101
|
Tsuda M, Kitamasu K, Hosokawa S, Nakano T, Ide H. Repair of trapped topoisomerase II covalent cleavage complexes: Novel proteasome-independent mechanisms. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:170-184. [PMID: 31608820 DOI: 10.1080/15257770.2019.1674332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Topoisomerase II (TOP2) resolves topologically entwined duplex DNA. It generates a transient DNA double-strand break intermediate, known as TOP2 cleavage complex (TOP2cc) that contains a covalent link between TOP2 and the 5'-terminus of the incised DNA duplex. Etoposide, a frontline anticancer drug, freezes the intermediate and forms irreversible TOP2ccs. Tyrosyl-DNA phosphodiesterase 2 (TDP2) is thought to repair irreversible TOP2ccs by hydrolyzing the phosphodiester bond between TOP2 and DNA after the proteasomal degradation of trapped TOP2ccs. However, the functional cooperation between TOP2 and proteasome in the repair of trapped TOP2ccs in vivo remains unknown. In this study, we analyze the repair of etoposide-induced TOP2ccs in wild-type and TDP2-deficient (TDP2-/-) TK6 cells in the absence and presence of MG132, a potent proteasome inhibitor. The results suggested that TOP2ccs were repaired by proteasome-dependent and proteasome-independent pathways. Both proteasome-dependent and proteasome-independent pathways were further subdivided into TDP2-dependent and TDP2-independent pathways, indicating that four pathways operate in the repair of TOP2ccs. In cell survival assays, MG132 increased the etoposide sensitivity of TDP2-/- cells, supporting the TDP2-independent and proteasome-dependent pathway among these multiple repair pathways. We also demonstrated that TDP2 released TOP2 from DNA that contained etoposide-induced TOP2cc without proteolytic degradation in vitro. Taken together, the present findings uncover novel proteasome-independent mechanisms for the repair of TOP2ccs.
Collapse
Affiliation(s)
- Masataka Tsuda
- Program of Mathematical and Life Sciences, Department of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kaito Kitamasu
- Program of Mathematical and Life Sciences, Department of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Seiji Hosokawa
- Program of Mathematical and Life Sciences, Department of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Toshiaki Nakano
- DNA Damage Chemistry Research Group, Institute for Quantum Life Science, National Institutes of Quantum and Radiological Science and Technology, Kizugawa-shi, Japan
| | - Hiroshi Ide
- Program of Mathematical and Life Sciences, Department of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
102
|
Sakai Y, Hanafusa H, Pastuhov SI, Shimizu T, Li C, Hisamoto N, Matsumoto K. TDP2 negatively regulates axon regeneration by inducing SUMOylation of an Ets transcription factor. EMBO Rep 2019; 20:e47517. [PMID: 31393064 PMCID: PMC6776894 DOI: 10.15252/embr.201847517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 12/02/2022] Open
Abstract
In Caenorhabditis elegans, the JNK MAP kinase (MAPK) pathway is important for axon regeneration. The JNK pathway is activated by a signaling cascade consisting of the growth factor SVH-1 and its receptor tyrosine kinase SVH-2. Expression of the svh-2 gene is induced by axonal injury in a process involving the transcription factors ETS-4 and CEBP-1. Here, we find that svh-14/mxl-1, a gene encoding a Max-like transcription factor, is required for activation of svh-2 expression in response to axonal injury. We show that MXL-1 binds to and inhibits the function of TDPT-1, a C. elegans homolog of mammalian tyrosyl-DNA phosphodiesterase 2 [TDP2; also called Ets1-associated protein II (EAPII)]. Deletion of tdpt-1 suppresses the mxl-1 defect, but not the ets-4 defect, in axon regeneration. TDPT-1 induces SUMOylation of ETS-4, which inhibits ETS-4 transcriptional activity, and MXL-1 counteracts this effect. Thus, TDPT-1 interacts with two different transcription factors in axon regeneration.
