101
|
Sternisha SM, Whittington AC, Martinez Fiesco JA, Porter C, McCray MM, Logan T, Olivieri C, Veglia G, Steinbach PJ, Miller BG. Nanosecond-Timescale Dynamics and Conformational Heterogeneity in Human GCK Regulation and Disease. Biophys J 2020; 118:1109-1118. [PMID: 32023434 DOI: 10.1016/j.bpj.2019.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022] Open
Abstract
Human glucokinase (GCK) is the prototypic example of an emerging class of proteins with allosteric-like behavior that originates from intrinsic polypeptide dynamics. High-resolution NMR investigations of GCK have elucidated millisecond-timescale dynamics underlying allostery. In contrast, faster motions have remained underexplored, hindering the development of a comprehensive model of cooperativity. Here, we map nanosecond-timescale dynamics and structural heterogeneity in GCK using a combination of unnatural amino acid incorporation, time-resolved fluorescence, and 19F nuclear magnetic resonance spectroscopy. We find that a probe inserted within the enzyme's intrinsically disordered loop samples multiple conformations in the unliganded state. Glucose binding and disease-associated mutations that suppress cooperativity alter the number and/or relative population of these states. Together, the nanosecond kinetics characterized here and the millisecond motions known to be essential for cooperativity provide a dynamical framework with which we address the origins of cooperativity and the mechanism of activated, hyperinsulinemia-associated, noncooperative variants.
Collapse
Affiliation(s)
- Shawn M Sternisha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida
| | - A Carl Whittington
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida; Department of Biological Science, Florida State University, Tallahassee, Florida
| | | | - Carol Porter
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida
| | - Malcolm M McCray
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida
| | - Timothy Logan
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida; Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Peter J Steinbach
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, Maryland.
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida.
| |
Collapse
|
102
|
Allert MJ, Hellinga HW. Describing Complex Structure-Function Relationships in Biomolecules at Equilibrium. J Mol Biol 2020; 432:1926-1951. [PMID: 31940471 DOI: 10.1016/j.jmb.2019.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022]
Abstract
One of the great ambitions of structural biology is to describe structure-function relationships quantitatively. Statistical thermodynamics is a powerful, general tool for computing the behavior of biological macromolecules at equilibrium because it establishes a direct link between structure and function. Complex behavior emerges as equilibria of multiple reactions are coupled. Analytical treatment of linked equilibria scales poorly with increasing numbers of reactions and states as the algebraic constructs rapidly become unwieldy. We therefore developed a generalizable, but straightforward computational method to handle arbitrarily complex systems. To demonstrate this approach, we collected a multidimensional fluorescence landscape of an engineered fluorescent glucose biosensor and showed that its features could be modeled with ten intricately linked ligand-binding and conformational exchange reactions. This protein represents a minimalist model of sufficient complexity to encompass fundamental biomolecular structure-function relationships: two-state and multistate conformational ensembles, conformational hierarchies, osmolytes, coupling between different binding sites and coupling between ligand binding and conformational change. The successful fit of this complex, multifaceted system demonstrates generality of the method.
Collapse
Affiliation(s)
- Malin J Allert
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, NC, 27710, USA
| | - Homme W Hellinga
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, NC, 27710, USA.
| |
Collapse
|
103
|
Wang A, Zhang D, Li Y, Zhang Z, Li G. Large-Scale Biomolecular Conformational Transitions Explored by a Combined Elastic Network Model and Enhanced Sampling Molecular Dynamics. J Phys Chem Lett 2020; 11:325-332. [PMID: 31867970 DOI: 10.1021/acs.jpclett.9b03399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomolecules often undergo large-scale conformational transitions when carrying out their functions. However, it is still challenging for conventional molecular dynamics simulations to provide adequate structural dynamics information to interpret associated mechanisms. Here, we present a combined elastic network model and enhanced sampling-based strategy (iterANM-IaMD) by adopting iterANM to construct initial conformation space and enhanced sampling IaMD to explore the free energy landscape along specific large-scale conformational transitions. We applied this strategy to three functionally and structurally distinct proteins (adenylate kinase, calmodulin, and p38α kinase), which undergo striking conformational change upon ligand binding. The simulation results for both free and ligand-bound proteins show qualitative and quantitative agreement with existing studies, suggesting iterANM-IaMD as an accurate and efficient tool to investigate structural dynamics involved in complicated biological processes. Our work also provides insights into the relationship between the dynamics and functionality of biomolecules.
Collapse
Affiliation(s)
- Anhui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Dinglin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
104
|
Smith CA, Mazur A, Rout AK, Becker S, Lee D, de Groot BL, Griesinger C. Enhancing NMR derived ensembles with kinetics on multiple timescales. JOURNAL OF BIOMOLECULAR NMR 2020; 74:27-43. [PMID: 31838619 PMCID: PMC7015964 DOI: 10.1007/s10858-019-00288-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/11/2019] [Indexed: 05/14/2023]
Abstract
Nuclear magnetic resonance (NMR) has the unique advantage of elucidating the structure and dynamics of biomolecules in solution at physiological temperatures, where they are in constant movement on timescales from picoseconds to milliseconds. Such motions have been shown to be critical for enzyme catalysis, allosteric regulation, and molecular recognition. With NMR being particularly sensitive to these timescales, detailed information about the kinetics can be acquired. However, nearly all methods of NMR-based biomolecular structure determination neglect kinetics, which introduces a large approximation to the underlying physics, limiting both structural resolution and the ability to accurately determine molecular flexibility. Here we present the Kinetic Ensemble approach that uses a hierarchy of interconversion rates between a set of ensemble members to rigorously calculate Nuclear Overhauser Effect (NOE) intensities. It can be used to simultaneously refine both temporal and structural coordinates. By generalizing ideas from the extended model free approach, the method can analyze the amplitudes and kinetics of motions anywhere along the backbone or side chains. Furthermore, analysis of a large set of crystal structures suggests that NOE data contains a surprising amount of high-resolution information that is better modeled using our approach. The Kinetic Ensemble approach provides the means to unify numerous types of experiments under a single quantitative framework and more fully characterize and exploit kinetically distinct protein states. While we apply the approach here to the protein ubiquitin and cross validate it with previously derived datasets, the approach can be applied to any protein for which NOE data is available.
Collapse
Affiliation(s)
- Colin A Smith
- Department for Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
- Department of Chemistry, Wesleyan University, Middletown, USA.
| | - Adam Mazur
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Ashok K Rout
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Donghan Lee
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA.
| | - Bert L de Groot
- Department for Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Christian Griesinger
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
105
|
Dong M, Lauro ML, Koblish TJ, Bahnson BJ. Conformational sampling and kinetics changes across a non-Arrhenius break point in the enzyme thermolysin. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:014101. [PMID: 32095489 PMCID: PMC7021514 DOI: 10.1063/1.5130582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Numerous studies have suggested a significant role that protein dynamics play in optimizing enzyme catalysis, and changes in conformational sampling offer a window to explore this role. Thermolysin from Bacillus thermoproteolyticus rokko, which is a heat-stable zinc metalloproteinase, serves here as a model system to study changes of protein function and conformational sampling across a temperature range of 16-36 °C. The temperature dependence of kinetics of thermolysin showed a biphasic transition at 26 °C that points to potential conformational and dynamic differences across this temperature. The non-Arrhenius behavior observed resembled results from previous studies of a thermophilic alcohol dehydrogenase enzyme, which also indicated a biphasic transition at ambient temperatures. To explore the non-Arrhenius behavior of thermolysin, room temperature crystallography was applied to characterize structural changes in a temperature range across the biphasic transition temperature. The alternate conformation of side chain fitting to electron density of a group of residues showed a higher variability in the temperature range from 26 to 29 °C, which indicated a change in conformational sampling that correlated with the non-Arrhenius break point.
Collapse
Affiliation(s)
- Ming Dong
- Department of Chemistry, North Carolina A&T State University, Greensboro, North Carolina 27411, USA
| | - Mackenzie L. Lauro
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Timothy J. Koblish
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Brian J. Bahnson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
106
|
Zsolyomi F, Ambrus V, Fuxreiter M. Patterns of Dynamics Comprise a Conserved Evolutionary Trait. J Mol Biol 2019; 432:497-507. [PMID: 31783068 DOI: 10.1016/j.jmb.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022]
Abstract
The importance of protein dynamics in function may suggest an evolutionary selection on large-scale protein motions. Here we systematically studied the dynamic characteristics in 2221 protein domains (58477 sequences) of the Pfam database. We defined the patterns of dynamics (PODs) based on the estimated NMR order parameters and the predicted degree of disorder, and found a significant correlation between them in families of both structured and disordered protein domains. We demonstrate that conservation of dynamic patterns frequently exceeds conservation of sequence and is comparable to the patterns of hydropathy and nonspecific interaction potential. Similarity of dynamic patterns is weakly correlated to structure similarity and to the degree of disorder. We illustrate that POD alignments could be applied to sequentially divergent or intrinsically disordered regions. We propose that patterns of dynamics comprise a conserved evolutionary trait, which could be used to infer evolutionary relationships as an alternative to sequence and structure.
