101
|
Ye H, Jiang C, Li L, Li H, Rong Z, Lin Y. Live-cell imaging of genomic loci with Cas9 variants. Biotechnol J 2022; 17:e2100381. [PMID: 36058644 DOI: 10.1002/biot.202100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Endonuclease-deactivated clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease (dCas9) has been repurposed for live-cell imaging of genomic loci. Engineered or evolved dCas9 variants have been developed to increase the applicability of the CRISPR/dCas9 system. However, there have been no systematic comparisons of these dCas9 variants in terms of their performance in the visualization of genomic loci. MAIN METHODS AND MAJOR RESULTS Here we demonstrate that dSpCas9 and its variants deSpCas9(1.1), dSpCas9-HF1, devoCas9, and dxCas9(3.7) can be used for CRISPR-based live-cell genomic imaging. dSpCas9 had the greatest utility, with a high labeling efficiency of repetitive sequences-including those with a low number of repeats-and good compatibility with target RNA sequences at the MUC4 locus that varied in length from 13 to 23 nucleotides. We combined CRISPR-Tag with the dSpCas9 imaging system to observe the dynamics of the Tet promoter and found that its movement was restricted when it was active. CONCLUSIONS AND IMPLICATIONS These novel Cas9 variants provide a new set of tools for investigating the spatiotemporal regulation of gene expression through live imaging of genomic sites.
Collapse
Affiliation(s)
- Huiying Ye
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Chao Jiang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lian Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Hui Li
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Systems Science, Beijing Normal University, Beijing, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China.,Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
102
|
Forero-Quintero LS, Raymond W, Munsky B, Stasevich TJ. Visualization, Quantification, and Modeling of Endogenous RNA Polymerase II Phosphorylation at a Single-copy Gene in Living Cells. Bio Protoc 2022; 12:e4482. [PMID: 36082371 PMCID: PMC9411018 DOI: 10.21769/bioprotoc.4482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023] Open
Abstract
In eukaryotic cells, RNA Polymerase II (RNAP2) is the enzyme in charge of transcribing mRNA from DNA. RNAP2 possesses an extended carboxy-terminal domain (CTD) that gets dynamically phosphorylated as RNAP2 progresses through the transcription cycle, therefore regulating each step of transcription from recruitment to termination. Although RNAP2 residue-specific phosphorylation has been characterized in fixed cells by immunoprecipitation-based assays, or in live cells by using tandem gene arrays, these assays can mask heterogeneity and limit temporal and spatial resolution. Our protocol employs multi-colored complementary fluorescent antibody-based (Fab) probes to specifically detect the CTD of the RNAP2 (CTD-RNAP2), and its phosphorylated form at the serine 5 residue (Ser5ph-RNAP2) at a single-copy HIV-1 reporter gene. Together with high-resolution fluorescence microscopy, single-molecule tracking analysis, and rigorous computational modeling, our system allows us to visualize, quantify, and predict endogenous RNAP2 phosphorylation dynamics and mRNA synthesis at a single-copy gene, in living cells, and throughout the transcription cycle. Graphical abstract: Schematic of the steps for visualizing, quantifying, and predicting RNAP2 phosphorylation at a single-copy gene.
Collapse
Affiliation(s)
- Linda S. Forero-Quintero
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
,
*For correspondence:
| | - William Raymond
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Brian Munsky
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
,
School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Timothy J. Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
,
Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
103
|
Zhu JJ, Cheng AW. JACKIE: Fast Enumeration of Genome-Wide Single- and Multicopy CRISPR Target Sites and Their Off-Target Numbers. CRISPR J 2022; 5:618-628. [PMID: 35830604 PMCID: PMC9527058 DOI: 10.1089/crispr.2022.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022] Open
Abstract
Zinc finger protein-, transcription activator like effector-, and CRISPR-based methods for genome and epigenome editing and imaging have provided powerful tools to investigate functions of genomes. Targeting sequence design is vital to the success of these experiments. Although existing design software mainly focus on designing target sequence for specific elements, we report here the implementation of Jackie and Albert's Comprehensive K-mer Instances Enumerator (JACKIE), a suite of software for enumerating all single- and multicopy sites in the genome that can be incorporated for genome-scale designs as well as loaded onto genome browsers alongside other tracks for convenient web-based graphic-user-interface-enabled design. We also implement fast algorithms to identify sequence neighborhoods or off-target counts of targeting sequences so that designs with low probability of off-target can be identified among millions of design sequences in reasonable time. We demonstrate the application of JACKIE-designed CRISPR site clusters for genome imaging.
Collapse
Affiliation(s)
- Jacqueline Jufen Zhu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA; University of Connecticut Health Center, Farmington, Connecticut, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA; University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Albert Wu Cheng
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA; University of Connecticut Health Center, Farmington, Connecticut, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA; University of Connecticut Health Center, Farmington, Connecticut, USA
- The Jackson Laboratory Cancer Center, Bar Harbor, Maine, USA; University of Connecticut Health Center, Farmington, Connecticut, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA; and University of Connecticut Health Center, Farmington, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
104
|
Keizer VIP, Grosse-Holz S, Woringer M, Zambon L, Aizel K, Bongaerts M, Delille F, Kolar-Znika L, Scolari VF, Hoffmann S, Banigan EJ, Mirny LA, Dahan M, Fachinetti D, Coulon A. Live-cell micromanipulation of a genomic locus reveals interphase chromatin mechanics. Science 2022; 377:489-495. [PMID: 35901134 DOI: 10.1126/science.abi9810] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Our understanding of the physical principles organizing the genome in the nucleus is limited by the lack of tools to directly exert and measure forces on interphase chromosomes in vivo and probe their material nature. Here, we introduce an approach to actively manipulate a genomic locus using controlled magnetic forces inside the nucleus of a living human cell. We observed viscoelastic displacements over micrometers within minutes in response to near-piconewton forces, which are consistent with a Rouse polymer model. Our results highlight the fluidity of chromatin, with a moderate contribution of the surrounding material, revealing minor roles for cross-links and topological effects and challenging the view that interphase chromatin is a gel-like material. Our technology opens avenues for future research in areas from chromosome mechanics to genome functions.
Collapse
Affiliation(s)
- Veer I P Keizer
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005 Paris, France.,Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France.,Institut Curie, PSL Research University, CNRS UMR144, Laboratoire Biologie Cellulaire et Cancer, 75005 Paris, France
| | - Simon Grosse-Holz
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005 Paris, France.,Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France.,Department of Physics and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maxime Woringer
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005 Paris, France.,Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Laura Zambon
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005 Paris, France.,Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France.,Institut Curie, PSL Research University, CNRS UMR144, Laboratoire Biologie Cellulaire et Cancer, 75005 Paris, France
| | - Koceila Aizel
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Maud Bongaerts
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Fanny Delille
- ESPCI Paris, PSL Research University, Sorbonne Université, CNRS UMR8213, Laboratoire de Physique et d'Étude des Matériaux, 75005 Paris, France
| | - Lorena Kolar-Znika
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005 Paris, France.,Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Vittore F Scolari
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005 Paris, France.,Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Sebastian Hoffmann
- Institut Curie, PSL Research University, CNRS UMR144, Laboratoire Biologie Cellulaire et Cancer, 75005 Paris, France
| | - Edward J Banigan
- Department of Physics and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leonid A Mirny
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005 Paris, France.,Department of Physics and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maxime Dahan
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS UMR144, Laboratoire Biologie Cellulaire et Cancer, 75005 Paris, France
| | - Antoine Coulon
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005 Paris, France.,Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| |
Collapse
|
105
|
Mehra D, Adhikari S, Banerjee C, Puchner EM. Characterizing locus specific chromatin structure and dynamics with correlative conventional and super-resolution imaging in living cells. Nucleic Acids Res 2022; 50:e78. [PMID: 35524554 PMCID: PMC9303368 DOI: 10.1093/nar/gkac314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
The dynamic rearrangement of chromatin is critical for gene regulation, but mapping both the spatial organization of chromatin and its dynamics remains a challenge. Many structural conformations are too small to be resolved via conventional fluorescence microscopy and the long acquisition time of super-resolution photoactivated localization microscopy (PALM) precludes the structural characterization of chromatin below the optical diffraction limit in living cells due to chromatin motion. Here we develop a correlative conventional fluorescence and PALM imaging approach to quantitatively map time-averaged chromatin structure and dynamics below the optical diffraction limit in living cells. By assigning localizations to a locus as it moves, we reliably discriminate between bound and unbound dCas9 molecules, whose mobilities overlap. Our approach accounts for changes in DNA mobility and relates local chromatin motion to larger scale domain movement. In our experimental system, we show that compacted telomeres move faster and have a higher density of bound dCas9 molecules, but the relative motion of those molecules is more restricted than in less compacted telomeres. Correlative conventional and PALM imaging therefore improves the ability to analyze the mobility and time-averaged nanoscopic structural features of locus specific chromatin with single molecule sensitivity and yields unprecedented insights across length and time scales.