Collapse
Affiliation(s)
- Yoshiki Sakai
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Hiroshi Hanafusa
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Strahil Iv Pastuhov
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Tatsuhiro Shimizu
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Chun Li
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Naoki Hisamoto
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| | - Kunihiro Matsumoto
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaJapan
| |
Collapse
|
103
|
Abstract
DNA topoisomerases are enzymes that catalyze changes in the torsional and flexural strain of DNA molecules. Earlier studies implicated these enzymes in a variety of processes in both prokaryotes and eukaryotes, including DNA replication, transcription, recombination, and chromosome segregation. Studies performed over the past 3 years have provided new insight into the roles of various topoisomerases in maintaining eukaryotic chromosome structure and facilitating the decatenation of daughter chromosomes at cell division. In addition, recent studies have demonstrated that the incorporation of ribonucleotides into DNA results in trapping of topoisomerase I (TOP1)–DNA covalent complexes during aborted ribonucleotide removal. Importantly, such trapped TOP1–DNA covalent complexes, formed either during ribonucleotide removal or as a consequence of drug action, activate several repair processes, including processes involving the recently described nuclear proteases SPARTAN and GCNA-1. A variety of new TOP1 inhibitors and formulations, including antibody–drug conjugates and PEGylated complexes, exert their anticancer effects by also trapping these TOP1–DNA covalent complexes. Here we review recent developments and identify further questions raised by these new findings.
Collapse
Affiliation(s)
- Mary-Ann Bjornsti
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294-0019, USA
| | - Scott H Kaufmann
- Departments of Oncology and Molecular Pharmacolgy & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
104
|
Canela A, Maman Y, Huang SYN, Wutz G, Tang W, Zagnoli-Vieira G, Callen E, Wong N, Day A, Peters JM, Caldecott KW, Pommier Y, Nussenzweig A. Topoisomerase II-Induced Chromosome Breakage and Translocation Is Determined by Chromosome Architecture and Transcriptional Activity. Mol Cell 2019; 75:252-266.e8. [PMID: 31202577 PMCID: PMC8170508 DOI: 10.1016/j.molcel.2019.04.030] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/22/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022]
Abstract
Topoisomerase II (TOP2) relieves torsional stress by forming transient cleavage complex intermediates (TOP2ccs) that contain TOP2-linked DNA breaks (DSBs). While TOP2ccs are normally reversible, they can be "trapped" by chemotherapeutic drugs such as etoposide and subsequently converted into irreversible TOP2-linked DSBs. Here, we have quantified etoposide-induced trapping of TOP2ccs, their conversion into irreversible TOP2-linked DSBs, and their processing during DNA repair genome-wide, as a function of time. We find that while TOP2 chromatin localization and trapping is independent of transcription, it requires pre-existing binding of cohesin to DNA. In contrast, the conversion of trapped TOP2ccs to irreversible DSBs during DNA repair is accelerated 2-fold at transcribed loci relative to non-transcribed loci. This conversion is dependent on proteasomal degradation and TDP2 phosphodiesterase activity. Quantitative modeling shows that only two features of pre-existing chromatin structure-namely, cohesin binding and transcriptional activity-can be used to predict the kinetics of TOP2-induced DSBs.
