC-H), Member of German Center for Lung Research (DZL), Amalienstrasse 5, 69126 Heidelberg, Germany. [2] Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 220, 69120 Heidelberg, Germany
| | - Iver Petersen
- Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yuan Chen
- Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Alex Soltermann
- Institute of Surgical Pathology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Verena Tischler
- Institute of Surgical Pathology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Chang-min Choi
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Yong-Hee Kim
- Department of Thoracic and Cardiovascular Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Pierre P Massion
- Thoracic Program, Vanderbilt-Ingram Cancer Center PRB 640, 2220 Pierce Avenue, Nashville, Tennessee 37232, USA
| | - Yong Zou
- Thoracic Program, Vanderbilt-Ingram Cancer Center PRB 640, 2220 Pierce Avenue, Nashville, Tennessee 37232, USA
| | - Dragana Jovanovic
- University Hospital of Pulmonology, Clinical Center of Serbia, Medical School, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Kontic
- University Hospital of Pulmonology, Clinical Center of Serbia, Medical School, University of Belgrade, 11000 Belgrade, Serbia
| | - Gavin M Wright
- Department of Surgery, St. Vincent's Hospital, Peter MacCallum Cancer Centre, 3065 Melbourne, Victoria, Australia
| | - Prudence A Russell
- Department of Pathology, St. Vincent's Hospital, Peter MacCallum Cancer Centre, 3065 Melbourne, Victoria, Australia
| | - Benjamin Solomon
- Department of Haematology and Medical Oncology, Peter MacCallum Cancer Centre, 3065 Melbourne, Victoria, Australia
| | - Ina Koch
- Asklepios Biobank für Lungenerkrankungen, Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research (DZL), Asklepios Fachkliniken München-Gauting 82131, Germany
| | - Michael Lindner
- Asklepios Biobank für Lungenerkrankungen, Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research (DZL), Asklepios Fachkliniken München-Gauting 82131, Germany
| | - Lucia A Muscarella
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni, Rotondo, Italy
| | - Annamaria la Torre
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni, Rotondo, Italy
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool Cancer Research Centre, 200 London Road, L69 3GA Liverpool, UK
| | - Marko Jakopovic
- University of Zagreb, School of Medicine, Department for Respiratory Diseases Jordanovac, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Jelena Knezevic
- Laboratory for Translational Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | | | - Luca Roz
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS - Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Odd-Terje Brustugun
- 1] Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0424 Oslo, Norway. [2] Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Marius Lund-Iversen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Jens Köhler
- 1] West German Cancer Center, Department of Medical Oncology, University Hospital Essen, 45147 Essen, Germany. [2] German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Martin Schuler
- 1] West German Cancer Center, Department of Medical Oncology, University Hospital Essen, 45147 Essen, Germany. [2] German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Johan Botling
- Departments of Immunology, Genetics and Pathology, and Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, 75185 Uppsala, Sweden
| | - Martin Sandelin
- Departments of Immunology, Genetics and Pathology, and Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, 75185 Uppsala, Sweden
| | - Montserrat Sanchez-Cespedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Helga B Salvesen
- 1] Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, N-5058 Bergen, Norway. [2] Department of Gynecology and Obstetrics, Haukeland University Hospital, N-5058 Bergen, Norway
| | - Viktor Achter
- Computing Center, University of Cologne, 50931 Cologne, Germany
| | - Ulrich Lang
- 1] Computing Center, University of Cologne, 50931 Cologne, Germany. [2] Department of Informatics, University of Cologne, 50931 Cologne, Germany
| | - Magdalena Bogus
- Institute of Legal Medicine, University of Cologne, 50823 Cologne, Germany
| | - Peter M Schneider
- Institute of Legal Medicine, University of Cologne, 50823 Cologne, Germany
| | - Thomas Zander
- Gastrointestinal Cancer Group Cologne, Center of Integrated Oncology Cologne-Bonn, Department I for Internal Medicine, University Hospital of Cologne, 50937 Cologne, Germany
| | - Sascha Ansén
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany
| | - Michael Hallek
- 1] Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany. [2] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jürgen Wolf
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany
| | - Martin Vingron
- Computational Molecular Biology Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, 464-8681 Nagoya, Japan