Collapse
Affiliation(s)
- Dushyant Mehra
- School of Physics and Astronomy, University of Minnesota, Minneapolis MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester MN, USA
| | - Santosh Adhikari
- School of Physics and Astronomy, University of Minnesota, Minneapolis MN, USA
| | - Chiranjib Banerjee
- School of Physics and Astronomy, University of Minnesota, Minneapolis MN, USA
| | - Elias M Puchner
- School of Physics and Astronomy, University of Minnesota, Minneapolis MN, USA
| |
Collapse
|
106
|
Ku H, Park G, Goo J, Lee J, Park TL, Shim H, Kim JH, Cho WK, Jeong C. Effects of Transcription-Dependent Physical Perturbations on the Chromosome Dynamics in Living Cells. Front Cell Dev Biol 2022; 10:822026. [PMID: 35874812 PMCID: PMC9302598 DOI: 10.3389/fcell.2022.822026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies with single-particle tracking in live cells have revealed that chromatin dynamics are directly affected by transcription. However, how transcription alters the chromatin movements followed by changes in the physical properties of chromatin has not been elucidated. Here, we measured diffusion characteristics of chromatin by targeting telomeric DNA repeats with CRISPR-labeling. We found that transcription inhibitors that directly block transcription factors globally increased the movements of chromatin, while the other inhibitor that blocks transcription by DNA intercalating showed an opposite effect. We hypothesized that the increased mobility of chromatin by transcription inhibition and the decreased chromatin movement by a DNA intercalating inhibitor is due to alterations in chromatin rigidity. We also tested how volume confinement of nuclear space affects chromatin movements. We observed decreased chromatin movements under osmotic pressure and with overexpressed chromatin architectural proteins that compact chromatin.
Collapse
Affiliation(s)
- Hyeyeong Ku
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
| | - Gunhee Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jiyoung Goo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
| | - Jeongmin Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Tae Lim Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hwanyong Shim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeong Hee Kim
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
- Department of Oral Biochemistry and Molecular Biology, Kyung Hee University, Seoul, South Korea
- *Correspondence: Jeong Hee Kim, ; Won-Ki Cho, ; Cherlhyun Jeong,
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- *Correspondence: Jeong Hee Kim, ; Won-Ki Cho, ; Cherlhyun Jeong,
| | - Cherlhyun Jeong
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
- *Correspondence: Jeong Hee Kim, ; Won-Ki Cho, ; Cherlhyun Jeong,
| |
Collapse
|
107
|
Zhang S, Plummer D, Lu L, Cui J, Xu W, Wang M, Liu X, Prabhakar N, Shrinet J, Srinivasan D, Fraser P, Li Y, Li J, Jin F. DeepLoop robustly maps chromatin interactions from sparse allele-resolved or single-cell Hi-C data at kilobase resolution. Nat Genet 2022; 54:1013-1025. [PMID: 35817982 PMCID: PMC10082397 DOI: 10.1038/s41588-022-01116-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022]
Abstract
Mapping chromatin loops from noisy Hi-C heatmaps remains a major challenge. Here we present DeepLoop, which performs rigorous bias correction followed by deep-learning-based signal enhancement for robust chromatin interaction mapping from low-depth Hi-C data. DeepLoop enables loop-resolution, single-cell Hi-C analysis. It also achieves a cross-platform convergence between different Hi-C protocols and micrococcal nuclease (micro-C). DeepLoop allowed us to map the genetic and epigenetic determinants of allele-specific chromatin interactions in the human genome. We nominate new loci with allele-specific interactions governed by imprinting or allelic DNA methylation. We also discovered that, in the inactivated X chromosome (Xi), local loops at the DXZ4 'megadomain' boundary escape X-inactivation but the FIRRE 'superloop' locus does not. Importantly, DeepLoop can pinpoint heterozygous single-nucleotide polymorphisms and large structure variants that cause allelic chromatin loops, many of which rewire enhancers with transcription consequences. Taken together, DeepLoop expands the use of Hi-C to provide loop-resolution insights into the genetics of the three-dimensional genome.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,The Biomedical Sciences Training Program, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Dylan Plummer
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Leina Lu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jian Cui
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Wanying Xu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,The Biomedical Sciences Training Program, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Miao Wang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Xiaoxiao Liu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Nachiketh Prabhakar
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jatin Shrinet
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Divyaa Srinivasan
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Yan Li
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jing Li
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA. .,Department of Population and Quantitative Health Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Fulai Jin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. .,Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA. .,Department of Population and Quantitative Health Sciences, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
108
|
Novo CL, Wong EV, Hockings C, Poudel C, Sheekey E, Wiese M, Okkenhaug H, Boulton SJ, Basu S, Walker S, Kaminski Schierle GS, Narlikar GJ, Rugg-Gunn PJ. Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells. Nat Commun 2022; 13:3525. [PMID: 35725842 PMCID: PMC9209518 DOI: 10.1038/s41467-022-31198-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/07/2022] [Indexed: 12/25/2022] Open
Abstract
Heterochromatin maintains genome integrity and function, and is organised into distinct nuclear domains. Some of these domains are proposed to form by phase separation through the accumulation of HP1ɑ. Mouse heterochromatin contains noncoding major satellite repeats (MSR), which are highly transcribed in mouse embryonic stem cells (ESCs). Here, we report that MSR transcripts can drive the formation of HP1ɑ droplets in vitro, and modulate heterochromatin into dynamic condensates in ESCs, contributing to the formation of large nuclear domains that are characteristic of pluripotent cells. Depleting MSR transcripts causes heterochromatin to transition into a more compact and static state. Unexpectedly, changing heterochromatin's biophysical properties has severe consequences for ESCs, including chromosome instability and mitotic defects. These findings uncover an essential role for MSR transcripts in modulating the organisation and properties of heterochromatin to preserve genome stability. They also provide insights into the processes that could regulate phase separation and the functional consequences of disrupting the properties of heterochromatin condensates.
Collapse
Affiliation(s)
- Clara Lopes Novo
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
- Tommy's National Miscarriage Research Centre at Imperial College London, London, W12 0NN, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Emily V Wong
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Colin Hockings
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Chetan Poudel
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Eleanor Sheekey
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Meike Wiese
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Hanneke Okkenhaug
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Artios Pharma Ltd., B940, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Srinjan Basu
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Simon Walker
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | | | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK.
| |
Collapse
|
109
|
The era of 3D and spatial genomics. Trends Genet 2022; 38:1062-1075. [PMID: 35680466 DOI: 10.1016/j.tig.2022.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/28/2022]
Abstract
Over a decade ago the advent of high-throughput chromosome conformation capture (Hi-C) sparked a new era of 3D genomics. Since then the number of methods for mapping the 3D genome has flourished, enabling an ever-increasing understanding of how DNA is packaged in the nucleus and how the spatiotemporal organization of the genome orchestrates its vital functions. More recently, the next generation of spatial genomics technologies has begun to reveal how genome sequence and 3D genome organization vary between cells in their tissue context. We summarize how the toolkit for charting genome topology has evolved over the past decade and discuss how new technological developments are advancing the field of 3D and spatial genomics.
Collapse
|
110
|
Enhanced transcriptional heterogeneity mediated by NF-κB super-enhancers. PLoS Genet 2022; 18:e1010235. [PMID: 35648786 PMCID: PMC9191726 DOI: 10.1371/journal.pgen.1010235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/13/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
The transcription factor NF-κB, which plays an important role in cell fate determination, is involved in the activation of super-enhancers (SEs). However, the biological functions of the NF-κB SEs in gene control are not fully elucidated. We investigated the characteristics of NF-κB-mediated SE activity using fluorescence imaging of RelA, single-cell transcriptome and chromatin accessibility analyses in anti-IgM-stimulated B cells. The formation of cell stimulation-induced nuclear RelA foci was abolished in the presence of hexanediol, suggesting an underlying process of liquid-liquid phase separation. The gained SEs induced a switch-like expression and enhanced cell-to-cell variability in transcriptional response. These properties were correlated with the number of gained cis-regulatory interactions, while switch-like gene induction was associated with the number of NF-κB binding sites in SE. Our study suggests that NF-κB SEs have an important role in the transcriptional regulation of B cells possibly through liquid condensate formation consisting of macromolecular interactions. NF-κB produces an all-or-none activation response upon the activation of B cell receptors. These dynamics modulate the amplitude and frequency of target mRNA induction in cell populations. In this research, we performed single-cell assessment of chromatin accessibility and RNA expression, coupled with fluorescence imaging to characterize the nuclear dynamics of NF-κB proteins in B cell upon receptor stimulation. We found that upon cellular activation, NF-κB-mediated long-range activation of enhancers cooperatively evoked RNA production. In addition, predicted DNA contacts brought by open chromatin led to the high heterogeneity of RNA levels in cell populations. Stimuli-dependent NF-κB foci formation was further inhibited by 1,6-hexanediol (liquid-liquid phase separation inhibitor) and JQ1 (coactivator protein BRD4 inhibitor). We thus propose that nuclear NF-κB plays an important role in the transcriptional regulation of B cell development possibly through the formation of liquid condensates.