Collapse
Affiliation(s)
- F Zsolyomi
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary
| | - V Ambrus
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary
| | - M Fuxreiter
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary.
| |
Collapse
|
107
|
Exploring Protein Structures by DNP-Enhanced Methyl Solid-State NMR Spectroscopy. J Am Chem Soc 2019; 141:19888-19901. [DOI: 10.1021/jacs.9b11195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
108
|
Schirò G, Weik M. Role of hydration water in the onset of protein structural dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:463002. [PMID: 31382251 DOI: 10.1088/1361-648x/ab388a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteins are the molecular workhorses in a living organism. Their 3D structures are animated by a multitude of equilibrium fluctuations and specific out-of-equilibrium motions that are required for proteins to be biologically active. When studied as a function of temperature, functionally relevant dynamics are observed at and above the so-called protein dynamical transition (~240 K) in hydrated, but not in dry proteins. In this review we present and discuss the main experimental and computational results that provided evidence for the dynamical transition, with a focus on the role of hydration water dynamics in sustaining functional protein dynamics. The coupling and mutual influence of hydration water dynamics and protein dynamics are discussed and the hypotheses illustrated that have been put forward to explain the physical origin of their onsets.
Collapse
Affiliation(s)
- Giorgio Schirò
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | | |
Collapse
|
109
|
Aloi E, Bartucci R. Interdigitated lamellar phases in the frozen state: Spin-label CW- and FT-EPR. Biophys Chem 2019; 253:106229. [DOI: 10.1016/j.bpc.2019.106229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/24/2022]
|
110
|
Aloi E, Guzzi R, Bartucci R. Unsaturated lipid bilayers at cryogenic temperature: librational dynamics of chain-labeled lipids from pulsed and CW-EPR. Phys Chem Chem Phys 2019; 21:18699-18705. [PMID: 31423504 DOI: 10.1039/c9cp03318a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fully hydrated bilayers of monounsaturated palmitoyloleoylphosphatidylcholine (POPC) and diunsaturated dioleoylphosphatidylcholine (DOPC) lipids have low main phase transition temperatures (271 K for POPC and 253 K for DOPC). Two-pulse echo detected spectra, combined with continuous wave electron paramagnetic resonance spectroscopy, are employed to study the low-temperature lamellar phases of the POPC and DOPC unsaturated bilayers that are usually studied in the fluid state. Phosphatidylcholine spin-labeled at C-5 and C-16 carbon atom positions along the acyl chain were used and the temperature varied over the range 77-270 K. Segmental chain librational oscillations of small amplitude and with correlation time in the subnanosecond to nanosecond range are found in both membranes. The mean-square angular amplitude, α2, of librations increases with temperature, is larger close to the bilayer midplane than close to the first acyl chain segments, and is larger in diunsaturated than in monounsaturated bilayers. In the inner hydrocarbon region of both lipid matrices, α2 increases first slowly and linearly with temperature and then more rapidly, and a dynamical transition is detected in the range 190-210 K. Compared to dipalmitoylphosphatidylcholine bilayers of fully saturated symmetric chain lipids, the presence of double bonds in the acyl chain enhances the intensity of librational motion which is characterized by larger angular variations at the terminal methyl ends. These findings highlight biophysical properties of unsaturated bilayers in the frozen state, including a detailed characterization of segmental chain dynamics and the evidence of a dynamical transition that appears to be a generic feature in hydrated macromolecular systems. These results can also be relevant in regulating membrane physical properties and function at higher physiological temperatures.
Collapse
Affiliation(s)
- Erika Aloi
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, Italy
| | | | | |
Collapse
|
111
|
Lai Y, Kuo Y, Chiang Y. Identifying Protein Conformational Dynamics Using Spin‐label ESR. Chem Asian J 2019; 14:3981-3991. [DOI: 10.1002/asia.201900855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/02/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yei‐Chen Lai
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
- Department of Chemistry&Biochemistry University of California Santa Barbara CA 93106-9510 USA
| | - Yun‐Hsuan Kuo
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| | - Yun‐Wei Chiang
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
112
|
Song X, Lv T, Chen J, Wang J, Yao L. Characterization of Residue Specific Protein Folding and Unfolding Dynamics in Cells. J Am Chem Soc 2019; 141:11363-11366. [DOI: 10.1021/jacs.9b04435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiangfei Song
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhang Lv
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jia Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
113
|
Smith AA, Ernst M, Riniker S, Meier BH. Localized and Collective Motions in HET-s(218-289) Fibrils from Combined NMR Relaxation and MD Simulation. Angew Chem Int Ed Engl 2019; 58:9383-9388. [PMID: 31070275 PMCID: PMC6618077 DOI: 10.1002/anie.201901929] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/17/2019] [Indexed: 12/20/2022]
Abstract
Nuclear magnetic resonance (NMR) relaxation data and molecular dynamics (MD) simulations are combined to characterize the dynamics of the fungal prion HET-s(218-289) in its amyloid form. NMR data is analyzed with the dynamics detector method, which yields timescale-specific information. An analogous analysis is performed on MD trajectories. Because specific MD predictions can be verified as agreeing with the NMR data, MD was used for further interpretation of NMR results: for the different timescales, cross-correlation coefficients were derived to quantify the correlation of the motion between different residues. Short timescales are the result of very local motions, while longer timescales are found for longer-range correlated motion. Similar trends on ns- and μs-timescales suggest that μs motion in fibrils is the result of motion correlated over many fibril layers.
Collapse
Affiliation(s)
- Albert A. Smith
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
- Present address: Institut für Medizinische Physik und BiophysikUniversität LeipzigHärtelstraße 16–1804107LeipzigGermany
| | - Matthias Ernst
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| | - Sereina Riniker
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| | - Beat H. Meier
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 28093ZurichSwitzerland
| |
Collapse
|
114
|
Nforneh B, Warncke K. Control of Solvent Dynamics around the B 12-Dependent Ethanolamine Ammonia-Lyase Enzyme in Frozen Aqueous Solution by Using Dimethyl Sulfoxide Modulation of Mesodomain Volume. J Phys Chem B 2019; 123:5395-5404. [PMID: 31244099 DOI: 10.1021/acs.jpcb.9b02239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The temperature-dependent structure and dynamics of two concentric solvent phases, the protein-associated domain (PAD) and the mesodomain, that surround the ethanolamine ammonia-lyase (EAL) protein from Salmonella typhimurium in frozen polycrystalline aqueous solution are addressed by using electron paramagnetic resonance spectroscopy of the paramagnetic nitroxide spin probe, TEMPOL, over the temperature ( T) range 190-265 K. Dimethyl sulfoxide (DMSO), added at 0.5, 2.0, and 4.0% v/v and present at the maximum freeze concentration at T ≤ 245 K, varies the volume of the interstitial aqueous DMSO mesodomain ( Vmeso) relative to a fixed PAD volume ( VPAD). The increase in Vmeso/ VPAD from 0.8 to 6.0 is quantified by the partitioning of TEMPOL between the two phases. As Vmeso/ VPAD is increased, the Arrhenius parameters for activated TEMPOL rotational motion in the mesodomain remain uniform, whereas the parameters for TEMPOL in the PAD show a progressive transformation toward the mesodomain values (higher mobility). An order-disorder transition (ODT) in the PAD is detected by the exclusion of TEMPOL from the PAD into the mesodomain. The ODT T value is systematically lowered by increased Vmeso/ VPAD (from 215 to 200 K), and PAD ordering kinks the mesodomain Arrhenius dependence. Thus there is reciprocity in PAD-mesodomain solvent coupling. The results are interpreted as a dominant influence of ice-boundary confinement on the PAD solvent structure and dynamics, which is transmitted through the mesodomain and which decreases with mesodomain volume at increased added DMSO. The systematic tuning of PAD and mesodomain solvent dynamics by the variation of added DMSO is an incisive approach for the resolution of contributions of protein-solvent dynamical coupling to EAL catalysis.