| | - William D Travis
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | - Peter Nürnberg
- 1] Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany. [2] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany. [3] Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Christian Reinhardt
- Department of Internal Medicine, University Hospital of Cologne, 50931 Cologne, Germany
| | - Sven Perner
- Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Korea
| | - Lukas Heukamp
- Department of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Reinhard Büttner
- Department of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Stefan A Haas
- Computational Molecular Biology Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Elisabeth Brambilla
- Department of Pathology, CHU Grenoble INSERM U823, University Joseph Fourier, Institute Albert Bonniot 38043, CS10217 Grenoble, France
| | - Martin Peifer
- 1] Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany. [2] Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California 94305, USA
| | - Roman K Thomas
- 1] Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, 50931 Cologne, Germany. [2] Department of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| |
Collapse
|
139
|
Mutations of the functional ARH1 allele in tumors from ARH1 heterozygous mice and cells affect ARH1 catalytic activity, cell proliferation and tumorigenesis. Oncogenesis 2015; 4:e151. [PMID: 26029825 PMCID: PMC4753525 DOI: 10.1038/oncsis.2015.5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/11/2022] Open
Abstract
ADP-ribosylation results from transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD) to an acceptor with ADP-ribose-acceptor content determined by the activities of ADP-ribosyltransferases, which modify the acceptor, and ADP-ribose-acceptor hydrolase (ARH), which cleave the ADP-ribose-acceptor bond. ARH1 was discovered as an ADP-ribose(arginine)protein hydrolase. Previously, we showed that ARH1-knockout and ARH1 heterozygous mice spontaneously developed tumors. Further, ARH1-knockout and ARH1 heterozygous mouse embryonic fibroblasts (MEFs) produced tumors when injected into nude mice. In tumors arising in ARH1 heterozygous mice and MEFs, we found both loss of heterozygosity (LOH) of the ARH1 gene and ARH1 gene mutations. In the present report, we found that these mutant ARH1 genes encode proteins with reduced ARH1 enzymatic activity. Moreover, MEFs transformed with ARH1 mutant genes exhibiting different levels of ARH1 activity showed altered rates of proliferation, anchorage-independent colony growth in soft agar, and tumorigenesis in nude mice. MEFs transformed with the wild-type (WT) gene, but expressing low levels of hydrolase activity were also tumorigenic. However, transformation with the WT gene was less likely to yield tumors than transformation with a mutant gene exhibiting similar hydrolase activity. Thus, control of protein-ADP-ribosylation by ARH1 is critical for tumorigenesis. In the human cancer database, LOH and mutations of the ARH1 gene were observed. Further, ARH1 gene mutations were located in exons 3 and 4, comparable to exons 2 and 3 of the murine ARH1 gene, which comprise the catalytic site. Thus, human ARH1 gene mutations similar to their murine counterparts may be involved in human cancers.
Collapse
|
140
|
Soussi T, Wiman KG. TP53: an oncogene in disguise. Cell Death Differ 2015; 22:1239-49. [PMID: 26024390 PMCID: PMC4495363 DOI: 10.1038/cdd.2015.53] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/11/2022] Open
Abstract
The standard classification used to define the various cancer genes confines tumor protein p53 (TP53) to the role of a tumor suppressor gene. However, it is now an indisputable fact that many p53 mutants act as oncogenic proteins. This statement is based on multiple arguments including the mutation signature of the TP53 gene in human cancer, the various gains-of-function (GOFs) of the different p53 mutants and the heterogeneous phenotypes developed by knock-in mouse strains modeling several human TP53 mutations. In this review, we will shatter the classical and traditional image of tumor protein p53 (TP53) as a tumor suppressor gene by emphasizing its multiple oncogenic properties that make it a potential therapeutic target that should not be underestimated. Analysis of the data generated by the various cancer genome projects highlights the high frequency of TP53 mutations and reveals that several p53 hotspot mutants are the most common oncoprotein variants expressed in several types of tumors. The use of Muller's classical definition of mutations based on quantitative and qualitative consequences on the protein product, such as ‘amorph', ‘hypomorph', ‘hypermorph' ‘neomorph' or ‘antimorph', allows a more meaningful assessment of the consequences of cancer gene modifications, their potential clinical significance, and clearly demonstrates that the TP53 gene is an atypical cancer gene.