Collapse
|
111
|
Lee DSW, Strom AR, Brangwynne CP. The mechanobiology of nuclear phase separation. APL Bioeng 2022; 6:021503. [PMID: 35540725 PMCID: PMC9054271 DOI: 10.1063/5.0083286] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The cell nucleus can be thought of as a complex, dynamic, living material, which functions to organize and protect the genome and coordinate gene expression. These functions are achieved via intricate mechanical and biochemical interactions among its myriad components, including the nuclear lamina, nuclear bodies, and the chromatin itself. While the biophysical organization of the nuclear lamina and chromatin have been thoroughly studied, the concept that liquid-liquid phase separation and related phase transitions play a role in establishing nuclear structure has emerged only recently. Phase transitions are likely to be intimately coupled to the mechanobiology of structural elements in the nucleus, but their interplay with one another is still not understood. Here, we review recent developments on the role of phase separation and mechanics in nuclear organization and discuss the functional implications in cell physiology and disease states.
Collapse
Affiliation(s)
- Daniel S. W. Lee
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Amy R. Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
112
|
Zhang T, Zheng R, Li M, Yan C, Lan X, Tong B, Lu P, Jiang W. Active endogenous retroviral elements in human pluripotent stem cells play a role in regulating host gene expression. Nucleic Acids Res 2022; 50:4959-4973. [PMID: 35451484 PMCID: PMC9122532 DOI: 10.1093/nar/gkac265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
Human endogenous retroviruses, also called LTR elements, can be bound by transcription factors and marked by different histone modifications in different biological contexts. Recently, individual LTR or certain subclasses of LTRs such as LTR7/HERVH and LTR5_Hs/HERVK families have been identified as cis-regulatory elements. However, there are still many LTR elements with unknown functions. Here, we dissected the landscape of histone modifications and regulatory map of LTRs by integrating 98 ChIP-seq data in human embryonic stem cells (ESCs), and annotated the active LTRs enriching enhancer/promoter-related histone marks. Notably, we found that MER57E3 functionally acted as proximal regulatory element to activate respective ZNF gene. Additionally, HERVK transcript could mainly function in nucleus to activate the adjacent genes. Since LTR5_Hs/LTR5 was bound by many early embryo-specific transcription factors, we further investigated the expression dynamics in different pluripotent states. LTR5_Hs/LTR5/HERVK exhibited higher expression level in naïve ESCs and extended pluripotent stem cells (EPSCs). Functionally, the LTR5_Hs/LTR5 with high activity could serve as a distal enhancer to regulate the host genes. Ultimately, our study not only provides a comprehensive regulatory map of LTRs in human ESCs, but also explores the regulatory models of MER57E3 and LTR5_Hs/LTR5 in host genome.
Collapse
Affiliation(s)
- Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ran Zheng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Mao Li
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xianchun Lan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Bei Tong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Pei Lu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
113
|
Super-resolution visualization of chromatin loop folding in human lymphoblastoid cells using interferometric photoactivated localization microscopy. Sci Rep 2022; 12:8582. [PMID: 35595799 PMCID: PMC9122977 DOI: 10.1038/s41598-022-12568-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
The three-dimensional (3D) genome structure plays a fundamental role in gene regulation and cellular functions. Recent studies in 3D genomics inferred the very basic functional chromatin folding structures known as chromatin loops, the long-range chromatin interactions that are mediated by protein factors and dynamically extruded by cohesin. We combined the use of FISH staining of a very short (33 kb) chromatin fragment, interferometric photoactivated localization microscopy (iPALM), and traveling salesman problem-based heuristic loop reconstruction algorithm from an image of the one of the strongest CTCF-mediated chromatin loops in human lymphoblastoid cells. In total, we have generated thirteen good quality images of the target chromatin region with 2–22 nm oligo probe localization precision. We visualized the shape of the single chromatin loops with unprecedented genomic resolution which allowed us to study the structural heterogeneity of chromatin looping. We were able to compare the physical distance maps from all reconstructed image-driven computational models with contact frequencies observed by ChIA-PET and Hi-C genomic-driven methods to examine the concordance between single cell imaging and population based genomic data.
Collapse
|
114
|
Falo-Sanjuan J, Bray S. Notch-dependent and -independent transcription are modulated by tissue movements at gastrulation. eLife 2022; 11:e73656. [PMID: 35583918 PMCID: PMC9183233 DOI: 10.7554/elife.73656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/27/2022] [Indexed: 12/30/2022] Open
Abstract
Cells sense and integrate external information from diverse sources that include mechanical cues. Shaping of tissues during development may thus require coordination between mechanical forces from morphogenesis and cell-cell signalling to confer appropriate changes in gene expression. By live-imaging Notch-induced transcription in real time, we have discovered that morphogenetic movements during Drosophila gastrulation bring about an increase in activity-levels of a Notch-responsive enhancer. Mutations that disrupt the timing of gastrulation resulted in concomitant delays in transcription up-regulation that correlated with the start of mesoderm invagination. As a similar gastrulation-induced effect was detected when transcription was elicited by the intracellular domain NICD, it cannot be attributed to forces exerted on Notch receptor activation. A Notch-independent vnd enhancer also exhibited a modest gastrulation-induced activity increase in the same stripe of cells. Together, these observations argue that gastrulation-associated forces act on the nucleus to modulate transcription levels. This regulation was uncoupled when the complex linking the nucleoskeleton and cytoskeleton (LINC) was disrupted, indicating a likely conduit. We propose that the coupling between tissue-level mechanics, arising from gastrulation, and enhancer activity represents a general mechanism for ensuring correct tissue specification during development and that Notch-dependent enhancers are highly sensitive to this regulation.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Sarah Bray
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
115
|
Nollmann M, Bennabi I, Götz M, Gregor T. The Impact of Space and Time on the Functional Output of the Genome. Cold Spring Harb Perspect Biol 2022; 14:a040378. [PMID: 34230036 PMCID: PMC8733053 DOI: 10.1101/cshperspect.a040378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Over the past two decades, it has become clear that the multiscale spatial and temporal organization of the genome has important implications for nuclear function. This review centers on insights gained from recent advances in light microscopy on our understanding of transcription. We discuss spatial and temporal aspects that shape nuclear order and their consequences on regulatory components, focusing on genomic scales most relevant to function. The emerging picture is that spatiotemporal constraints increase the complexity in transcriptional regulation, highlighting new challenges, such as uncertainty about how information travels from molecular factors through the genome and space to generate a functional output.
Collapse
Affiliation(s)
- Marcelo Nollmann
- Centre de Biologie Structurale, CNRS UMR5048, INSERM U1054, Univ Montpellier, 34090 Montpellier, France
| | - Isma Bennabi
- Department of Stem Cell and Developmental Biology, CNRS UMR3738, Institut Pasteur, 75015 Paris, France
| | - Markus Götz
- Centre de Biologie Structurale, CNRS UMR5048, INSERM U1054, Univ Montpellier, 34090 Montpellier, France
| | - Thomas Gregor
- Department of Stem Cell and Developmental Biology, CNRS UMR3738, Institut Pasteur, 75015 Paris, France
- Joseph Henry Laboratory of Physics & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
116
|
Wurmser A, Basu S. Enhancer-Promoter Communication: It's Not Just About Contact. Front Mol Biosci 2022; 9:867303. [PMID: 35517868 PMCID: PMC9061983 DOI: 10.3389/fmolb.2022.867303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cis-regulatory elements such as enhancers can be located even a million base pairs away from their cognate promoter and yet modulate gene transcription. Indeed, the 3D organisation of chromatin enables the establishment of long-range enhancer-promoter communication. The observation of long-range enhancer-promoter chromatin loops at active genes originally led to a model in which enhancers and promoters form physical contacts between each other to control transcription. Yet, recent microscopy data has challenged this prevailing activity-by-contact model of enhancer-promoter communication in transcriptional activation. Live single-cell imaging approaches do not systematically reveal a correlation between enhancer-proximity and transcriptional activation. We therefore discuss the need to move from a static to a dynamic view of enhancer-promoter relationships. We highlight recent studies that not only reveal considerable chromatin movement in specific cell types, but suggest links between chromatin compaction, chromatin movement and transcription. We describe the interplay between enhancer-promoter proximity within the context of biomolecular condensates and the need to understand how condensate microenvironments influence the chromatin binding kinetics of proteins that bind at cis-regulatory elements to activate transcription. Finally, given the complex multi-scale interplay between regulatory proteins, enhancer-promoter proximity and movement, we propose the need to integrate information from complementary single-cell next-generation sequencing and live-cell imaging approaches to derive unified 3D theoretical models of enhancer-promoter communication that are ultimately predictive of transcriptional output and cell fate. In time, improved models will shed light on how tissues grow and diseases emerge.