Collapse
Affiliation(s)
- Benjamen Nforneh
- Department of Physics , Emory University , Atlanta , Georgia 30322 , United States
| | - Kurt Warncke
- Department of Physics , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
115
|
Gauto DF, Macek P, Barducci A, Fraga H, Hessel A, Terauchi T, Gajan D, Miyanoiri Y, Boisbouvier J, Lichtenecker R, Kainosho M, Schanda P. Aromatic Ring Dynamics, Thermal Activation, and Transient Conformations of a 468 kDa Enzyme by Specific 1H- 13C Labeling and Fast Magic-Angle Spinning NMR. J Am Chem Soc 2019; 141:11183-11195. [PMID: 31199882 DOI: 10.1021/jacs.9b04219] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aromatic residues are located at structurally important sites of many proteins. Probing their interactions and dynamics can provide important functional insight but is challenging in large proteins. Here, we introduce approaches to characterize the dynamics of phenylalanine residues using 1H-detected fast magic-angle spinning (MAS) NMR combined with a tailored isotope-labeling scheme. Our approach yields isolated two-spin systems that are ideally suited for artifact-free dynamics measurements, and allows probing motions effectively without molecular weight limitations. The application to the TET2 enzyme assembly of ∼0.5 MDa size, the currently largest protein assigned by MAS NMR, provides insights into motions occurring on a wide range of time scales (picoseconds to milliseconds). We quantitatively probe ring-flip motions and show the temperature dependence by MAS NMR measurements down to 100 K. Interestingly, favorable line widths are observed down to 100 K, with potential implications for DNP NMR. Furthermore, we report the first 13C R1ρ MAS NMR relaxation-dispersion measurements and detect structural excursions occurring on a microsecond time scale in the entry pore to the catalytic chamber and at a trimer interface that was proposed as the exit pore. We show that the labeling scheme with deuteration at ca. 50 kHz MAS provides superior resolution compared to 100 kHz MAS experiments with protonated, uniformly 13C-labeled samples.
Collapse
Affiliation(s)
- Diego F Gauto
- Univ. Grenoble Alpes, CEA, CNRS , Institut de Biologie Structurale (IBS) , 71, avenue des martyrs , F-38044 Grenoble , France
| | - Pavel Macek
- Univ. Grenoble Alpes, CEA, CNRS , Institut de Biologie Structurale (IBS) , 71, avenue des martyrs , F-38044 Grenoble , France
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS) , INSERM, CNRS, Université de Montpellier , Montpellier , France
| | - Hugo Fraga
- Univ. Grenoble Alpes, CEA, CNRS , Institut de Biologie Structurale (IBS) , 71, avenue des martyrs , F-38044 Grenoble , France.,Departamento de Biomedicina , Faculdade de Medicina da Universidade do Porto , Porto , Portugal.,i3S, Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal
| | - Audrey Hessel
- Univ. Grenoble Alpes, CEA, CNRS , Institut de Biologie Structurale (IBS) , 71, avenue des martyrs , F-38044 Grenoble , France
| | - Tsutomu Terauchi
- Graduate School of Science , Tokyo Metropolitan University , 1-1 Minami-ohsawa , Hachioji , Tokyo 192-0397 , Japan.,SI Innovation Center , Taiyo Nippon Sanso Corp. , 2008-2 Wada , Tama-city , Tokyo 206-0001 , Japan
| | - David Gajan
- Université de Lyon , Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, Université de Lyon, CNRS, ENS Lyon, UCB Lyon 1 , 69100 Villeurbanne , France
| | - Yohei Miyanoiri
- Institute of Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan.,Structural Biology Research Center, Graduate School of Sciences , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - Jerome Boisbouvier
- Univ. Grenoble Alpes, CEA, CNRS , Institut de Biologie Structurale (IBS) , 71, avenue des martyrs , F-38044 Grenoble , France
| | - Roman Lichtenecker
- Institute of Organic Chemistry , University of Vienna , Währinger Str. 38 , 1090 Vienna , Austria
| | - Masatsune Kainosho
- Graduate School of Science , Tokyo Metropolitan University , 1-1 Minami-ohsawa , Hachioji , Tokyo 192-0397 , Japan.,Structural Biology Research Center, Graduate School of Sciences , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - Paul Schanda
- Univ. Grenoble Alpes, CEA, CNRS , Institut de Biologie Structurale (IBS) , 71, avenue des martyrs , F-38044 Grenoble , France
| |
Collapse
|
116
|
Zhang R, Duong NT, Nishiyama Y. Resolution enhancement and proton proximity probed by 3D TQ/DQ/SQ proton NMR spectroscopy under ultrafast magic-angle-spinning beyond 70 kHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 304:78-86. [PMID: 31146121 DOI: 10.1016/j.jmr.2019.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Proton nuclear magnetic resonance (NMR) in solid state has gained significant attention in recent years due to the remarkable resolution and sensitivity enhancement afforded by ultrafast magic-angle-spinning (MAS). In spite of the substantial suppression of 1H-1H dipolar couplings, the proton spectral resolution is still poor compared to that of 13C or 15N NMR, rendering it challenging for the structural and conformational analysis of complex chemicals or biological solids. Herein, by utilizing the benefits of double-quantum (DQ) and triple-quantum (TQ) coherences, we propose a 3D single-channel pulse sequence that correlates proton triple-quantum/double-quantum/single-quantum (TQ/DQ/SQ) chemical shifts. In addition to the two-spin proximity information, this 3D TQ/DQ/SQ pulse sequence enables more reliable extraction of three-spin proximity information compared to the regular 2D TQ/SQ correlation experiment, which could aid in revealing the proton network in solids. Furthermore, the TQ/DQ slice taken at a specific SQ chemical shift only reveals the local correlations to the corresponding SQ chemical shift, and thus it enables accurate assignments of the proton peaks along the TQ and DQ dimensions and simplifies the interpretation of proton spectra especially for dense proton networks. The high performance of this 3D pulse sequence is well demonstrated on small compounds, L-alanine and a tripeptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (MLF). We expect that this new methodology can inspire the development of multidimensional solid-state NMR pulse sequences using the merits of TQ and DQ coherences and enable high-throughput investigations of complex solids using abundant protons.
Collapse
Affiliation(s)
- Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Nghia Tuan Duong
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
117
|
Sazhina E, Okotrub K, Amstislavsky S, Surovtsev N. Effect of low temperatures on cytochrome photoresponse in mouse embryos. Arch Biochem Biophys 2019; 669:32-38. [DOI: 10.1016/j.abb.2019.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
|
118
|
Gupta R, Zhang H, Lu M, Hou G, Caporini M, Rosay M, Maas W, Struppe J, Ahn J, Byeon IJL, Oschkinat H, Jaudzems K, Barbet-Massin E, Emsley L, Pintacuda G, Lesage A, Gronenborn AM, Polenova T. Dynamic Nuclear Polarization Magic-Angle Spinning Nuclear Magnetic Resonance Combined with Molecular Dynamics Simulations Permits Detection of Order and Disorder in Viral Assemblies. J Phys Chem B 2019; 123:5048-5058. [PMID: 31125232 DOI: 10.1021/acs.jpcb.9b02293] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report dynamic nuclear polarization (DNP)-enhanced magic-angle spinning (MAS) NMR spectroscopy in viral capsids from HIV-1 and bacteriophage AP205. Viruses regulate their life cycles and infectivity through modulation of their structures and dynamics. While static structures of capsids from several viruses are now accessible with near-atomic-level resolution, atomic-level understanding of functionally important motions in assembled capsids is lacking. We observed up to 64-fold signal enhancements by DNP, which permitted in-depth analysis of these assemblies. For the HIV-1 CA assemblies, a remarkably high spectral resolution in the 3D and 2D heteronuclear data sets permitted the assignment of a significant fraction of backbone and side-chain resonances. Using an integrated DNP MAS NMR and molecular dynamics (MD) simulation approach, the conformational space sampled by the assembled capsid at cryogenic temperatures was mapped. Qualitatively, a remarkable agreement was observed for the experimental 13C/15N chemical shift distributions and those calculated from substructures along the MD trajectory. Residues that are mobile at physiological temperatures are frozen out in multiple conformers at cryogenic conditions, resulting in broad experimental and calculated chemical shift distributions. Overall, our results suggest that DNP MAS NMR measurements in combination with MD simulations facilitate a thorough understanding of the dynamic signatures of viral capsids.