Collapse
Affiliation(s)
- T Soussi
- 1] Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska (CCK) R8:04, Stockholm SE-171 76, Sweden [2] Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France [3] INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France [4] Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - K G Wiman
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska (CCK) R8:04, Stockholm SE-171 76, Sweden
| |
Collapse
|
141
|
Hajdu SI, Vadmal M, Tang P. A note from history: Landmarks in history of cancer, part 7. Cancer 2015; 121:2480-513. [PMID: 25873516 DOI: 10.1002/cncr.29365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
Abstract
In the 2 and half decades reviewed (1970-1995), research established that chromosomal translocation, deletion, and DNA amplification are prerequisites to cancerogenesis and that oncogenes, tumor-suppressor genes, growth factors, and cytokines play crucial roles in the pathomechanism of cancer. Human papillomavirus, human immunodeficiency virus, herpes virus, and hepatitis B virus were identified as cancer-causing viruses. Several laboratory tests were developed for the detection of primary and recurrent cancers, and cancer prevention by screening methods was popularized. Sonography, computerized tomography, magnetic resonance imaging, positron emission tomography, excision of sentinel lymph nodes, and immunohistochemical techniques became routine procedures. Clinicopathologic staging and classification of tumors were standardized. Limited surgery, adjuvant and neoadjuvant chemoradiation, and the therapeutic use of monoclonal antibodies, tumor vaccines, and targeted chemotherapy became routine practice. The decline in cancer incidence and mortality demonstrated that cancer prevention and advancement in oncology are pivotal to success in the crusade against cancer. Above all, it was clearly established that the care of patients with cancer can be accomplished best in a multidisciplinary setting involving surgical oncologists, radiologists, radiation therapists, medical oncologists, surgical pathologists, and laboratory scientists. In conclusion, the 25 years from 1970 and 1995 are the high-water mark in clinical oncology, and this is the period when oncology turned from art to science.
Collapse
Affiliation(s)
| | - Manjunath Vadmal
- Department of Dermatology, Los Angeles County-University of Southern California Medical Center, Los Angeles, California
| | - Ping Tang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
142
|
Syljuåsen RG, Hasvold G, Hauge S, Helland Å. Targeting lung cancer through inhibition of checkpoint kinases. Front Genet 2015; 6:70. [PMID: 25774168 PMCID: PMC4343027 DOI: 10.3389/fgene.2015.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/10/2015] [Indexed: 12/28/2022] Open
Abstract
Inhibitors of checkpoint kinases ATR, Chk1, and Wee1 are currently being tested in preclinical and clinical trials. Here, we review the basic principles behind the use of such inhibitors as anticancer agents, and particularly discuss their potential for treatment of lung cancer. As lung cancer is one of the most deadly cancers, new treatment strategies are highly needed. We discuss how checkpoint kinase inhibition in principle can lead to selective killing of lung cancer cells while sparing the surrounding normal tissues. Several features of lung cancer may potentially be exploited for targeting through inhibition of checkpoint kinases, including mutated p53, low ERCC1 levels, amplified Myc, tumor hypoxia and presence of lung cancer stem cells. Synergistic effects have also been reported between inhibitors of ATR/Chk1/Wee1 and conventional lung cancer treatments, such as gemcitabine, cisplatin, or radiation. Altogether, inhibitors of ATR, Chk1, and Wee1 are emerging as new cancer treatment agents, likely to be useful in lung cancer treatment. However, as lung tumors are very diverse, the inhibitors are unlikely to be effective in all patients, and more work is needed to determine how such inhibitors can be utilized in the most optimal ways.