Collapse
Affiliation(s)
- Annabelle Wurmser
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Srinjan Basu
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
117
|
Xie L, Dong P, Qi Y, Hsieh THS, English BP, Jung S, Chen X, De Marzio M, Casellas R, Chang HY, Zhang B, Tjian R, Liu Z. BRD2 compartmentalizes the accessible genome. Nat Genet 2022; 54:481-491. [PMID: 35410381 PMCID: PMC9099420 DOI: 10.1038/s41588-022-01044-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/01/2022] [Indexed: 12/15/2022]
Abstract
Mammalian chromosomes are organized into megabase-sized compartments that are further subdivided into topologically associated domains (TADs). While the formation of TADs is dependent on Cohesin, the mechanism behind compartmentalization remains enigmatic. Here, we show that the bromodomain and extraterminal (BET) family scaffold protein BRD2 promotes spatial mixing and compartmentalization of active chromatin after Cohesin loss. This activity is independent of transcription but requires BRD2 to recognize acetylated targets through its double bromodomain and interact with binding partners with its low complexity domain. Notably, genome compartmentalization mediated by BRD2 is antagonized on one hand by Cohesin and on the other by the BET homolog protein BRD4, both of which inhibit BRD2 binding to chromatin. Polymer simulation of our data supports a BRD2-Cohesin interplay model of nuclear topology, where genome compartmentalization results from a competition between loop extrusion and chromatin state-specific affinity interactions.
Collapse
|
118
|
Clow PA, Du M, Jillette N, Taghbalout A, Zhu JJ, Cheng AW. CRISPR-mediated multiplexed live cell imaging of nonrepetitive genomic loci with one guide RNA per locus. Nat Commun 2022; 13:1871. [PMID: 35387989 PMCID: PMC8987088 DOI: 10.1038/s41467-022-29343-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) structures of the genome are dynamic, heterogeneous and functionally important. Live cell imaging has become the leading method for chromatin dynamics tracking. However, existing CRISPR- and TALE-based genomic labeling techniques have been hampered by laborious protocols and are ineffective in labeling non-repetitive sequences. Here, we report a versatile CRISPR/Casilio-based imaging method that allows for a nonrepetitive genomic locus to be labeled using one guide RNA. We construct Casilio dual-color probes to visualize the dynamic interactions of DNA elements in single live cells in the presence or absence of the cohesin subunit RAD21. Using a three-color palette, we track the dynamic 3D locations of multiple reference points along a chromatin loop. Casilio imaging reveals intercellular heterogeneity and interallelic asynchrony in chromatin interaction dynamics, underscoring the importance of studying genome structures in 4D.
Collapse
Affiliation(s)
- Patricia A Clow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Menghan Du
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | - Aziz Taghbalout
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Jacqueline J Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA.
| | - Albert W Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA.
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA.
- The Jackson Laboratory Cancer Center, Bar Harbor, ME, 04609, USA.
- Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
119
|
Chang L, Li M, Shao S, Li C, Ai S, Xue B, Hou Y, Zhang Y, Li R, Fan X, He A, Li C, Sun Y. Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells. Protein Cell 2022; 13:258-280. [PMID: 33155082 PMCID: PMC8934373 DOI: 10.1007/s13238-020-00794-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic genome is folded into higher-order conformation accompanied with constrained dynamics for coordinated genome functions. However, the molecular machinery underlying these hierarchically organized three-dimensional (3D) chromatin architecture and dynamics remains poorly understood. Here by combining imaging and sequencing, we studied the role of lamin B1 in chromatin architecture and dynamics. We found that lamin B1 depletion leads to detachment of lamina-associated domains (LADs) from the nuclear periphery accompanied with global chromatin redistribution and decompaction. Consequently, the inter-chromosomal as well as inter-compartment interactions are increased, but the structure of topologically associating domains (TADs) is not affected. Using live-cell genomic loci tracking, we further proved that depletion of lamin B1 leads to increased chromatin dynamics, owing to chromatin decompaction and redistribution toward nucleoplasm. Taken together, our data suggest that lamin B1 and chromatin interactions at the nuclear periphery promote LAD maintenance, chromatin compaction, genomic compartmentalization into chromosome territories and A/B compartments and confine chromatin dynamics, supporting their crucial roles in chromatin higher-order structure and chromatin dynamics.
Collapse
Affiliation(s)
- Lei Chang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871 China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510530 China
| | - Mengfan Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Shipeng Shao
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871 China
| | - Chen Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871 China
| | - Shanshan Ai
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871 China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871 China
| | - Yingping Hou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Yiwen Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871 China
| | - Ruifeng Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Xiaoying Fan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510530 China
| | - Aibin He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871 China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871 China
- Center for Statistical Science, Peking University, Beijing, 100871 China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871 China
| |
Collapse
|
120
|
Herrmann JC, Beagrie RA, Hughes JR. Making connections: enhancers in cellular differentiation. Trends Genet 2022; 38:395-408. [PMID: 34753603 DOI: 10.1016/j.tig.2021.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/23/2023]
Abstract
Deciphering the process by which hundreds of distinct cell types emerge from a single zygote to form a complex multicellular organism remains one of the greatest challenges in biological research. Enhancers are known to be central to cell type-specific gene expression, yet many questions regarding how these genomic elements interact both temporally and spatially with other cis- and trans-acting factors to control transcriptional activity during differentiation and development remain unanswered. Here, we review our current understanding of the role of enhancers and their interactions in this context and highlight recent progress achieved with experimental methods of unprecedented resolution.
Collapse
Affiliation(s)
- Jennifer C Herrmann
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Robert A Beagrie
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
121
|
Delker RK, Munce RH, Hu M, Mann RS. Fluorescent labeling of genomic loci in Drosophila imaginal discs with heterologous DNA-binding proteins. CELL REPORTS METHODS 2022; 2:100175. [PMID: 35475221 PMCID: PMC9017127 DOI: 10.1016/j.crmeth.2022.100175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Using the Drosophila melanogaster Hox gene Ultrabithorax (Ubx) as an example, we demonstrate the use of three heterologous DNA-binding protein systems-LacI/LacO, ParB1/ParS1, and ParB2/ParS2-to label genomic loci in imaginal discs with the insertion of a small DNA tag. We compare each system, considering the impact of labeling in genomic regions (1) inside versus outside of a transcribed gene body and (2) with varying chromatin accessibility. We demonstrate the value of this system by interrogating the relationship between gene expression level and enhancer-promoter distance, as well as inter-allelic distance at the Ubx locus. We find that the distance between an essential intronic cis-regulatory element, anterobithorax (abx), and the promoter does not vary with expression level. In contrast, inter-allelic distance correlates with Ubx expression level.
Collapse
Affiliation(s)
- Rebecca K. Delker
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ross H. Munce
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Michelle Hu
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| |
Collapse
|
122
|
Brandstetter K, Zülske T, Ragoczy T, Hörl D, Guirao-Ortiz M, Steinek C, Barnes T, Stumberger G, Schwach J, Haugen E, Rynes E, Korber P, Stamatoyannopoulos JA, Leonhardt H, Wedemann G, Harz H. Differences in nanoscale organization of regulatory active and inactive human chromatin. Biophys J 2022; 121:977-990. [PMID: 35150617 PMCID: PMC8943813 DOI: 10.1016/j.bpj.2022.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
Methodological advances in conformation capture techniques have fundamentally changed our understanding of chromatin architecture. However, the nanoscale organization of chromatin and its cell-to-cell variance are less studied. Analyzing genome-wide data from 733 human cell and tissue samples, we identified 2 prototypical regions that exhibit high or absent hypersensitivity to deoxyribonuclease I, respectively. These regulatory active or inactive regions were examined in the lymphoblast cell line K562 by using high-throughput super-resolution microscopy. In both regions, we systematically measured the physical distance of 2 fluorescence in situ hybridization spots spaced by only 5 kb of DNA. Unexpectedly, the resulting distance distributions range from very compact to almost elongated configurations of more than 200-nm length for both the active and inactive regions. Monte Carlo simulations of a coarse-grained model of these chromatin regions based on published data of nucleosome occupancy in K562 cells were performed to understand the underlying mechanisms. There was no parameter set for the simulation model that can explain the microscopically measured distance distributions. Obviously, the chromatin state given by the strength of internucleosomal interaction, nucleosome occupancy, or amount of histone H1 differs from cell to cell, which results in the observed broad distance distributions. This large variability was not expected, especially in inactive regions. The results for the mechanisms for different distance distributions on this scale are important for understanding the contacts that mediate gene regulation. Microscopic measurements show that the inactive region investigated here is expected to be embedded in a more compact chromatin environment. The simulation results of this region require an increase in the strength of internucleosomal interactions. It may be speculated that the higher density of chromatin is caused by the increased internucleosomal interaction strength.