Collapse
Affiliation(s)
- Andres Canela
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA; The Hakubi Center for Advanced Research and Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yaakov Maman
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA
| | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Wen Tang
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Guido Zagnoli-Vieira
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, 4, Czech Republic
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
105
|
Kawale AS, Povirk LF. Tyrosyl-DNA phosphodiesterases: rescuing the genome from the risks of relaxation. Nucleic Acids Res 2019; 46:520-537. [PMID: 29216365 PMCID: PMC5778467 DOI: 10.1093/nar/gkx1219] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Tyrosyl–DNA Phosphodiesterases 1 (TDP1) and 2 (TDP2) are eukaryotic enzymes that clean-up after aberrant topoisomerase activity. While TDP1 hydrolyzes phosphotyrosyl peptides emanating from trapped topoisomerase I (Top I) from the 3′ DNA ends, topoisomerase 2 (Top II)-induced 5′-phosphotyrosyl residues are processed by TDP2. Even though the canonical functions of TDP1 and TDP2 are complementary, they exhibit little structural or sequence similarity. Homozygous mutations in genes encoding these enzymes lead to the development of severe neurodegenerative conditions due to the accumulation of transcription-dependent topoisomerase cleavage complexes underscoring the biological significance of these enzymes in the repair of topoisomerase–DNA lesions in the nervous system. TDP1 can promiscuously process several blocked 3′ ends generated by DNA damaging agents and nucleoside analogs in addition to hydrolyzing 3′-phosphotyrosyl residues. In addition, deficiency of these enzymes causes hypersensitivity to anti-tumor topoisomerase poisons. Thus, TDP1 and TDP2 are promising therapeutic targets and their inhibitors are expected to significantly synergize the effects of current anti-tumor therapies including topoisomerase poisons and other DNA damaging agents. This review covers the structural aspects, biology and regulation of these enzymes, along with ongoing developments in the process of discovering safe and effective TDP inhibitors.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
106
|
Wang W, Tse-Dinh YC. Recent Advances in Use of Topoisomerase Inhibitors in Combination Cancer Therapy. Curr Top Med Chem 2019; 19:730-740. [PMID: 30931861 DOI: 10.2174/1568026619666190401113350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023]
Abstract
Inhibitors targeting human topoisomerase I and topoisomerase II alpha have provided a useful chemotherapy option for the treatment of many patients suffering from a variety of cancers. While the treatment can be effective in many patient cases, use of these human topoisomerase inhibitors is limited by side-effects that can be severe. A strategy of employing the topoisomerase inhibitors in combination with other treatments can potentially sensitize the cancer to increase the therapeutic efficacy and reduce resistance or adverse side effects. The combination strategies reviewed here include inhibitors of DNA repair, epigenetic modifications, signaling modulators and immunotherapy. The ongoing investigations on cellular response to topoisomerase inhibitors and newly initiated clinical trials may lead to adoption of novel cancer therapy regimens that can effectively stop the proliferation of cancer cells while limiting the development of resistance.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
107
|
Swanston A, Zabrady K, Ferreira HC. The ATP-dependent chromatin remodelling enzyme Uls1 prevents Topoisomerase II poisoning. Nucleic Acids Res 2019; 47:6172-6183. [PMID: 31106359 PMCID: PMC6614809 DOI: 10.1093/nar/gkz362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/29/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Topoisomerase II (Top2) is an essential enzyme that decatenates DNA via a transient Top2-DNA covalent intermediate. This intermediate can be stabilized by a class of drugs termed Top2 poisons, resulting in massive DNA damage. Thus, Top2 activity is a double-edged sword that needs to be carefully controlled to maintain genome stability. We show that Uls1, an adenosine triphosphate (ATP)-dependent chromatin remodelling (Snf2) enzyme, can alter Top2 chromatin binding and prevent Top2 poisoning in yeast. Deletion mutants of ULS1 are hypersensitive to the Top2 poison acriflavine (ACF), activating the DNA damage checkpoint. We map Uls1's Top2 interaction domain and show that this, together with its ATPase activity, is essential for Uls1 function. By performing ChIP-seq, we show that ACF leads to a general increase in Top2 binding across the genome. We map Uls1 binding sites and identify tRNA genes as key regions where Uls1 associates after ACF treatment. Importantly, the presence of Uls1 at these sites prevents ACF-dependent Top2 accumulation. Our data reveal the effect of Top2 poisons on the global Top2 binding landscape and highlights the role of Uls1 in antagonizing Top2 function. Remodelling Top2 binding is thus an important new means by which Snf2 enzymes promote genome stability.
