102
|
Marcos E, Basanta B, Chidyausiku TM, Tang Y, Oberdorfer G, Liu G, Swapna GVT, Guan R, Silva DA, Dou J, Pereira JH, Xiao R, Sankaran B, Zwart PH, Montelione GT, Baker D. Principles for designing proteins with cavities formed by curved β sheets. Science 2017; 355:201-206. [PMID: 28082595 PMCID: PMC5588894 DOI: 10.1126/science.aah7389] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/02/2016] [Indexed: 12/23/2022]
Abstract
Active sites and ligand-binding cavities in native proteins are often formed by curved β sheets, and the ability to control β-sheet curvature would allow design of binding proteins with cavities customized to specific ligands. Toward this end, we investigated the mechanisms controlling β-sheet curvature by studying the geometry of β sheets in naturally occurring protein structures and folding simulations. The principles emerging from this analysis were used to design, de novo, a series of proteins with curved β sheets topped with α helices. Nuclear magnetic resonance and crystal structures of the designs closely match the computational models, showing that β-sheet curvature can be controlled with atomic-level accuracy. Our approach enables the design of proteins with cavities and provides a route to custom design ligand-binding and catalytic sites.
Collapse
Affiliation(s)
- Enrique Marcos
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Benjamin Basanta
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA 98195, USA
| | - Tamuka M Chidyausiku
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA 98195, USA
| | - Yuefeng Tang
- Center for Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | - Gustav Oberdorfer
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, 8010-Graz, Austria
| | - Gaohua Liu
- Center for Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | - G V T Swapna
- Center for Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | - Rongjin Guan
- Center for Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | - Daniel-Adriano Silva
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jiayi Dou
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jose Henrique Pereira
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| | | | - Peter H Zwart
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
105
|
Zucchelli S, Patrucco L, Persichetti F, Gustincich S, Cotella D. Engineering Translation in Mammalian Cell Factories to Increase Protein Yield: The Unexpected Use of Long Non-Coding SINEUP RNAs. Comput Struct Biotechnol J 2016; 14:404-410. [PMID: 27872686 PMCID: PMC5107644 DOI: 10.1016/j.csbj.2016.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells are the primary factories for the production of therapeutic proteins, including monoclonal antibodies (MAbs). To improve expression and stability, several methodologies have been adopted, including methods based on media formulation, selective pressure and cell- or vector engineering. This review presents current approaches aimed at improving mammalian cell factories that are based on the enhancement of translation. Among well-established techniques (codon optimization and improvement of mRNA secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure, SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the production of secreted proteins in biomanufacturing processes.
Collapse
Affiliation(s)
- Silvia Zucchelli
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Area of Neuroscience, SISSA, Trieste, Italy
| | - Laura Patrucco
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Stefano Gustincich
- Area of Neuroscience, SISSA, Trieste, Italy; Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), Genova, Italy
| | - Diego Cotella
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
106
|
Berezovsky IN, Guarnera E, Zheng Z. Basic units of protein structure, folding, and function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 128:85-99. [PMID: 27697476 DOI: 10.1016/j.pbiomolbio.2016.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/05/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
Study of the hierarchy of domain structure with alternative sets of domains and analysis of discontinuous domains, consisting of remote segments of the polypeptide chain, raised a question about the minimal structural unit of the protein domain. The hypothesis on the decisive role of the polypeptide backbone in determining the elementary units of globular proteins have led to the discovery of closed loops. It is reviewed here how closed loops form the loop-n-lock structure of proteins, providing the foundation for stability and designability of protein folds/domain and underlying their co-translational folding. Simplified protein sequences are considered here with the aim to explore the basic principles that presumably dominated the folding and stability of proteins in the early stages of structural evolution. Elementary functional loops (EFLs), closed loops with one or few catalytic residues, are, in turn, units of the protein function. They are apparent descendants of the prebiotic ring-like peptides, which gave rise to the first functional folds/domains being fused in the beginning of the evolution of protein structure. It is also shown how evolutionary relations between protein functional superfamilies and folds delineated with the help of EFLs can contribute to establishing the rules for design of desired enzymatic functions. Generalized descriptors of the elementary functions are proposed to be used as basic units in the future computational design.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore.
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Zejun Zheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| |
Collapse
|
108
|
Liao F, Yuan H, Du KJ, You Y, Gao SQ, Wen GB, Lin YW, Tan X. Distinct roles of a tyrosine-associated hydrogen-bond network in fine-tuning the structure and function of heme proteins: two cases designed for myoglobin. MOLECULAR BIOSYSTEMS 2016; 12:3139-45. [PMID: 27476534 DOI: 10.1039/c6mb00537c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrogen-bond (H-bond) network, specifically a Tyr-associated H-bond network, plays key roles in regulating the structure and function of proteins, as exemplified by abundant heme proteins in nature. To explore an approach for fine-tuning the structure and function of artificial heme proteins, we herein used myoglobin (Mb) as a model protein and introduced a Tyr residue in the secondary sphere of the heme active site at two different positions (107 and 138). We performed X-ray crystallography, UV-Vis spectroscopy, stopped-flow kinetics, and electron paramagnetic resonance (EPR) studies for the two single mutants, I107Y Mb and F138Y Mb, and compared to that of wild-type Mb under the same conditions. The results showed that both Tyr107 and Tyr138 form a distinct H-bond network involving water molecules and neighboring residues, which fine-tunes ligand binding to the heme iron and enhances the protein stability, respectively. Moreover, the Tyr107-associated H-bond network was shown to fine-tune both H2O2 binding and activation. With two cases demonstrated for Mb, this study suggests that the Tyr-associated H-bond network has distinct roles in regulating the protein structure, properties and functions, depending on its location in the protein scaffold. Therefore, it is possible to design a Tyr-associated H-bond network in general to create other artificial heme proteins with improved properties and functions.
Collapse
Affiliation(s)
- Fei Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | | | | | | | | | | | | | | |
Collapse
|