Collapse
Affiliation(s)
- Katharina Brandstetter
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tilo Zülske
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany
| | - Tobias Ragoczy
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - David Hörl
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Miguel Guirao-Ortiz
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Clemens Steinek
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Toby Barnes
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Gabriela Stumberger
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jonathan Schwach
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eric Haugen
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Eric Rynes
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - John A Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, Washington; Department of Genome Sciences, University of Washington, Seattle, Washington; Department of Medicine, Division of Oncology, University of Washington, Seattle, Washington
| | - Heinrich Leonhardt
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gero Wedemann
- Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany.
| | - Hartmann Harz
- Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
123
|
Uchino S, Ito Y, Sato Y, Handa T, Ohkawa Y, Tokunaga M, Kimura H. Live imaging of transcription sites using an elongating RNA polymerase II-specific probe. J Cell Biol 2022; 221:212888. [PMID: 34854870 PMCID: PMC8647360 DOI: 10.1083/jcb.202104134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
In eukaryotic nuclei, most genes are transcribed by RNA polymerase II (RNAP2), whose regulation is a key to understanding the genome and cell function. RNAP2 has a long heptapeptide repeat (Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), and Ser2 is phosphorylated on an elongation form. To detect RNAP2 Ser2 phosphorylation (RNAP2 Ser2ph) in living cells, we developed a genetically encoded modification-specific intracellular antibody (mintbody) probe. The RNAP2 Ser2ph-mintbody exhibited numerous foci, possibly representing transcription “factories,” and foci were diminished during mitosis and in a Ser2 kinase inhibitor. An in vitro binding assay using phosphopeptides confirmed the mintbody’s specificity. RNAP2 Ser2ph-mintbody foci were colocalized with proteins associated with elongating RNAP2 compared with factors involved in the initiation. These results support the view that mintbody localization represents the sites of RNAP2 Ser2ph in living cells. RNAP2 Ser2ph-mintbody foci showed constrained diffusional motion like chromatin, but they were more mobile than DNA replication domains and p300-enriched foci, suggesting that the elongating RNAP2 complexes are separated from more confined chromatin domains.
Collapse
Affiliation(s)
- Satoshi Uchino
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuma Ito
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuko Sato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsuya Handa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Makio Tokunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
124
|
See YX, Chen K, Fullwood MJ. MYC overexpression leads to increased chromatin interactions at superenhancers and MYC binding sites. Genome Res 2022; 32:629-642. [PMID: 35115371 PMCID: PMC8997345 DOI: 10.1101/gr.276313.121] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022]
Abstract
The MYC oncogene encodes for the MYC protein and is frequently dysregulated across multiple cancer cell types, making it an attractive target for cancer therapy. MYC overexpression leads to MYC binding at active enhancers, resulting in a global transcriptional amplification of active genes. Because super-enhancers are frequently dysregulated in cancer, we hypothesized that MYC preferentially invades into super-enhancers and alters the cancer genome organization. To that end, we performed ChIP-seq, RNA-seq, circular chromosome conformation capture (4C-seq), and Spike-in Quantitative Hi-C (SIQHiC) on the U2OS osteosarcoma cell line with tetracycline-inducible MYC. MYC overexpression in U2OS cells modulated histone acetylation and increased MYC binding at super-enhancers. SIQHiC analysis revealed increased global chromatin contact frequency, particularly at chromatin interactions connecting MYC binding sites at promoters and enhancers. Immunofluorescence staining showed that MYC molecules formed punctate foci at these transcriptionally active domains after MYC overexpression. These results demonstrate the accumulation of overexpressed MYC at promoter–enhancer hubs and suggest that MYC invades into enhancers through spatial proximity. At the same time, the increased protein–protein interactions may strengthen these chromatin interactions to increase chromatin contact frequency. CTCF siRNA knockdown in MYC-overexpressed U2OS cells demonstrated that removal of architectural proteins can disperse MYC and abrogate the increase in chromatin contacts. By elucidating the chromatin landscape of MYC-driven cancers, we can potentially target MYC-associated chromatin interactions for cancer therapy.
Collapse
Affiliation(s)
- Yi Xiang See
- Nanyang Technological University, Cancer Science Institute of Singapore, National University of Singapore
| | - Kaijing Chen
- Nanyang Technological University, Cancer Science Institute of Singapore, National University of Singapore
| | - Melissa J Fullwood
- Nanyang Technological University, Cancer Science Institute of Singapore, National University of Singapore, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR)
| |
Collapse
|
125
|
Kimura H, Sato Y. Imaging transcription elongation dynamics by new technologies unveils the organization of initiation and elongation in transcription factories. Curr Opin Cell Biol 2022; 74:71-79. [DOI: 10.1016/j.ceb.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
|
126
|
Lakadamyali M. Single nucleosome tracking to study chromatin plasticity. Curr Opin Cell Biol 2022; 74:23-28. [PMID: 35033775 PMCID: PMC9064914 DOI: 10.1016/j.ceb.2021.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
The dynamic spatial organization of chromatin within the nucleus is emerging as a key regulator of gene activity and cell phenotype. This review will focus on single molecule tracking as an enabling tool to study chromatin dynamics at the level of individual nucleosomes.
Collapse
Affiliation(s)
- Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Correspondence should be sent to M.L.:
| |
Collapse
|
127
|
Zhang M, Seitz C, Chang G, Iqbal F, Lin H, Liu J. A guide for single-particle chromatin tracking in live cell nuclei. Cell Biol Int 2022; 46:683-700. [PMID: 35032142 PMCID: PMC9035067 DOI: 10.1002/cbin.11762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 11/09/2022]
Abstract
The emergence of labeling strategies and live cell imaging methods enables the imaging of chromatin in living cells at single digit nanometer resolution as well as milliseconds temporal resolution. These technical breakthroughs revolutionize our understanding of chromatin structure, dynamics and functions. Single molecule tracking algorithms are usually preferred to quantify the movement of these intranucleus elements to interpret the spatiotemporal evolution of the chromatin. In this review, we will first summarize the fluorescent labeling strategy of chromatin in live cells which will be followed by a sys-tematic comparison of live cell imaging instrumentation. With the proper microscope, we will discuss the image analysis pipelines to extract the biophysical properties of the chromatin. Finally, we expect to give practical suggestions to broad biologists on how to select methods and link to the model properly according to different investigation pur-poses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengdi Zhang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Clayton Seitz
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Fadil Iqbal
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Hua Lin
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
128
|
Chachoua I, Tzelepis I, Dai H, Lim JP, Lewandowska-Ronnegren A, Casagrande FB, Wu S, Vestlund J, Mallet de Lima CD, Bhartiya D, Scholz BA, Martino M, Mehmood R, Göndör A. Canonical WNT signaling-dependent gating of MYC requires a noncanonical CTCF function at a distal binding site. Nat Commun 2022; 13:204. [PMID: 35017527 PMCID: PMC8752836 DOI: 10.1038/s41467-021-27868-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/19/2021] [Indexed: 01/21/2023] Open
Abstract
Abnormal WNT signaling increases MYC expression in colon cancer cells in part via oncogenic super-enhancer-(OSE)-mediated gating of the active MYC to the nuclear pore in a poorly understood process. We show here that the principal tenet of the WNT-regulated MYC gating, facilitating nuclear export of the MYC mRNA, is regulated by a CTCF binding site (CTCFBS) within the OSE to confer growth advantage in HCT-116 cells. To achieve this, the CTCFBS directs the WNT-dependent trafficking of the OSE to the nuclear pore from intra-nucleoplasmic positions in a stepwise manner. Once the OSE reaches a peripheral position, which is triggered by a CTCFBS-mediated CCAT1 eRNA activation, its final stretch (≤0.7 μm) to the nuclear pore requires the recruitment of AHCTF1, a key nucleoporin, to the CTCFBS. Thus, a WNT/ß-catenin-AHCTF1-CTCF-eRNA circuit enables the OSE to promote pathological cell growth by coordinating the trafficking of the active MYC gene within the 3D nuclear architecture. Gene-gating of a MYC oncogenic super-enhancer (OSE) increases its expression in colon cancer cells in a poorly understood process. Here the authors show that MYC gating requires a CTCF binding site (CTCFBS) within the OSE that directs the stepwise trafficking of the OSE to the nuclear pore to facilitate increased nuclear export of MYC mRNA, which results in a growth advantage.