Collapse
Affiliation(s)
- Amy Swanston
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Katerina Zabrady
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Helder C Ferreira
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| |
Collapse
|
108
|
Nitiss KC, Nitiss JL, Hanakahi LA. DNA Damage by an essential enzyme: A delicate balance act on the tightrope. DNA Repair (Amst) 2019; 82:102639. [PMID: 31437813 DOI: 10.1016/j.dnarep.2019.102639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023]
Abstract
DNA topoisomerases are essential for DNA metabolic processes such as replication and transcription. Since DNA is double stranded, the unwinding needed for these processes results in DNA supercoiling and catenation of replicated molecules. Changing the topology of DNA molecules to relieve supercoiling or resolve catenanes requires that DNA be transiently cut. While topoisomerases carry out these processes in ways that minimize the likelihood of genome instability, there are several ways that topoisomerases may fail. Topoisomerases can be induced to fail by therapeutic small molecules such as by fluoroquinolones that target bacterial topoisomerases, or a variety of anti-cancer agents that target the eukaryotic enzymes. Increasingly, there have been a large number of agents and processes, including natural products and their metabolites, DNA damage, and the intrinsic properties of the enzymes that can lead to long-lasting DNA breaks that subsequently lead to genome instability, cancer, and other diseases. Understanding the processes that can interfere with topoisomerases and how cells respond when topoisomerases fail will be important in minimizing the consequences when enzymes need to transiently interfere with DNA integrity.
Collapse
Affiliation(s)
- Karin C Nitiss
- University of Illinois College of Medicine, Department of Biomedical Sciences, Rockford, IL, 61107, United States; University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States
| | - John L Nitiss
- University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States.
| | - Leslyn A Hanakahi
- University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States.
| |
Collapse
|
109
|
Gordon J, Pillon MC, Stanley RE. Nol9 Is a Spatial Regulator for the Human ITS2 Pre-rRNA Endonuclease-Kinase Complex. J Mol Biol 2019; 431:3771-3786. [PMID: 31288032 DOI: 10.1016/j.jmb.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/01/2022]
Abstract
The ribosome plays a universal role in translating the cellular proteome. Defects in the ribosome assembly factor Las1L are associated with congenital lethal motor neuron disease and X-linked intellectual disability disorders, yet its role in processing precursor ribosomal RNA (pre-rRNA) is largely unclear. The Las1L endoribonuclease associates with the Nol9 polynucleotide kinase to form the internal transcribed spacer 2 (ITS2) pre-rRNA endonuclease-kinase machinery. Together, Las1L-Nol9 catalyzes RNA cleavage and phosphorylation to mark the ITS2 for degradation. While ITS2 processing is critical for the production of functional ribosomes, the regulation of mammalian Las1L-Nol9 remains obscure. Here we characterize the human Las1L-Nol9 complex and identify critical molecular features that regulate its assembly and spatial organization. We establish that Las1L and Nol9 form a higher-order complex and identify the regions responsible for orchestrating this intricate architecture. Structural analysis by high-resolution imaging defines the intricate spatial pattern of Las1L-Nol9 within the nucleolar sub-structure linked with late pre-rRNA processing events. Furthermore, we uncover a Nol9-encoded nucleolar localization sequence that is responsible for nucleolar transport of the assembled Las1L-Nol9 complex. Together, these data provide a mechanism for the assembly and nucleolar localization of the human ITS2 pre-rRNA endonuclease-kinase complex.