Collapse
Affiliation(s)
- Randi G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital , Oslo, Norway
| | - Grete Hasvold
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital , Oslo, Norway
| | - Sissel Hauge
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital , Oslo, Norway
| | - Åslaug Helland
- Department of Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital , Oslo, Norway ; Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital , Oslo, Norway
| |
Collapse
|
143
|
Yang HC, Chang LC, Huggins RM, Chen CH, Mullighan CG. LOHAS: loss-of-heterozygosity analysis suite. Genet Epidemiol 2015; 35:247-60. [PMID: 21312262 DOI: 10.1002/gepi.20573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 11/10/2010] [Accepted: 01/10/2011] [Indexed: 12/13/2022]
Abstract
Detection of loss of heterozygosity (LOH) plays an important role in genetic, genomic and cancer research. We develop computational methods to estimate the proportion of homozygous SNP calls, identify samples with structural alterations and/or unusual genotypic patterns, cluster samples with close LOH structures and map the genomic segments bearing LOH by analyzing data of genome-wide SNP arrays or customized SNP arrays. In addition to cancer genetics/genomics, we also apply the methods to study long contiguous stretches of homozygosity (LCSH) in general populations. The LCSH analysis aids in the identification of samples with complex LCSH patterns indicative of nonrandom mating and/or meiotic recombination cold spots, separation of samples with different genetic backgrounds and sex, and mapping of regions of LCSH. Affymetrix Human Mapping 500K Set SNP data from an acute lymphoblastic leukemia study containing 304 cancer patients and 50 normal controls and from the HapMap Project containing 30 African trios, 30 Caucasian trios and 90 independent Asian samples were analyzed. We identified common gene regions of LOH, e.g., ETV6 and CDKN1B, and identified frequent regions of LCSH, e.g., the region that encompasses the centromeric gene desert region of chromosome 16. Unsupervised analysis separated cancer subtypes and ethnic subpopulations by patterns of LOH/LCSH. Simulation studies considering LOH width, effect size and heterozygous interference fraction were performed, and the results show that the proposed LOH association test has good test power and controls type 1 error well. The developed algorithms are packaged into LOHAS written in R and R GUI.
Collapse
Affiliation(s)
- Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Nankang, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
144
|
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. microRNAs (miRNAs) have been established as players with a relevant role in lung cancer development, epithelial-mesenchymal transition and response to therapy. Additionally, in the last decade, miRNAs, measured in resected tumor samples or in fine-needle aspirate samples have emerged as compelling biomarkers for tumor diagnosis, prognosis, and prediction of response to treatment, due to the ease of their detection and in their extreme specificity. Moreover, miRNAs present in sputum, in plasma, in serum or in whole-blood have increasingly been explored in the last 5 years as less invasive biomarkers for the early detection of cancers.
Collapse
|
145
|
Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat 2014; 35:672-88. [PMID: 24665023 DOI: 10.1002/humu.22552] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/04/2014] [Indexed: 12/18/2022]
Abstract
More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure-function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high-throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor-suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations-targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers.
Collapse
Affiliation(s)
- Bernard Leroy
- Université Pierre et Marie Curie-Paris 6, Paris, 75005, France
| | | | | |
Collapse
|
146
|
Oral squamous cell carcinoma associated with proliferative verrucous leukoplakia compared with conventional squamous cell carcinoma--a clinical, histologic and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 119:318-25. [PMID: 25547823 DOI: 10.1016/j.oooo.2014.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/13/2014] [Accepted: 10/29/2014] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Proliferative verrucous leukoplakia (PVL), a potentially malignant disorder, often undergoes malignant transformation to oral squamous cell carcinoma. The aim of our study was to document and compare the histologic, immunohistochemical, and clinical features and the survival rates of carcinoma arising in patients with PVL (p-scca) with conventional squamous cell carcinoma (c-scca) in order to determine if p-scca should be categorized as a separate clinical entity. MATERIALS AND METHODS A retrospective review of 11 patients with PVL, 38 with p-scca tumors and 49 with c-scca tumors: buccal mucosa (n = 28) and gingiva or palate (n = 21). Immunohistochemistry was performed by using antibodies directed against p16, p53, and ki67. RESULTS P-scca had lower clinical stage (P = .0001), smaller tumor size (P = .0033), no lymph node metastasis (P = .0002) or distant metastasis (P = .05), and better short term (P = .03), but not long term (P = .12) survival. Microscopically, p-scca tumor thickness was significantly less (P = .0001). P-53 overexpression was more common in p-scca (P = .0043) but not ki67 or p16 overexpression. CONCLUSIONS P-scca, compared with c-scca, presented with significantly better prognostic factors and short-term survival rates and longer duration of disease. Our results suggest that p-scca may represent a distinct entity, which may have practical implications when deciding on treatment. Further studies on a larger cohort of patients are recommended.