Collapse
Affiliation(s)
- Ilyas Chachoua
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Ilias Tzelepis
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Hao Dai
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden.,Department of Breast Disease, Henan Breast Cancer Center, The affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jia Pei Lim
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lewandowska-Ronnegren
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Felipe Beccaria Casagrande
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Shuangyang Wu
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Vestlund
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Diettrich Mallet de Lima
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Deeksha Bhartiya
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Barbara A Scholz
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Mirco Martino
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Rashid Mehmood
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden
| | - Anita Göndör
- Department of Oncology and Pathology, Bioclinicum, Karolinska University Hospital, U2, Akademiska Stråket 1, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
129
|
Kaiser C, Bradu A, Gamble N, Caldwell JA, Koh AS. AIRE in context: Leveraging chromatin plasticity to trigger ectopic gene expression. Immunol Rev 2022; 305:59-76. [PMID: 34545959 PMCID: PMC9250823 DOI: 10.1111/imr.13026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
The emergence of antigen receptor diversity in clonotypic lymphocytes drove the evolution of a novel gene, Aire, that enabled the adaptive immune system to discriminate foreign invaders from self-constituents. AIRE functions in the epithelial cells of the thymus to express genes highly restricted to alternative cell lineages. This somatic plasticity facilitates the selection of a balanced repertoire of T cells that protects the host from harmful self-reactive clones, yet maintains a wide range of affinities for virtually any foreign antigen. Here, we review the latest understanding of AIRE's molecular actions with a focus on its interplay with chromatin. We argue that AIRE is a multi-valent chromatin effector that acts late in the transcription cycle to modulate the activity of previously poised non-coding regulatory elements of tissue-specific genes. We postulate a role for chromatin instability-caused in part by ATP-dependent chromatin remodeling-that variably sets the scope of the accessible landscape on which AIRE can act. We highlight AIRE's intrinsic repressive function and its relevance in providing feedback control. We synthesize these recent advances into a putative model for the mechanistic modes by which AIRE triggers ectopic transcription for immune repertoire selection.
Collapse
Affiliation(s)
- Caroline Kaiser
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Alexandra Bradu
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Noah Gamble
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Jason A. Caldwell
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Andrew S. Koh
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
130
|
Steindel M, Orsine de Almeida I, Strawbridge S, Chernova V, Holcman D, Ponjavic A, Basu S. Studying the Dynamics of Chromatin-Binding Proteins in Mammalian Cells Using Single-Molecule Localization Microscopy. Methods Mol Biol 2022; 2476:209-247. [PMID: 35635707 DOI: 10.1007/978-1-0716-2221-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Single-molecule localization microscopy (SMLM) allows the super-resolved imaging of proteins within mammalian nuclei at spatial resolutions comparable to that of a nucleosome itself (~20 nm). The technique is therefore well suited to the study of chromatin structure. Fixed-cell SMLM has already allowed temporal "snapshots" of how proteins are arranged on chromatin within mammalian nuclei. In this chapter, we focus on how recent developments, for example in selective plane illumination, 3D SMLM, and protein labeling, have led to a range of live-cell SMLM studies. We describe how to carry out single-particle tracking (SPT) of single proteins and, by analyzing their diffusion parameters, how to determine whether proteins interact with chromatin, diffuse freely, or do both. We can study the numbers of proteins that interact with chromatin and also determine their residence time on chromatin. We can determine whether these proteins form functional clusters within the nucleus as well as whether they form specific nuclear structures.
Collapse
Affiliation(s)
- Maike Steindel
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Stanley Strawbridge
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Valentyna Chernova
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - David Holcman
- Group of Computational Biology and Applied Mathematics, Institute of Biology, Ecole Normale Supérieure, Paris, France
| | - Aleks Ponjavic
- School of Physics and Astronomy and School of Food Science and Nutrition, University of Leeds, Leeds, UK.
| | - Srinjan Basu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
131
|
Buttler CA, Chuong EB. Emerging roles for endogenous retroviruses in immune epigenetic regulation. Immunol Rev 2022; 305:165-178. [PMID: 34816452 PMCID: PMC8766910 DOI: 10.1111/imr.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/21/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
In recent years, there has been significant progress toward understanding the transcriptional networks underlying mammalian immune responses, fueled by advances in regulatory genomic technologies. Epigenomic studies profiling immune cells have generated detailed genome-wide maps of regulatory elements that will be key to deciphering the regulatory networks underlying cellular immune responses and autoimmune disorders. Unbiased analyses of these genomic maps have uncovered endogenous retroviruses as an unexpected ally in the regulation of human immune systems. Despite their parasitic origins, studies are finding an increasing number of examples of retroviral sequences having been co-opted for beneficial immune function and regulation by the host cell. Here, we review how endogenous retroviruses have given rise to numerous regulatory elements that shape the epigenetic landscape of host immune responses. We will discuss the implications of these elements on the function, dysfunction, and evolution of innate immunity.
Collapse
|
132
|
Spatial organization of chromosomes leads to heterogeneous chromatin motion and drives the liquid- or gel-like dynamical behavior of chromatin. Genome Res 2021; 32:28-43. [PMID: 34963660 PMCID: PMC8744683 DOI: 10.1101/gr.275827.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022]
Abstract
Chromosome organization and dynamics are involved in regulating many fundamental processes such as gene transcription and DNA repair. Experiments unveiled that chromatin motion is highly heterogeneous inside cell nuclei, ranging from a liquid-like, mobile state to a gel-like, rigid regime. Using polymer modeling, we investigate how these different physical states and dynamical heterogeneities may emerge from the same structural mechanisms. We found that the formation of topologically associating domains (TADs) is a key driver of chromatin motion heterogeneity. In particular, we showed that the local degree of compaction of the TAD regulates the transition from a weakly compact, fluid state of chromatin to a more compact, gel state exhibiting anomalous diffusion and coherent motion. Our work provides a comprehensive study of chromosome dynamics and a unified view of chromatin motion enabling interpretation of the wide variety of dynamical behaviors observed experimentally across different biological conditions, suggesting that the "liquid" or "solid" state of chromatin are in fact two sides of the same coin.
Collapse
|
133
|
Johanson TM, Keenan CR, Allan RS. Shedding Structured Light on Molecular Immunity: The Past, Present and Future of Immune Cell Super Resolution Microscopy. Front Immunol 2021; 12:754200. [PMID: 34975842 PMCID: PMC8715013 DOI: 10.3389/fimmu.2021.754200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
In the two decades since the invention of laser-based super resolution microscopy this family of technologies has revolutionised the way life is viewed and understood. Its unparalleled resolution, speed, and accessibility makes super resolution imaging particularly useful in examining the highly complex and dynamic immune system. Here we introduce the super resolution technologies and studies that have already fundamentally changed our understanding of a number of central immunological processes and highlight other immunological puzzles only addressable in super resolution.
Collapse
Affiliation(s)
- Timothy M. Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Christine R. Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
134
|
Liu L, Zhang B, Hyeon C. Extracting multi-way chromatin contacts from Hi-C data. PLoS Comput Biol 2021; 17:e1009669. [PMID: 34871311 PMCID: PMC8675768 DOI: 10.1371/journal.pcbi.1009669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/16/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
There is a growing realization that multi-way chromatin contacts formed in chromosome structures are fundamental units of gene regulation. However, due to the paucity and complexity of such contacts, it is challenging to detect and identify them using experiments. Based on an assumption that chromosome structures can be mapped onto a network of Gaussian polymer, here we derive analytic expressions for n-body contact probabilities (n > 2) among chromatin loci based on pairwise genomic contact frequencies available in Hi-C, and show that multi-way contact probability maps can in principle be extracted from Hi-C. The three-body (triplet) contact probabilities, calculated from our theory, are in good correlation with those from measurements including Tri-C, MC-4C and SPRITE. Maps of multi-way chromatin contacts calculated from our analytic expressions can not only complement experimental measurements, but also can offer better understanding of the related issues, such as cell-line dependent assemblies of multiple genes and enhancers to chromatin hubs, competition between long-range and short-range multi-way contacts, and condensates of multiple CTCF anchors.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bokai Zhang
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, China
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| |
Collapse
|
135
|
Athmane N, Williamson I, Boyle S, Biddie SC, Bickmore WA. MUC4 is not expressed in cell lines used for live cell imaging. Wellcome Open Res 2021; 6:265. [PMID: 34796278 PMCID: PMC8567686 DOI: 10.12688/wellcomeopenres.17229.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The ability to visualise specific mammalian gene loci in living cells is important for understanding the dynamic processes linked to transcription. However, some of the tools used to target mammalian genes for live cell imaging, such as dCas9, have been reported to themselves impede processes linked to transcription. The MUC4 gene is a popular target for live cell imaging studies due to the repetitive nature of sequences within some exons of this gene. Methods: We set out to compare the impact of dCas9 and TALE-based imaging tools on MUC4 expression, including in human cell lines previously reported as expressing MUC4. Results: We were unable to detect MUC4 mRNA in these cell lines. Moreover, analysis of publicly available data for histone modifications associated with transcription, and data for transcription itself, indicate that neither MUC4, nor any of the mucin gene family are significantly expressed in the cell lines where dCas9 targeting has been reported to repress MUC4 and MUC1 expression, or in the cell lines where dCas13 has been used to report MUC4 RNA detection in live cells. Conclusions: Methods for visualising specific gene loci and gene transcripts in live human cells are very challenging. Our data suggest that care should be given to the choice of the most appropriate cell lines for these analyses and that orthogonal methods of assaying gene expression be carefully compared.