Collapse
Affiliation(s)
- Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
110
|
Borgermann N, Ackermann L, Schwertman P, Hendriks IA, Thijssen K, Liu JC, Lans H, Nielsen ML, Mailand N. SUMOylation promotes protective responses to DNA-protein crosslinks. EMBO J 2019; 38:embj.2019101496. [PMID: 30914427 PMCID: PMC6463212 DOI: 10.15252/embj.2019101496] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 11/09/2022] Open
Abstract
DNA‐protein crosslinks (DPCs) are highly cytotoxic lesions that obstruct essential DNA transactions and whose resolution is critical for cell and organismal fitness. However, the mechanisms by which cells respond to and overcome DPCs remain incompletely understood. Recent studies unveiled a dedicated DPC repair pathway in higher eukaryotes involving the SprT‐type metalloprotease SPRTN/DVC1, which proteolytically processes DPCs during DNA replication in a ubiquitin‐regulated manner. Here, we show that chemically induced and defined enzymatic DPCs trigger potent chromatin SUMOylation responses targeting the crosslinked proteins and associated factors. Consequently, inhibiting SUMOylation compromises DPC clearance and cellular fitness. We demonstrate that ACRC/GCNA family SprT proteases interact with SUMO and establish important physiological roles of Caenorhabditis elegans GCNA‐1 and SUMOylation in promoting germ cell and embryonic survival upon DPC formation. Our findings provide first global insights into signaling responses to DPCs and reveal an evolutionarily conserved function of SUMOylation in facilitating responses to these lesions in metazoans that may complement replication‐coupled DPC resolution processes.
Collapse
Affiliation(s)
- Nikoline Borgermann
- Ubiquitin Signaling Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Leena Ackermann
- Ubiquitin Signaling Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Petra Schwertman
- Ubiquitin Signaling Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Karen Thijssen
- Department of Molecular Genetics, Oncode Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Julio Cy Liu
- Ubiquitin Signaling Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Niels Mailand
- Ubiquitin Signaling Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark .,Center for Chromosome Stability, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
111
|
Structural Insight into DNA-Dependent Activation of Human Metalloprotease Spartan. Cell Rep 2019; 26:3336-3346.e4. [DOI: 10.1016/j.celrep.2019.02.082] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 02/21/2019] [Indexed: 11/18/2022] Open
|
112
|
Abstract
DNA-protein crosslinks (DPCs) are a specific type of DNA lesion consisting of a protein covalently and irreversibly bound to DNA, which arise after exposure to physical and chemical crosslinking agents. DPCs can be bulky and thereby pose a barrier to DNA replication and transcription. The persistence of DPCs during S phase causes DNA replication stress and genome instability. The toxicity of DPCs is exploited in cancer therapy: many common chemotherapeutics kill cancer cells by inducing DPC formation. Recent work from several laboratories discovered a specialized repair pathway for DPCs, namely DPC proteolysis (DPCP) repair. DPCP repair is carried out by replication-coupled DNA-dependent metalloproteases: Wss1 in yeast and SPRTN in metazoans. Mutations in SPRTN cause premature ageing and liver cancer in humans and mice; thus, defective DPC repair has great clinical ramifications. In the present review, we will revise the current knowledge on the mechanisms of DPCP repair and on the regulation of DPC protease activity, while highlighting the most significant unresolved questions in the field. Finally, we will discuss the impact of faulty DPC repair on disease and cancer therapy.
Collapse
|
113
|
Effect of TDP2 on the Level of TOP2-DNA Complexes and SUMOylated TOP2-DNA Complexes. Int J Mol Sci 2018; 19:ijms19072056. [PMID: 30011940 PMCID: PMC6073685 DOI: 10.3390/ijms19072056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022] Open
Abstract
DNA topoisomerase II (TOP2) activity involves a normally transient double-strand break intermediate in which the enzyme is coupled to DNA via a 5′-phosphotyrosyl bond. However, etoposide and other topoisomerase drugs poison the enzyme by stabilising this enzyme-bridged break, resulting in the accumulation of TOP2-DNA covalent complexes with cytotoxic consequences. The phosphotyrosyl diesterase TDP2 appears to be required for efficient repair of this unusual type of DNA damage and can remove 5′-tyrosine adducts from a double-stranded oligonucleotide substrate. Here, we adapt the trapped in agarose DNA immunostaining (TARDIS) assay to investigate the role of TDP2 in the removal of TOP2-DNA complexes in vitro and in cells. We report that TDP2 alone does not remove TOP2-DNA complexes from genomic DNA in vitro and that depletion of TDP2 in cells does not slow the removal of TOP2-DNA complexes. Thus, if TDP2 is involved in repairing TOP2 adducts, there must be one or more prior steps in which the protein-DNA complex is processed before TDP2 removes the remaining 5′ tyrosine DNA adducts. While this is partly achieved through the degradation of TOP2 adducts by the proteasome, a proteasome-independent mechanism has also been described involving the SUMOylation of TOP2 by the ZATT E3 SUMO ligase. The TARDIS assay was also adapted to measure the effect of TDP2 knockdown on levels of SUMOylated TOP2-DNA complexes, which together with levels of double strand breaks were unaffected in K562 cells following etoposide exposure and proteasomal inhibition.