Collapse
Affiliation(s)
- Rupal Gupta
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Huilan Zhang
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Manman Lu
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Guangjin Hou
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Marc Caporini
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Melanie Rosay
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Werner Maas
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Jochem Struppe
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | | | | | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie , Robert-Roessle-Str. 10 , 13125 Berlin , Germany
| | - Kristaps Jaudzems
- Centre de RMN à Très Hauts Champs , Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon , 5 Rue de la Doua , Villeurbanne, 69100 Lyon , France
| | - Emeline Barbet-Massin
- Centre de RMN à Très Hauts Champs , Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon , 5 Rue de la Doua , Villeurbanne, 69100 Lyon , France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimques , Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne , Switzerland
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs , Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon , 5 Rue de la Doua , Villeurbanne, 69100 Lyon , France
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs , Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon , 5 Rue de la Doua , Villeurbanne, 69100 Lyon , France
| | | | - Tatyana Polenova
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
119
|
Smith AA, Ernst M, Riniker S, Meier BH. Localized and Collective Motions in HET‐s(218‐289) Fibrils from Combined NMR Relaxation and MD Simulation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Albert A. Smith
- Physical ChemistryETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
- Present address: Institut für Medizinische Physik und BiophysikUniversität Leipzig Härtelstraße 16–18 04107 Leipzig Germany
| | - Matthias Ernst
- Physical ChemistryETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Sereina Riniker
- Physical ChemistryETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Beat H. Meier
- Physical ChemistryETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| |
Collapse
|
120
|
Salvi N, Abyzov A, Blackledge M. Solvent-dependent segmental dynamics in intrinsically disordered proteins. SCIENCE ADVANCES 2019; 5:eaax2348. [PMID: 31259246 PMCID: PMC6598773 DOI: 10.1126/sciadv.aax2348] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/22/2019] [Indexed: 05/04/2023]
Abstract
Protein and water dynamics have a synergistic relationship, which is particularly important for intrinsically disordered proteins (IDPs), although the details of this coupling remain poorly understood. Here, we combine temperature-dependent molecular dynamics simulations using different water models with extensive nuclear magnetic resonance (NMR) relaxation to examine the importance of distinct modes of solvent and solute motion for the accurate reproduction of site-specific dynamics in IDPs. We find that water dynamics play a key role in motional processes internal to "segments" of IDPs, stretches of primary sequence that share dynamic properties and behave as discrete dynamic units. We identify a relationship between the time scales of intrasegment dynamics and the lifetime of hydrogen bonds in bulk water. Correct description of these motions is essential for accurate reproduction of protein relaxation. Our findings open important perspectives for understanding the role of hydration water on the behavior and function of IDPs in solution.
Collapse
|
121
|
Au DF, Ostrovsky D, Fu R, Vugmeyster L. Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-β fibrils. J Biol Chem 2019; 294:5840-5853. [PMID: 30737281 DOI: 10.1074/jbc.ra118.006559] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/08/2019] [Indexed: 11/06/2022] Open
Abstract
Amyloid fibril deposits observed in Alzheimer's disease comprise amyloid-β (Aβ) protein possessing a structured hydrophobic core and a disordered N-terminal domain (residues 1-16). The internal flexibility of the disordered domain is likely essential for Aβ aggregation. Here, we used 2H static solid-state NMR methods to probe the dynamics of selected side chains of the N-terminal domain of Aβ1-40 fibrils. Line shape and relaxation data suggested a two-state model in which the domain's free state undergoes a diffusive motion that is quenched in the bound state, likely because of transient interactions with the structured C-terminal domain. At 37 °C, we observed freezing of the dynamics progressively along the Aβ sequence, with the fraction of the bound state increasing and the rate of diffusion decreasing. We also found that without solvation, the diffusive motion is quenched. The solvent acted as a plasticizer reminiscent of its role in the onset of global dynamics in globular proteins. As the temperature was lowered, the fraction of the bound state exhibited sigmoidal behavior. The midpoint of the freezing curve coincided with the bulk solvent freezing for the N-terminal residues and increased further along the sequence. Using 2H R 1ρ measurements, we determined the conformational exchange rate constant between the free and bound states under physiological conditions. Zinc-induced aggregation leads to the enhancement of the dynamics, manifested by the faster conformational exchange, faster diffusion, and lower freezing-curve midpoints.
Collapse
Affiliation(s)
- Dan Fai Au
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado, Denver, Colorado 80204
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, Florida 32310
| | - Liliya Vugmeyster
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204.
| |
Collapse
|
122
|
Mori T, Saito S. Conformational Excitation and Nonequilibrium Transition Facilitate Enzymatic Reactions: Application to Pin1 Peptidyl-Prolyl Isomerase. J Phys Chem Lett 2019; 10:474-480. [PMID: 30607953 DOI: 10.1021/acs.jpclett.8b03607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Conformational flexibility of protein is essential for enzyme catalysis. Yet, how protein's conformational rearrangements and dynamics contribute to catalysis remains highly controversial. To unravel protein's role in catalysis, it is inevitable to understand the static and dynamic mechanisms simultaneously. To this end, here the Pin1-catalyzed isomerization reaction is studied from the two perspectives. The static view indicates that the hydrogen bonds involving Pin1 rearrange in a tightly coupled manner with isomerization. In sharp contrast, the isomerization dynamics are found to be very rapid; protein's slow conformational rearrangements thus cannot occur simultaneously with isomerization, and the reaction proceeds in a nonequilibrium manner. The distinctive protein conformations necessary to stabilize the transition state are prepared a priori, i.e., as conformational excited states. The present result suggests that enzymatic reaction is not a simple thermal activation from equilibrium directly to the transition state, thus adding a novel perspective to Pauling's view.
Collapse
Affiliation(s)
- Toshifumi Mori
- Institute for Molecular Science, Myodaiji , Okazaki , Aichi 444-8585 , Japan
- School of Physical Sciences , The Graduate University for Advanced Studies , Okazaki , Aichi 444-8585 , Japan
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji , Okazaki , Aichi 444-8585 , Japan
- School of Physical Sciences , The Graduate University for Advanced Studies , Okazaki , Aichi 444-8585 , Japan
| |
Collapse
|
123
|
|
124
|
Leroy C, Bryce DL. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:160-199. [PMID: 30527135 DOI: 10.1016/j.pnmrs.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
We present a review of recent advances in solid-state nuclear magnetic resonance (SSNMR) studies of exotic nuclei. Exotic nuclei may be spin-1/2 or quadrupolar, and typically have low gyromagnetic ratios, low natural abundances, large quadrupole moments (when I > 1/2), or some combination of these properties, generally resulting in low receptivities and/or prohibitively broad line widths. Some nuclides are little studied for other reasons, also rendering them somewhat exotic. We first discuss some of the recent progress in pulse sequences and hardware development which continues to enable researchers to study new kinds of materials as well as previously unfeasible nuclei. This is followed by a survey of applications to a wide range of exotic nuclei (including e.g., 9Be, 25Mg, 33S, 39K, 43Ca, 47/49Ti, 53Cr, 59Co, 61Ni, 67Zn, 73Ge, 75As, 87Sr, 115In, 119Sn, 121/123Sb, 135/137Ba, 185/187Re, 209Bi), most of them quadrupolar. The scope of the review is the past ten years, i.e., 2007-2017.
Collapse
Affiliation(s)
- César Leroy
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
125
|
Transue WJ, Yang J, Nava M, Sergeyev IV, Barnum TJ, McCarthy MC, Cummins CC. Synthetic and Spectroscopic Investigations Enabled by Modular Synthesis of Molecular Phosphaalkyne Precursors. J Am Chem Soc 2018; 140:17985-17991. [DOI: 10.1021/jacs.8b09845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wesley J. Transue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Junyu Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew Nava
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ivan V. Sergeyev
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, United States
| | - Timothy J. Barnum
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael C. McCarthy
- Harvard−Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
| | - Christopher C. Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
126
|
Towards a Stochastic Paradigm: From Fuzzy Ensembles to Cellular Functions. Molecules 2018; 23:molecules23113008. [PMID: 30453632 PMCID: PMC6278454 DOI: 10.3390/molecules23113008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 01/03/2023] Open
Abstract
The deterministic sequence → structure → function relationship is not applicable to describe how proteins dynamically adapt to different cellular conditions. A stochastic model is required to capture functional promiscuity, redundant sequence motifs, dynamic interactions, or conformational heterogeneity, which facilitate the decision-making in regulatory processes, ranging from enzymes to membraneless cellular compartments. The fuzzy set theory offers a quantitative framework to address these problems. The fuzzy formalism allows the simultaneous involvement of proteins in multiple activities, the degree of which is given by the corresponding memberships. Adaptation is described via a fuzzy inference system, which relates heterogeneous conformational ensembles to different biological activities. Sequence redundancies (e.g., tandem motifs) can also be treated by fuzzy sets to characterize structural transitions affecting the heterogeneous interaction patterns (e.g., pathological fibrillization of stress granules). The proposed framework can provide quantitative protein models, under stochastic cellular conditions.