Collapse
|
147
|
Detection of point mutations of K-ras oncogene and p53 tumor-suppressor gene in sputum samples. Methods Mol Biol 2014; 1105:325-44. [PMID: 24623240 DOI: 10.1007/978-1-62703-739-6_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mutations in the p53 tumor-suppressor gene and K-ras oncogene have been frequently found in sputum and bronchoalveolar lavage samples of lung cancer patients and also in those of patients prior to presenting clinical symptoms of lung cancer, suggesting that they may provide useful biomarkers for early lung cancer diagnosis. However, the detection of these mutations has been complicated by the fact that they often occur in only a small fraction of epithelial cells among sputum cells, and, in the case of the p53 gene, inactivating mutations may occur at many codons. This chapter describes methods to identify p53 and K-ras mutations present in low fractions of epithelial cells among the excess of other cell types in sputum samples from lung cancer patients.
Collapse
|
148
|
Yan D, Zheng X, Tu L, Jia J, Li Q, Cheng L, Wang X. Knockdown of Merm1/Wbscr22 attenuates sensitivity of H460 non-small cell lung cancer cells to SN-38 and 5-FU without alteration to p53 expression levels. Mol Med Rep 2014; 11:295-302. [PMID: 25352209 DOI: 10.3892/mmr.2014.2764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 07/21/2014] [Indexed: 11/06/2022] Open
Abstract
Merm1/Wbscr22 is a novel metastasis promoter that has been shown to be involved in tumor metastasis, viability and apoptosis. To the best of our knowledge, there are currently no studies suggesting the possible correlation between the expression of Merm1/Wbscr22 in tumor cells and chemosensitivity to antitumor agents. In the present study, two human non-small cell lung cancer cell lines, H1299 and H460, were used to investigate whether Merm1/Wbscr22 affects chemosensitivity to antitumor agents, including cisplatin (CDDP), doxorubicin (ADM), paclitaxel (PTX), mitomycin (MMC), 7-Ethyl-10-hydroxycamptothecin (SN-38; the active metabolite of camptothecin) and 5-fluorouracil (5-FU). Merm1/Wbscr22 knockdown cell lines (H1299-shRNA and H460-shRNA) and negative control cell lines (H1299-NC and H460-NC) were established by stable transfection, and the efficiency of Merm1/Wbscr22 knockdown was confirmed by western blotting, immunofluorescence microscopy and quantitative polymerase chain reaction. The results demonstrated that shRNA-mediated knockdown of Merm1/Wbscr22 did not affect cell proliferation in vitro and in vivo. The H460 cells harboring wild type p53 were markedly more sensitive to all six antitumor agents as compared with the p53-null H1299 cells. Downregulation of Merm1/Wbscr22 did not affect H1299 sensitivity to any of the six antitumor agents, whereas attenuated H460 sensitivity to SN-38 and 5-FU, without significant alteration in p53 at both mRNA and protein levels, was identified. The reduced H460 sensitivity to SN-38 was further confirmed in vivo. SN-38 demonstrated significant tumor growth inhibitory activity in both H460 and H460‑NC tumor xenograft models, but only marginally suppressed the H460-shRNA xenograft tumor growth. Furthermore, CDDP (4, 10, 15 µg/ml)-resistant human non-small lung cancer cells A549 (A549-CDDPr-4, 10, 15) expressed significant amounts of Merm1/Wbscr22 protein, as compared with the parental A549 cells. In conclusion, shRNA-mediated knockdown of Merm1/Wbscr22 attenuates H460 sensitivity to SN-38 and 5-FU, suggesting Merm1/Wbscr22 is involved in chemosensitivity to SN-38 and 5-FU in H460 cells. No direct correlation between the p53 expression level and altered chemosensitivity was identified.