Collapse
|
114
|
Schellenberg MJ, Petrovich RM, Malone CC, Williams RS. Selectable high-yield recombinant protein production in human cells using a GFP/YFP nanobody affinity support. Protein Sci 2018; 27:1083-1092. [PMID: 29577475 DOI: 10.1002/pro.3409] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 01/10/2023]
Abstract
Recombinant protein expression systems that produce high yields of pure proteins and multi-protein complexes are essential to meet the needs of biologists, biochemists, and structural biologists using X-ray crystallography and cryo-electron microscopy. An ideal expression system for recombinant human proteins is cultured human cells where the correct translation and chaperone machinery are present. However, compared to bacterial expression systems, human cell cultures present several technical challenges to their use as an expression system. We developed a method that utilizes a YFP fusion-tag to generate recombinant proteins using suspension-cultured HEK293F cells. YFP is a dual-function tag that enables direct visualization and fluorescence-based selection of high expressing clones for and rapid purification using a high-stringency, high-affinity anti-GFP/YFP nanobody support. We demonstrate the utility of this system by expressing two large human proteins, TOP2α (340 KDa dimer) and a TOP2β catalytic core (260 KDa dimer). This robustly and reproducibly yields >10 mg/L liter of cell culture using transient expression or 2.5 mg/L using stable expression.
Collapse
Affiliation(s)
- Matthew J Schellenberg
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709
| | - Robert M Petrovich
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709
| | - Christine C Malone
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709
| | - R Scott Williams
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709
| |
Collapse
|
115
|
Vilas CK, Emery LE, Denchi EL, Miller KM. Caught with One's Zinc Fingers in the Genome Integrity Cookie Jar. Trends Genet 2018; 34:313-325. [PMID: 29370947 DOI: 10.1016/j.tig.2017.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 12/27/2022]
Abstract
Zinc finger (ZnF) domains are present in at least 5% of human proteins. First characterized as binding to DNA, ZnFs display extraordinary binding plasticity and can bind to RNA, lipids, proteins, and protein post-translational modifications (PTMs). The diverse binding properties of ZnFs have made their functional characterization challenging. While once confined to large and poorly characterized protein families, proteomic, cellular, and molecular studies have begun to shed light on their involvement as protectors of the genome. We focus here on the emergent roles of ZnF domain-containing proteins in promoting genome integrity, including their involvement in telomere maintenance and DNA repair. These findings have highlighted the need for further characterization of ZnF proteins, which can reveal the functions of this large gene class in normal cell function and human diseases, including those involving genome instability such as aging and cancer.
Collapse
Affiliation(s)
- Caroline K Vilas
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Lara E Emery
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Eros Lazzerini Denchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
116
|
Abstract
Recently, ZATT (also known as ZNF451 or Zpf451) was reported by Schellenberg et al. to aid the removal of Topoisomerase II cleavage complexes by stimulating the phosphodiesterase activity of Tyrosyl DNA Phosphodiesterase 2. Although the full implication of this discovery is unknown, it will help us understand how cells respond to topoisomerase-induced genome damage and chemotherapeutic topoisomerase 'poisons'.
Collapse
|