Collapse
|
127
|
Cerutti DS, Case DA. Molecular Dynamics Simulations of Macromolecular Crystals. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018; 9. [PMID: 31662799 DOI: 10.1002/wcms.1402] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structures of biological macromolecules would not be known to their present extent without X-ray crystallography. Most simulations of globular proteins in solution begin by surrounding the crystal structure of the monomer in a bath of water molecules, but the standard simulation employing periodic boundary conditions is already close to a crystal lattice environment. With simple protocols, the same software and molecular models can perform simulations of the crystal lattice, including all asymmetric units and solvent to fill the box. Throughout the history of molecular dynamics, studies of crystal lattices have served to investigate the quality of the underlying force fields, correlate the simulated ensembles to experimental structure factors, and extrapolate the behavior in lattices to behavior in solution. Powerful new computers are enabling molecular simulations with greater realism and statistical convergence. Meanwhile, the advent of exciting new methods in crystallography, including femtosecond free-electron lasers and image reconstruction for time-resolved crystallography on slurries of small crystals, is expanding the range of structures accessible to X-ray diffraction. We review past fusions of simulations and crystallography, then look ahead to the ways that simulations of crystal structures will enhance structural biology in the future.
Collapse
Affiliation(s)
- David S Cerutti
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854-8066
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854-8066
| |
Collapse
|
128
|
Keeler EG, Fritzsching KJ, McDermott AE. Refocusing CSA during magic angle spinning rotating-frame relaxation experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 296:130-137. [PMID: 30253322 PMCID: PMC6512962 DOI: 10.1016/j.jmr.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 05/27/2023]
Abstract
We examine coherent evolution of spin-locked magnetization during magic-angle spinning (MAS), in the context of relaxation experiments designed to probe chemical exchange (rotating-frame relaxation (R1ρ)). Coherent evolution is expected in MAS based rotating-frame relaxation decay experiments if matching conditions are met (such as, ω1 = nωr) and if the chemical shielding anisotropy (CSA) is substantial. We show here using numerical simulations and experiments that even when such matching requirements are avoided (e.g., ω1 < 0.5ωr, ∼1.5ωr, >2.5ωr), coherent evolution of spin-locked magnetization with large CSA is still considerable. The coherent evolution has important consequences on the analysis of relaxation decay and the ability to extract accurate information of interest about dynamics. We present a pulse sequence that employs rotary echoes and refocuses CSA contributions, allowing for more sensitive measurement of rotating-frame relaxation with less interference from coherent evolution. In practice, the proposed pulse sequence, REfocused CSA Rotating-frame Relaxation (RECRR) is robust to carrier frequency offset, B1-field inhomogeneity, and slight miscalibrations of the refocusing pulses.
Collapse
Affiliation(s)
- Eric G Keeler
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Keith J Fritzsching
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
129
|
Liu Z, Yang C, Huang J, Ciampalini G, Li J, García Sakai V, Tyagi M, O'Neill H, Zhang Q, Capaccioli S, Ngai KL, Hong L. Direct Experimental Characterization of Contributions from Self-Motion of Hydrogen and from Interatomic Motion of Heavy Atoms to Protein Anharmonicity. J Phys Chem B 2018; 122:9956-9961. [PMID: 30295486 DOI: 10.1021/acs.jpcb.8b09355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One fundamental challenge in biophysics is to understand the connection between protein dynamics and its function. Part of the difficulty arises from the fact that proteins often present local atomic motions and collective dynamics on the same time scales, and challenge the experimental identification and quantification of different dynamic modes. Here, by taking lyophilized proteins as the example, we combined deuteration technique and neutron scattering to separate and characterize the self-motion of hydrogen and the collective interatomic motion of heavy atoms (C, O, N) in proteins on the pico-to-nanosecond time scales. We found that hydrogen atoms present an instrument-resolution-dependent onset for anharmonic motions, which can be ascribed to the thermal activation of local side-group motions. However, the protein heavy atoms exhibit an instrument-resolution-independent anharmonicity around 200 K, which results from unfreezing of the relaxation of the protein structures on the laboratory equilibrium time (100-1000 s), softening of the entire bio-macromolecules.
Collapse
Affiliation(s)
| | | | | | - Gaia Ciampalini
- Dipartimento di Fisica "E. Fermi" , Università di Pisa and Istituto per Processi Chimico-Fisici-Consiglio Nazionale delle Ricerche , Largo Pontecorvo 3 , Pisa 56127 , Italy
| | | | - Victoria García Sakai
- ISIS Neutron and Muon Facility , Rutherford Appleton Laboratory, Science & Technology Facilities Council , Didcot OX11 0QX , United Kingdom
| | - Madhusudan Tyagi
- National Institute of Standards and Technology (NIST) , NIST Center for Neutron Research , Gaithersburg , Maryland 20899 , United States.,Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Hugh O'Neill
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37931 , United States
| | - Qiu Zhang
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37931 , United States
| | - Simone Capaccioli
- Dipartimento di Fisica "E. Fermi" , Università di Pisa and Istituto per Processi Chimico-Fisici-Consiglio Nazionale delle Ricerche , Largo Pontecorvo 3 , Pisa 56127 , Italy
| | - K L Ngai
- Dipartimento di Fisica "E. Fermi" , Università di Pisa and Istituto per Processi Chimico-Fisici-Consiglio Nazionale delle Ricerche , Largo Pontecorvo 3 , Pisa 56127 , Italy
| | | |
Collapse
|
130
|
Frey L, Hiller S, Riek R, Bibow S. Lipid- and Cholesterol-Mediated Time-Scale-Specific Modulation of the Outer Membrane Protein X Dynamics in Lipid Bilayers. J Am Chem Soc 2018; 140:15402-15411. [PMID: 30289706 DOI: 10.1021/jacs.8b09188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane protein function fundamentally depends on lipid-bilayer fluidity and the composition of the biological membrane. Although dynamic interdependencies between membrane proteins and the surrounding lipids are suspected, a detailed description is still missing. To uncover lipid-modulated membrane protein backbone dynamics, time-scale-specific NMR relaxation experiments with residue-resolution were recorded. The data revealed that lipid order, modified either biochemically or biophysically, changes the dynamics of the immersed membrane protein in a specific and time-scale-dependent manner. A temperature-dependent dynamics analysis furthermore suggests a direct coupling between lipid and protein dynamics in the picosecond-nanosecond, microsecond, and millisecond time scales, caused by the lipid's trans-gauche isomerization, the segmental and rotational motion of lipids, and the fluidity of the lipid phase, respectively. These observations provide evidence of a direct modulatory capability of the membrane to regulate protein function through lipid dynamics ranging from picoseconds to milliseconds.
Collapse
Affiliation(s)
- Lukas Frey
- Laboratory for Physical Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| | | | - Roland Riek
- Laboratory for Physical Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| | - Stefan Bibow
- Biozentrum , University of Basel , 4056 Basel , Switzerland
| |
Collapse
|
131
|
Zinke M, Fricke P, Lange S, Zinn‐Justin S, Lange A. Protein-Protein Interfaces Probed by Methyl Labeling and Proton-Detected Solid-State NMR Spectroscopy. Chemphyschem 2018; 19:2457-2460. [PMID: 29917302 PMCID: PMC6220863 DOI: 10.1002/cphc.201800542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 12/18/2022]
Abstract
Proton detection and fast magic-angle spinning have advanced biological solid-state NMR, allowing for the backbone assignment of complex protein assemblies with high sensitivity and resolution. However, so far no method has been proposed to detect intermolecular interfaces in these assemblies by proton detection. Herein, we introduce a concept based on methyl labeling that allows for the assignment of these moieties and for the study of protein-protein interfaces at atomic resolution.