Collapse
Affiliation(s)
- Naouel Athmane
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Simon C. Biddie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| |
Collapse
|
136
|
Park TL, Lee Y, Cho WK. Visualization of chromatin higher-order structures and dynamics in live cells. BMB Rep 2021. [PMID: 34488934 PMCID: PMC8560465 DOI: 10.5483/bmbrep.2021.54.10.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin has highly organized structures in the nucleus, and these higher-order structures are proposed to regulate gene activities and cellular processes. Sequencing-based techniques, such as Hi-C, and fluorescent in situ hybridization (FISH) have revealed a spatial segregation of active and inactive compartments of chromatin, as well as the non-random positioning of chromosomes in the nucleus, respectively. However, regardless of their efficiency in capturing target genomic sites, these techniques are limited to fixed cells. Since chromatin has dynamic structures, live cell imaging techniques are highlighted for their ability to detect conformational changes in chromatin at a specific time point, or to track various arrangements of chromatin through long-term imaging. Given that the imaging approaches to study live cells are dramatically advanced, we recapitulate methods that are widely used to visualize the dynamics of higher-order chromatin structures.
Collapse
Affiliation(s)
- Tae Lim Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - YigJi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
137
|
Hansen JC, Maeshima K, Hendzel MJ. The solid and liquid states of chromatin. Epigenetics Chromatin 2021; 14:50. [PMID: 34717733 PMCID: PMC8557566 DOI: 10.1186/s13072-021-00424-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid-solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid-liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan.
| | - Michael J Hendzel
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
138
|
Oliveira GM, Oravecz A, Kobi D, Maroquenne M, Bystricky K, Sexton T, Molina N. Precise measurements of chromatin diffusion dynamics by modeling using Gaussian processes. Nat Commun 2021; 12:6184. [PMID: 34702821 PMCID: PMC8548522 DOI: 10.1038/s41467-021-26466-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022] Open
Abstract
The spatiotemporal organization of chromatin influences many nuclear processes: from chromosome segregation to transcriptional regulation. To get a deeper understanding of these processes, it is essential to go beyond static viewpoints of chromosome structures, to accurately characterize chromatin's diffusion properties. We present GP-FBM: a computational framework based on Gaussian processes and fractional Brownian motion to extract diffusion properties from stochastic trajectories of labeled chromatin loci. GP-FBM uses higher-order temporal correlations present in the data, therefore, outperforming existing methods. Furthermore, GP-FBM allows to interpolate incomplete trajectories and account for substrate movement when two or more particles are present. Using our method, we show that average chromatin diffusion properties are surprisingly similar in interphase and mitosis in mouse embryonic stem cells. We observe surprising heterogeneity in local chromatin dynamics, correlating with potential regulatory activity. We also present GP-Tool, a user-friendly graphical interface to facilitate usage of GP-FBM by the research community.
Collapse
Affiliation(s)
- Guilherme M Oliveira
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France.
| | - Attila Oravecz
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France
| | - Dominique Kobi
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France
| | - Manon Maroquenne
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France
| | - Kerstin Bystricky
- Molecular Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI) UPS, CNRS, Toulouse, France
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France.
| | - Nacho Molina
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) CNRS UMR7104, INSERM U1258, University of Strasbourg, Illkirch, France.
| |
Collapse
|
139
|
Athmane N, Williamson I, Boyle S, Biddie SC, Bickmore WA. MUC4 is not expressed in cell lines used for live cell imaging. Wellcome Open Res 2021; 6:265. [PMID: 34796278 PMCID: PMC8567686 DOI: 10.12688/wellcomeopenres.17229.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The ability to visualise specific mammalian gene loci in living cells is important for understanding the dynamic processes linked to transcription. However, some of the tools used to target mammalian genes for live cell imaging, such as dCas9, have been reported to themselves impede processes linked to transcription. The MUC4 gene is a popular target for live cell imaging studies due to the repetitive nature of sequences within some exons of this gene. Methods: We set out to compare the impact of dCas9 and TALE-based imaging tools on MUC4 expression, including in human cell lines previously reported as expressing MUC4. Results: We were unable to detect MUC4 mRNA in these cell lines. Moreover, analysis of publicly available data for histone modifications associated with transcription, and data for transcription itself, indicate that neither MUC4, nor any of the mucin gene family are significantly expressed in the cell lines where dCas9 targeting has been reported to repress MUC4 and MUC1 expression, or in the cell lines where dCas13 has been used to report MUC4 RNA detection in live cells. Conclusions: Methods for visualising specific gene loci and gene transcripts in live human cells are very challenging. Our data suggest that care should be given to the choice of the most appropriate cell lines for these analyses and that orthogonal methods of assaying gene expression be carefully compared.
Collapse
Affiliation(s)
- Naouel Athmane
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Simon C. Biddie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, EH42XU, UK
| |
Collapse
|
140
|
Park TL, Lee Y, Cho WK. Visualization of chromatin higher-order structures and dynamics in live cells. BMB Rep 2021; 54:489-496. [PMID: 34488934 PMCID: PMC8560465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/29/2021] [Indexed: 04/05/2024] Open
Abstract
Chromatin has highly organized structures in the nucleus, and these higher-order structures are proposed to regulate gene activities and cellular processes. Sequencing-based techniques, such as Hi-C, and fluorescent in situ hybridization (FISH) have revealed a spatial segregation of active and inactive compartments of chromatin, as well as the non-random positioning of chromosomes in the nucleus, respectively. However, regardless of their efficiency in capturing target genomic sites, these techniques are limited to fixed cells. Since chromatin has dynamic structures, live cell imaging techniques are highlighted for their ability to detect conformational changes in chromatin at a specific time point, or to track various arrangements of chromatin through long-term imaging. Given that the imaging approaches to study live cells are dramatically advanced, we recapitulate methods that are widely used to visualize the dynamics of higher-order chromatin structures. [BMB Reports 2021; 54(10): 489-496].
Collapse
Affiliation(s)
- Tae Lim Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - YigJi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
141
|
Ray-Jones H, Spivakov M. Transcriptional enhancers and their communication with gene promoters. Cell Mol Life Sci 2021; 78:6453-6485. [PMID: 34414474 PMCID: PMC8558291 DOI: 10.1007/s00018-021-03903-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit enhancer-promoter communication, and the joint effects of multiple enhancers. We show how modern approaches building on classic insights have begun to unravel the complexity of enhancer-promoter relationships, paving the way towards a quantitative understanding of gene control.
Collapse
Affiliation(s)
- Helen Ray-Jones
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Mikhail Spivakov
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK.
| |
Collapse
|
142
|
Chaudhary N, Im JK, Nho SH, Kim H. Visualizing Live Chromatin Dynamics through CRISPR-Based Imaging Techniques. Mol Cells 2021; 44:627-636. [PMID: 34588320 PMCID: PMC8490199 DOI: 10.14348/molcells.2021.2254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022] Open
Abstract
The three-dimensional organization of chromatin and its time-dependent changes greatly affect virtually every cellular function, especially DNA replication, genome maintenance, transcription regulation, and cell differentiation. Sequencing-based techniques such as ChIP-seq, ATAC-seq, and Hi-C provide abundant information on how genomic elements are coupled with regulatory proteins and functionally organized into hierarchical domains through their interactions. However, visualizing the time-dependent changes of such organization in individual cells remains challenging. Recent developments of CRISPR systems for site-specific fluorescent labeling of genomic loci have provided promising strategies for visualizing chromatin dynamics in live cells. However, there are several limiting factors, including background signals, off-target binding of CRISPR, and rapid photobleaching of the fluorophores, requiring a large number of target-bound CRISPR complexes to reliably distinguish the target-specific foci from the background. Various modifications have been engineered into the CRISPR system to enhance the signal-to-background ratio and signal longevity to detect target foci more reliably and efficiently, and to reduce the required target size. In this review, we comprehensively compare the performances of recently developed CRISPR designs for improved visualization of genomic loci in terms of the reliability of target detection, the ability to detect small repeat loci, and the allowed time of live tracking. Longer observation of genomic loci allows the detailed identification of the dynamic characteristics of chromatin. The diffusion properties of chromatin found in recent studies are reviewed, which provide suggestions for the underlying biological processes.