Collapse
Affiliation(s)
- Dongmei Yan
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Xiaoliang Zheng
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Linglan Tu
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Jing Jia
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Qin Li
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Liyan Cheng
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Xiaoju Wang
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
149
|
Vescovo VD, Grasso M, Barbareschi M, Denti MA. MicroRNAs as lung cancer biomarkers. World J Clin Oncol 2014; 5:604-620. [PMID: 25302165 PMCID: PMC4129526 DOI: 10.5306/wjco.v5.i4.604] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/28/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Its high mortality is due to the poor prognosis of the disease caused by a late disease presentation, tumor heterogeneities within histological subtypes, and the relatively limited understanding of tumor biology. Importantly, lung cancer histological subgroups respond differently to some chemotherapeutic substances and side effects of some therapies appear to vary between subgroups. Biomarkers able to stratify for the subtype of lung cancer, prognosticate the course of disease, or predict the response to treatment are in high demand. In the last decade, microRNAs (miRNAs), measured in resected tumor samples or in fine needle aspirate samples have emerged as biomarkers for tumor diagnosis, prognosis and prediction of response to treatment, due to the ease of their detection and in their extreme specificity. Moreover, miRNAs present in sputum, in plasma, in serum or in whole blood have increasingly been explored in the last five years as less invasive biomarkers for the early detection of cancers. In this review we cover the increasing amounts of data that have accumulated in the last ten years on the use of miRNAs as lung cancer biomarkers.
Collapse
|
150
|
Brenner S, Klameth L, Riha J, Schölm M, Hamilton G, Bajna E, Ausch C, Reiner A, Jäger W, Thalhammer T, Buxhofer-Ausch V. Specific expression of OATPs in primary small cell lung cancer (SCLC) cells as novel biomarkers for diagnosis and therapy. Cancer Lett 2014; 356:517-24. [PMID: 25301452 DOI: 10.1016/j.canlet.2014.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/16/2014] [Accepted: 09/25/2014] [Indexed: 12/27/2022]
Abstract
The expression of organic anion transporting polypeptides (OATPs) was elucidated in cell lines from small cell lung cancer (SCLC) and lung carcinoids and in paraffin-embedded samples from primary and metastatic SCLCs. We found a strong relationship between OATP expression and the origin of the cells, as cells from primary or metastatic SCLC and carcinoid tumors differ with respect to OATP levels. OATP4A1 is most prominent in non-malignant lung tissue and in all SCLC and carcinoid cell lines and tissues, OATP5A1 is most prominent in metastatic cells, and OATP6A1 is most prominent in SCLC cell lines and tumors. Treatment with topotecan, etoposide and cisplatin caused significant changes in the expression patterns of OATP4A1, OATP5A1, OATP6A1, chromogranin and synaptophysin. This effect was also evident in GLC-14 cells from an untreated SCLC patient before chemotherapy compared to GLC-16/-19 chemoresistant tumor cells from this patient after therapy. mRNA expression of OATP4A1, 5A1 and 6A1 correlates with protein expression as confirmed by quantitative microscopic image analysis and Western blots. OATPs might be novel biomarkers for tumor progression and the development of metastasis in SCLC patients.
Collapse
Affiliation(s)
- Stefan Brenner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Lukas Klameth
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria; Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria
| | - Juliane Riha
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Madeleine Schölm
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria
| | - Erika Bajna
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christoph Ausch
- Department of Surgery, Donauspital, Vienna, Austria; Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria
| | - Angelika Reiner
- Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria; Department of Pathology, Donauspital, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| | - Veronika Buxhofer-Ausch
- Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria; Department of Internal Medicine 2, Donauspital, Vienna, Austria
| |
Collapse
|