Collapse
Affiliation(s)
- Maximilian Zinke
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Pascal Fricke
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Sascha Lange
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Sophie Zinn‐Justin
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRSUniversité Paris-Sud Université Paris-SaclayGif-sur-Yvette CedexFrance
| | - Adam Lange
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für BiologieHumboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
132
|
Busi B, Yarava JR, Hofstetter A, Salvi N, Cala-De Paepe D, Lewandowski JR, Blackledge M, Emsley L. Probing Protein Dynamics Using Multifield Variable Temperature NMR Relaxation and Molecular Dynamics Simulation. J Phys Chem B 2018; 122:9697-9702. [DOI: 10.1021/acs.jpcb.8b08578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Baptiste Busi
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jayasubba Reddy Yarava
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Albert Hofstetter
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicola Salvi
- Université Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Diane Cala-De Paepe
- Université de Lyon, Institut des Sciences Analytiques (UMR 5280 CNRS/UCBL/ENS Lyon), Centre de RMN à Très Hauts Champs, 69199 Villeurbanne, France
| | | | | | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
133
|
Ollila OHS, Heikkinen HA, Iwaï H. Rotational Dynamics of Proteins from Spin Relaxation Times and Molecular Dynamics Simulations. J Phys Chem B 2018; 122:6559-6569. [PMID: 29812937 PMCID: PMC6150695 DOI: 10.1021/acs.jpcb.8b02250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Conformational
fluctuations and rotational tumbling of proteins
can be experimentally accessed with nuclear spin relaxation experiments.
However, interpretation of molecular dynamics from the experimental
data is often complicated, especially for molecules with anisotropic
shape. Here, we apply classical molecular dynamics simulations to
interpret the conformational fluctuations and rotational tumbling
of proteins with arbitrarily anisotropic shape. The direct calculation
of spin relaxation times from simulation data did not reproduce the
experimental data. This was successfully corrected by scaling the
overall rotational diffusion coefficients around the protein inertia
axes with a constant factor. The achieved good agreement with experiments
allowed the interpretation of the internal and overall dynamics of
proteins with significantly anisotropic shape. The overall rotational
diffusion was found to be Brownian, having only a short subdiffusive
region below 0.12 ns. The presented methodology can be applied to
interpret rotational dynamics and conformation fluctuations of proteins
with arbitrary anisotropic shape. However, a water model with more
realistic dynamical properties is probably required for intrinsically
disordered proteins.
Collapse
Affiliation(s)
- O H Samuli Ollila
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology , University of Helsinki , 00014 Helsinki , Finland.,Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , 117 20 Prague 6 , Czech Republic
| | - Harri A Heikkinen
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology , University of Helsinki , 00014 Helsinki , Finland
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology , University of Helsinki , 00014 Helsinki , Finland
| |
Collapse
|
134
|
Kuo YH, Chiang YW. Slow Dynamics around a Protein and Its Coupling to Solvent. ACS CENTRAL SCIENCE 2018; 4:645-655. [PMID: 29806012 PMCID: PMC5968437 DOI: 10.1021/acscentsci.8b00139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 05/25/2023]
Abstract
Solvent is essential for protein dynamics and function, but its role in regulating the dynamics remains debated. Here, we employ saturation transfer electron spin resonance (ST-ESR) to explore the issue and characterize the dynamics on a longer (from μs to s) time scale than has been extensively studied. We first demonstrate the reliability of ST-ESR by showing that the dynamical changeovers revealed in the spectra agree to liquid-liquid transition (LLT) in the state diagram of the glycerol/water system. Then, we utilize ST-ESR with four different probes to systematically map out the variation in local (site-specific) dynamics around a protein surface at subfreezing temperatures (180-240 K) in 10 mol % glycerol/water mixtures. At highly exposed sites, protein and solvent dynamics are coupled, whereas they deviate from each other when temperature is greater than LLT temperature (∼190 K) of the solvent. At less exposed sites, protein however exhibits a dynamic, which is distinct from the bulk solvent, throughout the temperature range studied. Dominant dynamic components are thus revealed, showing that (from low to high temperatures) the overall structural fluctuation, rotamer dynamics, and internal side-chain dynamics, in turn, dominate the temperature dependence of spin-label motions. The structural fluctuation component is relatively slow, collective, and independent of protein structural segments, which is thus inferred to a fundamental dynamic component intrinsic to protein. This study corroborates that bulk solvent plasticizes protein and facilitates rather than slaves protein dynamics.
Collapse
|
135
|
Effect of glycerol on photobleaching of cytochrome Raman lines in frozen yeast cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:655-662. [PMID: 29704025 DOI: 10.1007/s00249-018-1302-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/13/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
We applied a Raman spectroscopy approach to investigate the effect of a cryoprotectant on the redox state of cytochromes on freezing yeast cells. The redox activity of cytochromes was studied using time-resolved photobleaching of the resonance Raman lines. It is found that ice formation causes a drastic change in the redox state of cytochromes in cells frozen without cryoprotectant, whereas in the presence of glycerol the effects of ice formation are more gradual. The photobleaching rate of cells frozen in glycerol solution shows a gradual slowing with temperature decrease and an abrupt slowdown below - 48 °C. This abrupt decrease was interpreted as originating from changes in protein conformational dynamics. Our findings provide important new insights into the transition from active to inactive cytochrome states as cells undergo freezing in the presence and absence of cryoprotectant.
Collapse
|
136
|
Matlahov I, van der Wel PCA. Hidden motions and motion-induced invisibility: Dynamics-based spectral editing in solid-state NMR. Methods 2018; 148:123-135. [PMID: 29702226 DOI: 10.1016/j.ymeth.2018.04.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
Abstract
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy enables the structural characterization of a diverse array of biological assemblies that include amyloid fibrils, non-amyloid aggregates, membrane-associated proteins and viral capsids. Such biological samples feature functionally relevant molecular dynamics, which often affect different parts of the sample in different ways. Solid-state NMR experiments' sensitivity to dynamics represents a double-edged sword. On the one hand, it offers a chance to measure dynamics in great detail. On the other hand, certain types of motion lead to signal loss and experimental inefficiencies that at first glance interfere with the application of ssNMR to overly dynamic proteins. Dynamics-based spectral editing (DYSE) ssNMR methods leverage motion-dependent signal losses to simplify spectra and enable the study of sub-structures with particular motional properties.
Collapse
Affiliation(s)
- Irina Matlahov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
137
|
Björgvinsdóttir S, Walder BJ, Pinon AC, Yarava JR, Emsley L. DNP enhanced NMR with flip-back recovery. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 288:69-75. [PMID: 29414065 DOI: 10.1016/j.jmr.2018.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 05/06/2023]
Abstract
DNP methods can provide significant sensitivity enhancements in magic angle spinning solid-state NMR, but in systems with long polarization build up times long recycling periods are required to optimize sensitivity. We show how the sensitivity of such experiments can be improved by the classic flip-back method to recover bulk proton magnetization following continuous wave proton heteronuclear decoupling. Experiments were performed on formulations with characteristic build-up times spanning two orders of magnitude: a bulk BDPA radical doped o-terphenyl glass and microcrystalline samples of theophylline, l-histidine monohydrochloride monohydrate, and salicylic acid impregnated by incipient wetness. For these systems, addition of flip-back is simple, improves the sensitivity beyond that provided by modern heteronuclear decoupling methods such as SPINAL-64, and provides optimal sensitivity at shorter recycle delays. We show how to acquire DNP enhanced 2D refocused CP-INADEQUATE spectra with flip-back recovery, and demonstrate that the flip-back recovery method is particularly useful in rapid recycling regimes. We also report Overhauser effect DNP enhancements of over 70 at 592.6 GHz/900 MHz.
Collapse
Affiliation(s)
- Snædís Björgvinsdóttir
- Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Brennan J Walder
- Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Arthur C Pinon
- Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jayasubba Reddy Yarava
- Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
138
|
Abstract
Various recent developments in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have enabled an array of new insights regarding the structure, dynamics, and interactions of biomolecules. In the ever more integrated world of structural biology, ssNMR studies provide structural and dynamic information that is complementary to the data accessible by other means. ssNMR enables the study of samples lacking a crystalline lattice, featuring static as well as dynamic disorder, and does so independent of higher-order symmetry. The present study surveys recent applications of biomolecular ssNMR and examines how this technique is increasingly integrated with other structural biology techniques, such as (cryo) electron microscopy, solution-state NMR, and X-ray crystallography. Traditional ssNMR targets include lipid bilayer membranes and membrane proteins in a lipid bilayer environment. Another classic application has been in the area of protein misfolding and aggregation disorders, where ssNMR has provided essential structural data on oligomers and amyloid fibril aggregates. More recently, the application of ssNMR has expanded to a growing array of biological assemblies, ranging from non-amyloid protein aggregates, protein–protein complexes, viral capsids, and many others. Across these areas, multidimensional magic angle spinning (MAS) ssNMR has, in the last decade, revealed three-dimensional structures, including many that had been inaccessible by other structural biology techniques. Equally important insights in structural and molecular biology derive from the ability of MAS ssNMR to probe information beyond comprehensive protein structures, such as dynamics, solvent exposure, protein–protein interfaces, and substrate–enzyme interactions.