Collapse
Affiliation(s)
- Narendra Chaudhary
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Jae-Kyeong Im
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Si-Hyeong Nho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
143
|
Perea-Resa C, Wattendorf L, Marzouk S, Blower MD. Cohesin: behind dynamic genome topology and gene expression reprogramming. Trends Cell Biol 2021; 31:760-773. [PMID: 33766521 PMCID: PMC8364472 DOI: 10.1016/j.tcb.2021.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023]
Abstract
Beyond its originally discovered role tethering replicated sister chromatids, cohesin has emerged as a master regulator of gene expression. Recent advances in chromatin topology resolution and single-cell studies have revealed that cohesin has a pivotal role regulating highly dynamic chromatin interactions linked to transcription control. The dynamic association of cohesin with chromatin and its capacity to perform loop extrusion contribute to the heterogeneity of chromatin contacts. Additionally, different cohesin subcomplexes, with specific properties and regulation, control gene expression across the cell cycle and during developmental cell commitment. Here, we discuss the most recent literature in the field to highlight the role of cohesin in gene expression regulation during transcriptional shifts and its relationship with human diseases.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Lauren Wattendorf
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Sammer Marzouk
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Michael D Blower
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
144
|
Abstract
The imaging of chromatin, genomic loci, RNAs, and proteins is very important to study their localization, interaction, and coordinated regulation. Recently, several clustered regularly interspaced short palindromic repeats (CRISPR) based imaging methods have been established. The refurbished tool kits utilizing deactivated Cas9 (dCas9) and dCas13 have been established to develop applications of CRISPR-Cas technology beyond genome editing. Here, we review recent advancements in CRISPR-based methods that enable efficient imaging and visualization of chromatin, genomic loci, RNAs, and proteins. RNA aptamers, Pumilio, SuperNova tagging system, molecular beacons, halotag, bimolecular fluorescence complementation, RNA-guided endonuclease in situ labeling, and oligonucleotide-based imaging methods utilizing fluorescent proteins, organic dyes, or quantum dots have been developed to achieve improved fluorescence and signal-to-noise ratio for the imaging of chromatin or genomic loci. RNA-guided RNA targeting CRISPR systems (CRISPR/dCas13) and gene knock-in strategies based on CRISPR/Cas9 mediated site-specific cleavage and DNA repair mechanisms have been employed for efficient RNA and protein imaging, respectively. A few CRISPR-Cas-based methods to investigate the coordinated regulation of DNA-protein, DNA-RNA, or RNA-protein interactions for understanding chromatin dynamics, transcription, and protein function are also available. Overall, the CRISPR-based methods offer a significant improvement in elucidating chromatin organization and dynamics, RNA visualization, and protein imaging. The current and future advancements in CRISPR-based imaging techniques can revolutionize genome biology research for various applications.
Collapse
Affiliation(s)
- Vikram Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
145
|
Jerkovic I, Cavalli G. Understanding 3D genome organization by multidisciplinary methods. Nat Rev Mol Cell Biol 2021; 22:511-528. [PMID: 33953379 DOI: 10.1038/s41580-021-00362-w] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/03/2023]
Abstract
Understanding how chromatin is folded in the nucleus is fundamental to understanding its function. Although 3D genome organization has been historically difficult to study owing to a lack of relevant methodologies, major technological breakthroughs in genome-wide mapping of chromatin contacts and advances in imaging technologies in the twenty-first century considerably improved our understanding of chromosome conformation and nuclear architecture. In this Review, we discuss methods of 3D genome organization analysis, including sequencing-based techniques, such as Hi-C and its derivatives, Micro-C, DamID and others; microscopy-based techniques, such as super-resolution imaging coupled with fluorescence in situ hybridization (FISH), multiplex FISH, in situ genome sequencing and live microscopy methods; and computational and modelling approaches. We describe the most commonly used techniques and their contribution to our current knowledge of nuclear architecture and, finally, we provide a perspective on up-and-coming methods that open possibilities for future major discoveries.
Collapse
Affiliation(s)
- Ivana Jerkovic
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
146
|
Kim JM, Visanpattanasin P, Jou V, Liu S, Tang X, Zheng Q, Li KY, Snedeker J, Lavis LD, Lionnet T, Wu C. Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin. eLife 2021; 10:e69387. [PMID: 34313223 PMCID: PMC8352589 DOI: 10.7554/elife.69387] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Conserved ATP-dependent chromatin remodelers establish and maintain genome-wide chromatin architectures of regulatory DNA during cellular lifespan, but the temporal interactions between remodelers and chromatin targets have been obscure. We performed live-cell single-molecule tracking for RSC, SWI/SNF, CHD1, ISW1, ISW2, and INO80 remodeling complexes in budding yeast and detected hyperkinetic behaviors for chromatin-bound molecules that frequently transition to the free state for all complexes. Chromatin-bound remodelers display notably higher diffusion than nucleosomal histones, and strikingly fast dissociation kinetics with 4-7 s mean residence times. These enhanced dynamics require ATP binding or hydrolysis by the catalytic ATPase, uncovering an additional function to its established role in nucleosome remodeling. Kinetic simulations show that multiple remodelers can repeatedly occupy the same promoter region on a timescale of minutes, implicating an unending 'tug-of-war' that controls a temporally shifting window of accessibility for the transcription initiation machinery.
Collapse
Affiliation(s)
- Jee Min Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | | | - Vivian Jou
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Sheng Liu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Xiaona Tang
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kai Yu Li
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Jonathan Snedeker
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Timothee Lionnet
- Institute of Systems Genetics, Langone Medical Center, New York UniversityNew YorkUnited States
| | - Carl Wu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
147
|
Xie L, Liu Z. Single-cell imaging of genome organization and dynamics. Mol Syst Biol 2021; 17:e9653. [PMID: 34232558 PMCID: PMC8262488 DOI: 10.15252/msb.20209653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Probing the architecture, mechanism, and dynamics of genome folding is fundamental to our understanding of genome function in homeostasis and disease. Most chromosome conformation capture studies dissect the genome architecture with population- and time-averaged snapshots and thus have limited capabilities to reveal 3D nuclear organization and dynamics at the single-cell level. Here, we discuss emerging imaging techniques ranging from light microscopy to electron microscopy that enable investigation of genome folding and dynamics at high spatial and temporal resolution. Results from these studies complement genomic data, unveiling principles underlying the spatial arrangement of the genome and its potential functional links to diverse biological activities in the nucleus.
Collapse
Affiliation(s)
- Liangqi Xie
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| | - Zhe Liu
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| |
Collapse
|
148
|
Li J, Pertsinidis A. New insights into promoter-enhancer communication mechanisms revealed by dynamic single-molecule imaging. Biochem Soc Trans 2021; 49:1299-1309. [PMID: 34060610 PMCID: PMC8325597 DOI: 10.1042/bst20200963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023]
Abstract
Establishing cell-type-specific gene expression programs relies on the action of distal enhancers, cis-regulatory elements that can activate target genes over large genomic distances - up to Mega-bases away. How distal enhancers physically relay regulatory information to target promoters has remained a mystery. Here, we review the latest developments and insights into promoter-enhancer communication mechanisms revealed by live-cell, real-time single-molecule imaging approaches.
Collapse
Affiliation(s)
- Jieru Li
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, NY 10065, USA
| | | |
Collapse
|
149
|
Geng Y, Pertsinidis A. Simple and versatile imaging of genomic loci in live mammalian cells and early pre-implantation embryos using CAS-LiveFISH. Sci Rep 2021; 11:12220. [PMID: 34108610 PMCID: PMC8190065 DOI: 10.1038/s41598-021-91787-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/01/2021] [Indexed: 11/14/2022] Open
Abstract
Visualizing the 4D genome in live cells is essential for understanding its regulation. Programmable DNA-binding probes, such as fluorescent clustered regularly interspaced short palindromic repeats (CRISPR) and transcription activator-like effector (TALE) proteins have recently emerged as powerful tools for imaging specific genomic loci in live cells. However, many such systems rely on genetically-encoded components, often requiring multiple constructs that each must be separately optimized, thus limiting their use. Here we develop efficient and versatile systems, based on in vitro transcribed single-guide-RNAs (sgRNAs) and fluorescently-tagged recombinant, catalytically-inactivated Cas9 (dCas9) proteins. Controlled cell delivery of pre-assembled dCas9-sgRNA ribonucleoprotein (RNP) complexes enables robust genomic imaging in live cells and in early mouse embryos. We further demonstrate multiplex tagging of up to 3 genes, tracking detailed movements of chromatin segments and imaging spatial relationships between a distal enhancer and a target gene, with nanometer resolution in live cells. This simple and effective approach should facilitate visualizing chromatin dynamics and nuclear architecture in various living systems.
Collapse
Affiliation(s)
- Yongtao Geng
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexandros Pertsinidis
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
150
|
Rajpurkar AR, Mateo LJ, Murphy SE, Boettiger AN. Deep learning connects DNA traces to transcription to reveal predictive features beyond enhancer-promoter contact. Nat Commun 2021; 12:3423. [PMID: 34103507 PMCID: PMC8187657 DOI: 10.1038/s41467-021-23831-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/19/2021] [Indexed: 11/27/2022] Open
Abstract
Chromatin architecture plays an important role in gene regulation. Recent advances in super-resolution microscopy have made it possible to measure chromatin 3D structure and transcription in thousands of single cells. However, leveraging these complex data sets with a computationally unbiased method has been challenging. Here, we present a deep learning-based approach to better understand to what degree chromatin structure relates to transcriptional state of individual cells. Furthermore, we explore methods to "unpack the black box" to determine in an unbiased manner which structural features of chromatin regulation are most important for gene expression state. We apply this approach to an Optical Reconstruction of Chromatin Architecture dataset of the Bithorax gene cluster in Drosophila and show it outperforms previous contact-focused methods in predicting expression state from 3D structure. We find the structural information is distributed across the domain, overlapping and extending beyond domains identified by prior genetic analyses. Individual enhancer-promoter interactions are a minor contributor to predictions of activity.
Collapse
Affiliation(s)
- Aparna R Rajpurkar
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Leslie J Mateo
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Sedona E Murphy
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|