Collapse
|
139
|
Nforneh B, Warncke K. Mesodomain and Protein-Associated Solvent Phases with Temperature-Tunable (200-265 K) Dynamics Surround Ethanolamine Ammonia-Lyase in Globally Polycrystalline Aqueous Solution Containing Dimethyl Sulfoxide. J Phys Chem B 2017; 121:11109-11118. [PMID: 29192783 DOI: 10.1021/acs.jpcb.7b09711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Electron paramagnetic resonance spectroscopy of the spin probe, TEMPOL, is used to resolve solvent phases that surround the ethanolamine ammonia-lyase (EAL) protein from Salmonella typhimurium at low temperature (T) in frozen, globally polycrystalline aqueous solution and to report on the T dependence of their detectably rigid and fluid states. EAL plays a role in human gut microbiome-based disease conditions, and physicochemical studies provide insight into protein structure and mechanism, toward potential therapeutics. Temperature dependences of the rotational correlation times (τc; detection range, 10-11 ≤ τc ≤ 10-7 s) and the corresponding weights of TEMPOL tumbling components from 200 to 265 K in the presence of EAL are measured in two frozen systems: (1) water-only and (2) 1% v/v dimethyl sulfoxide (DMSO). In the water-only condition, a protein-vicinal solvent component detectably fluidizes at 230 K and melts the surrounding ice-crystalline region with increasing T, creating a bounded, relatively high-viscosity aqueous solvent domain, up to 265 K. In the EAL, 1% v/v DMSO condition, two distinct concentric solvent phases are resolved around EAL: protein-associated domain (PAD) and mesodomain. The DMSO aqueous mesodomain fluidizes at 200 K, followed by PAD fluidization at 210 K. The interphase dynamical coupling is consistent with the spatial arrangement and significant contact areas of the phases, indicated by the experimentally determined mean volume ratio, V(mesodomain)/V(PAD)/V(protein) = 0.5:0.3:1.0. The results provide a rationale for native chemical reactions of EAL at T < 250 K and an advance toward precise control of solvent dynamics as a tunable parameter for quantifying the coupling between solvent and protein fluctuations and chemical reaction steps in EAL and other enzymes.
Collapse
Affiliation(s)
- Benjamen Nforneh
- Department of Physics, Emory University , Atlanta, Georgia 30322, United States
| | - Kurt Warncke
- Department of Physics, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
140
|
Grille Coronel L, Acierno JP, Ermácora MR. Ultracompact states of native proteins. Biophys Chem 2017; 230:36-44. [DOI: 10.1016/j.bpc.2017.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
|
141
|
Salvi N, Abyzov A, Blackledge M. Atomic resolution conformational dynamics of intrinsically disordered proteins from NMR spin relaxation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:43-60. [PMID: 29157493 DOI: 10.1016/j.pnmrs.2017.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 05/08/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental approaches for investigating the conformational behaviour of intrinsically disordered proteins (IDPs). IDPs represent a significant fraction of all proteomes, and, despite their importance for understanding fundamental biological processes, the molecular basis of their activity still remains largely unknown. The functional mechanisms exploited by IDPs in their interactions with other biomolecules are defined by their intrinsic dynamic modes and associated timescales, justifying the considerable interest over recent years in the development of technologies adapted to measure and describe this behaviour. NMR spin relaxation delivers information-rich, site-specific data reporting on conformational fluctuations occurring throughout the molecule. Here we review recent progress in the use of 15N relaxation to identify local backbone dynamics and long-range chain-like motions in unfolded proteins.
Collapse
Affiliation(s)
- Nicola Salvi
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France
| | - Anton Abyzov
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France.
| |
Collapse
|
142
|
Aloi E, Oranges M, Guzzi R, Bartucci R. Low-Temperature Dynamics of Chain-Labeled Lipids in Ester- and Ether-Linked Phosphatidylcholine Membranes. J Phys Chem B 2017; 121:9239-9246. [PMID: 28892381 DOI: 10.1021/acs.jpcb.7b07386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Continuous wave electron paramagnetic resonance spectroscopy and two-pulse echo detected spectra of chain-labeled lipids are used to study the dynamics of frozen lipid membranes over the temperature range 77-260 K. Bilayers of ester-linked dihexadecanoylphosphatidylcholine (DPPC) with noninterdigitated chains and ether-linked dihexadecyl phosphatidylcholine (DHPC) with interdigitated chains are considered. Rapid stochastic librations of small angular amplitude are found in both lipid matrices. In noninterdigitated DPPC bilayers, the mean-square angular amplitude, [Formula: see text], of the motion increases with temperature and it is larger close to the chain termini than close to the polar/apolar interface. In contrast, in interdigitated DHPC lamellae, [Formula: see text] is small and temperature and label-position independent at low temperature and increases steeply at high temperature. The rotational correlation time, τc, of librations lies in the subnanosecond range for DPPC and in the nanosecond range for DHPC. In all membrane samples, the temperature dependence of [Formula: see text] resembles that of the mean-square atomic displacement revealed by neutron scattering and a dynamical transition is detected in the range 210-240 K. The results highlight the librational oscillations and the glass-like behavior in bilayer and interdigitated lipid membranes.
Collapse
Affiliation(s)
- Erika Aloi
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria , 87036 Rende (CS), Italy
| | - Maria Oranges
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria , 87036 Rende (CS), Italy
| | - Rita Guzzi
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria , 87036 Rende (CS), Italy
| | - Rosa Bartucci
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria , 87036 Rende (CS), Italy
| |
Collapse
|
143
|
Feng CJ, Tokmakoff A. The dynamics of peptide-water interactions in dialanine: An ultrafast amide I 2D IR and computational spectroscopy study. J Chem Phys 2017; 147:085101. [PMID: 28863528 PMCID: PMC5593305 DOI: 10.1063/1.4991871] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/09/2017] [Indexed: 11/14/2022] Open
Abstract
We present a joint experimental and computational study of the dynamic interactions of dialanine (Ala-Ala) with water, comparing the results of ultrafast 2D IR and infrared transient absorption spectroscopy of its amide I vibration with spectra modeled from molecular dynamics (MD) simulations. The experimental data are analyzed to describe vibrational frequency fluctuations, vibrational energy relaxation, and chemical exchange processes. The origin of these processes in the same underlying fluctuating forces allows a common description in terms of the fluctuations and conformational dynamics of the peptide and associated solvent. By comparing computational spectroscopy from MD simulations with multiple force fields and water models, we describe how the dynamics of water hydrogen bond fluctuations and switching processes act as a source of friction that governs the dephasing and vibrational relaxation, and provide a description of coupled water and peptide motions that give rise to spectroscopic exchange processes.
Collapse
Affiliation(s)
- Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
144
|
Chong SH, Ham S. Dynamics of Hydration Water Plays a Key Role in Determining the Binding Thermodynamics of Protein Complexes. Sci Rep 2017; 7:8744. [PMID: 28821854 PMCID: PMC5562873 DOI: 10.1038/s41598-017-09466-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/25/2017] [Indexed: 01/15/2023] Open
Abstract
Interfacial waters are considered to play a crucial role in protein–protein interactions, but in what sense and why are they important? Here, using molecular dynamics simulations and statistical thermodynamic analyses, we demonstrate distinctive dynamic characteristics of the interfacial water and investigate their implications for the binding thermodynamics. We identify the presence of extraordinarily slow (~1,000 times slower than in bulk water) hydrogen-bond rearrangements in interfacial water. We rationalize the slow rearrangements by introducing the “trapping” free energies, characterizing how strongly individual hydration waters are captured by the biomolecular surface, whose magnitude is then traced back to the number of water–protein hydrogen bonds and the strong electrostatic field produced at the binding interface. We also discuss the impact of the slow interfacial waters on the binding thermodynamics. We find that, as expected from their slow dynamics, the conventional approach to the water-mediated interaction, which assumes rapid equilibration of the waters’ degrees of freedom, is inadequate. We show instead that an explicit treatment of the extremely slow interfacial waters is critical. Our results shed new light on the role of water in protein–protein interactions, highlighting the need to consider its dynamics to improve our understanding of biomolecular bindings.
Collapse
Affiliation(s)
- Song-Ho Chong
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul, 04310, Korea
| | - Sihyun Ham
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul, 04310, Korea.
| |
Collapse
|
145
|
Kim KH, Pathak H, Späh A, Perakis F, Mariedahl D, Sellberg JA, Katayama T, Harada Y, Ogasawara H, Pettersson LGM, Nilsson A. Temperature-Independent Nuclear Quantum Effects on the Structure of Water. PHYSICAL REVIEW LETTERS 2017; 119:075502. [PMID: 28949651 DOI: 10.1103/physrevlett.119.075502] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 06/07/2023]
Abstract
Nuclear quantum effects (NQEs) have a significant influence on the hydrogen bonds in water and aqueous solutions and have thus been the topic of extensive studies. However, the microscopic origin and the corresponding temperature dependence of NQEs have been elusive and still remain the subject of ongoing discussion. Previous x-ray scattering investigations indicate that NQEs on the structure of water exhibit significant temperature dependence [Phys. Rev. Lett. 94, 047801 (2005)PRLTAO0031-900710.1103/PhysRevLett.94.047801]. Here, by performing wide-angle x-ray scattering of H_{2}O and D_{2}O droplets at temperatures from 275 K down to 240 K, we determine the temperature dependence of NQEs on the structure of water down to the deeply supercooled regime. The data reveal that the magnitude of NQEs on the structure of water is temperature independent, as the structure factor of D_{2}O is similar to H_{2}O if the temperature is shifted by a constant 5 K, valid from ambient conditions to the deeply supercooled regime. Analysis of the accelerated growth of tetrahedral structures in supercooled H_{2}O and D_{2}O also shows similar behavior with a clear 5 K shift. The results indicate a constant compensation between NQEs delocalizing the proton in the librational motion away from the bond and in the OH stretch vibrational modes along the bond. This is consistent with the fact that only the vibrational ground state is populated at ambient and supercooled conditions.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Harshad Pathak
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Daniel Mariedahl
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jonas A Sellberg
- Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hirohito Ogasawara
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
146
|
Vugmeyster L, Ostrovsky D, Hoatson GL, Qiang W, Falconer IB. Solvent-Driven Dynamical Crossover in the Phenylalanine Side-Chain from the Hydrophobic Core of Amyloid Fibrils Detected by 2H NMR Relaxation. J Phys Chem B 2017; 121:7267-7275. [PMID: 28699757 PMCID: PMC5567839 DOI: 10.1021/acs.jpcb.7b04726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aromatic residues are important markers of dynamical changes in proteins' hydrophobic cores. In this work we investigated the dynamics of the F19 side-chain in the core of amyloid fibrils across a wide temperature range of 300 to 140 K. We utilized solid-state 2H NMR relaxation to demonstrate the presence of a solvent-driven dynamical crossover between different motional regimes, often also referred to as the dynamical transition. In particular, the dynamics are dominated by small-angle fluctuations at low temperatures and by π-flips of the aromatic ring at high temperatures. The crossover temperature is more than 43 degrees lower for the hydrated state of the fibrils compared to the dry state, indicating that interactions with water facilitate π-flips. Further, crossover temperatures are shown to be very sensitive to polymorphic states of the fibrils, such as the 2-fold and 3-fold symmetric morphologies of the wild-type protein as well as D23N mutant protofibrils. We speculate that these differences can be attributed, at least partially, to enhanced interactions with water in the 3-fold polymorph, which has been shown to have a water-accessible cavity. Combined with previous studies of methyl group dynamics, the results highlight the presence of multiple dynamics modes in the core of the fibrils, which was originally believed to be quite rigid.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, Denver, CO 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado at Denver, Denver, CO 80204
| | - Gina L. Hoatson
- Department of Physics, College of William and Mary, Williamsburg, Virginia, 23187
| | - Wei Qiang
- Department of Chemistry, Binghamton University, Binghamton, NY 13902
| | - Isaac B. Falconer
- Department of Chemistry, University of Colorado at Denver, Denver, CO 80204
| |
Collapse
|
147
|
Transmembrane allosteric energetics characterization for strong coupling between proton and potassium ion binding in the KcsA channel. Proc Natl Acad Sci U S A 2017; 114:8788-8793. [PMID: 28768808 DOI: 10.1073/pnas.1701330114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The slow spontaneous inactivation of potassium channels exhibits classic signatures of transmembrane allostery. A variety of data support a model in which the loss of K+ ions from the selectivity filter is a major factor in promoting inactivation, which defeats transmission, and is allosterically coupled to protonation of key channel activation residues, more than 30 Å from the K+ ion binding site. We show that proton binding at the intracellular pH sensor perturbs the potassium affinity at the extracellular selectivity filter by more than three orders of magnitude for the full-length wild-type KcsA, a pH-gated bacterial channel, in membrane bilayers. Studies of F103 in the hinge of the inner helix suggest an important role for its bulky sidechain in the allosteric mechanism; we show that the energetic strength of coupling of the gates is strongly altered when this residue is mutated to alanine. These results provide quantitative site-specific measurements of allostery in a bilayer environment, and highlight the power of describing ion channel gating through the lens of allosteric coupling.
Collapse
|
148
|
Zinke M, Fricke P, Samson C, Hwang S, Wall JS, Lange S, Zinn‐Justin S, Lange A. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR. Angew Chem Int Ed Engl 2017; 56:9497-9501. [PMID: 28644511 PMCID: PMC5582604 DOI: 10.1002/anie.201706060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 01/03/2023]
Abstract
Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH, (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.
Collapse
Affiliation(s)
- Maximilian Zinke
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Pascal Fricke
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Camille Samson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris-Sud, Université Paris-SaclayGif-sur-Yvette CedexFrance
| | - Songhwan Hwang
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | | | - Sascha Lange
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Sophie Zinn‐Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris-Sud, Université Paris-SaclayGif-sur-Yvette CedexFrance
| | - Adam Lange
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für BiologieHumboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
149
|
Good D, Pham C, Jagas J, Lewandowski JR, Ladizhansky V. Solid-State NMR Provides Evidence for Small-Amplitude Slow Domain Motions in a Multispanning Transmembrane α-Helical Protein. J Am Chem Soc 2017; 139:9246-9258. [PMID: 28613900 PMCID: PMC5510093 DOI: 10.1021/jacs.7b03974] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 02/06/2023]
Abstract
Proteins are dynamic entities and populate ensembles of conformations. Transitions between states within a conformational ensemble occur over a broad spectrum of amplitude and time scales, and are often related to biological function. Whereas solid-state NMR (SSNMR) spectroscopy has recently been used to characterize conformational ensembles of proteins in the microcrystalline states, its applications to membrane proteins remain limited. Here we use SSNMR to study conformational dynamics of a seven-helical transmembrane (TM) protein, Anabaena Sensory Rhodopsin (ASR) reconstituted in lipids. We report on site-specific measurements of the 15N longitudinal R1 and rotating frame R1ρ relaxation rates at two fields of 600 and 800 MHz and at two temperatures of 7 and 30 °C. Quantitative analysis of the R1 and R1ρ values and of their field and temperature dependencies provides evidence of motions on at least two time scales. We modeled these motions as fast local motions and slower collective motions of TM helices and of structured loops, and used the simple model-free and extended model-free analyses to fit the data and estimate the amplitudes, time scales and activation energies. Faster picosecond (tens to hundreds of picoseconds) local motions occur throughout the protein and are dominant in the middle portions of the TM helices. In contrast, the amplitudes of the slower collective motions occurring on the nanosecond (tens to hundreds of nanoseconds) time scales, are smaller in the central parts of helices, but increase toward their cytoplasmic sides as well as in the interhelical loops. ASR interacts with a soluble transducer protein on its cytoplasmic surface, and its binding affinity is modulated by light. The larger amplitude of motions on the cytoplasmic side of the TM helices correlates with the ability of ASR to undergo large conformational changes in the process of binding/unbinding the transducer.
Collapse
Affiliation(s)
- Daryl Good
- Department
of Physics and Biophysics Interdepartmental Group, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Charlie Pham
- Department
of Physics and Biophysics Interdepartmental Group, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jacob Jagas
- Department
of Physics and Biophysics Interdepartmental Group, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Józef R. Lewandowski
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Vladimir Ladizhansky
- Department
of Physics and Biophysics Interdepartmental Group, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
150
|
Zinke M, Fricke P, Samson C, Hwang S, Wall JS, Lange S, Zinn-Justin S, Lange A. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maximilian Zinke
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Pascal Fricke
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Camille Samson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris-Sud, Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Songhwan Hwang
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | | | - Sascha Lange
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris-Sud, Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Adam Lange
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
- Institut für Biologie; Humboldt-Universität zu Berlin; Berlin Germany
| |
Collapse
|