101
|
Akamatsu A, Nagae M, Nishimura Y, Romero Montero D, Ninomiya S, Kojima M, Takebayashi Y, Sakakibara H, Kawaguchi M, Takeda N. Endogenous gibberellins affect root nodule symbiosis via transcriptional regulation of NODULE INCEPTION in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1507-1520. [PMID: 33300204 DOI: 10.1111/tpj.15128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 05/29/2023]
Abstract
Legumes and nitrogen-fixing rhizobial bacteria establish root nodule symbiosis, which is orchestrated by several plant hormones. Exogenous addition of biologically active gibberellic acid (GA) is known to inhibit root nodule symbiosis. However, the precise role of GA has not been elucidated because of the trace amounts of these hormones in plants and the multiple functions of GAs. Here, we found that GA signaling acts as a key regulator in a long-distance negative-feedback system of root nodule symbiosis called autoregulation of nodulation (AON). GA biosynthesis is activated during nodule formation in and around the nodule vascular bundles, and bioactive GAs accumulate in the nodule. In addition, GA signaling induces expression of the symbiotic transcription factor NODULE INCEPTION (NIN) via a cis-acting region on the NIN promoter. Mutants with deletions of this cis-acting region have increased susceptibility to rhizobial infection and reduced GA-induced CLE-RS1 and CLE-RS2 expression, suggesting that the inhibitory effect of GAs occurs through AON. This is supported by the GA-insensitive phenotypes of an AON-defective mutant of HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) and a reciprocal grafting experiment. Thus, endogenous GAs induce NIN expression via its GA-responsive cis-acting region, and subsequently the GA-induced NIN activates the AON system to regulate nodule formation.
Collapse
Affiliation(s)
- Akira Akamatsu
- Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Miwa Nagae
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Yuka Nishimura
- Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Daniela Romero Montero
- Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Satsuki Ninomiya
- Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Naoya Takeda
- Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
102
|
Soyano T, Liu M, Kawaguchi M, Hayashi M. Leguminous nodule symbiosis involves recruitment of factors contributing to lateral root development. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:102000. [PMID: 33454544 DOI: 10.1016/j.pbi.2020.102000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 05/27/2023]
Abstract
Legumes and several plant species in the monophyletic nitrogen-fixing clade produce root nodules that function as symbiotic organs and establish mutualistic relationships with nitrogen-fixing bacteria. The modes of nodule organogenesis are distinct from those of lateral root development and also differ among different types of nodules formed in legumes and actinorhizal plants. It is considered that the evolution of new organs occurs through rearrangement of molecular networks interposed by certain neo-functionalized factors. Accumulating evidence has suggested that root nodule organogenesis involves root or lateral root developmental pathways. This review describes the current knowledge about the factors/pathways acquired by the common ancestor of the nitrogen-fixing clade in order to control nodule organogenesis.
Collapse
Affiliation(s)
- Takashi Soyano
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (the Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan.
| | - Meng Liu
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (the Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, 230-0045 Kanagawa, Japan
| |
Collapse
|
103
|
Shrestha A, Zhong S, Therrien J, Huebert T, Sato S, Mun T, Andersen SU, Stougaard J, Lepage A, Niebel A, Ross L, Szczyglowski K. Lotus japonicus Nuclear Factor YA1, a nodule emergence stage-specific regulator of auxin signalling. THE NEW PHYTOLOGIST 2021; 229:1535-1552. [PMID: 32978812 PMCID: PMC7984406 DOI: 10.1111/nph.16950] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/05/2020] [Indexed: 05/07/2023]
Abstract
Organogenesis of legume root nodules begins with the nodulation factor-dependent stimulation of compatible root cells to initiate divisions, signifying an early nodule primordium formation event. This is followed by cellular differentiation, including cell expansion and vascular bundle formation, and we previously showed that Lotus japonicus NF-YA1 is essential for this process, presumably by regulating three members of the SHORT INTERNODES/STYLISH (STY) transcription factor gene family. In this study, we used combined genetics, genomics and cell biology approaches to characterize the role of STY genes during root nodule formation and to test a hypothesis that they mediate nodule development by stimulating auxin signalling. We show here that L. japonicus STYs are required for nodule emergence. This is attributed to the NF-YA1-dependent regulatory cascade, comprising STY genes and their downstream targets, YUCCA1 and YUCCA11, involved in a local auxin biosynthesis at the post-initial cell division stage. An analogous NF-YA1/STY regulatory module seems to operate in Medicago truncatula in association with the indeterminate nodule patterning. Our data define L. japonicus and M. truncatula NF-YA1 genes as important nodule emergence stage-specific regulators of auxin signalling while indicating that the inductive stage and subsequent formation of early nodule primordia are mediated through an independent mechanism(s).
Collapse
Affiliation(s)
- Arina Shrestha
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| | - Sihui Zhong
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Jasmine Therrien
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| | - Terry Huebert
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Shusei Sato
- Graduate School of Life SciencesTohoku University2‐1‐1 KatahiraSendai980‐8577Japan
| | - Terry Mun
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Stig U. Andersen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Agnes Lepage
- Laboratoire des Interactions Plantes‐Microorganismes (LIPM)Université de Toulouse, Institut National de la Recherche pour l’Agriculturel’Alimentation et l’Environnement (INRAE)Centre National de la Recherche Scientifique (CNRS)Castanet‐Tolosan31326France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes‐Microorganismes (LIPM)Université de Toulouse, Institut National de la Recherche pour l’Agriculturel’Alimentation et l’Environnement (INRAE)Centre National de la Recherche Scientifique (CNRS)Castanet‐Tolosan31326France
| | - Loretta Ross
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| |
Collapse
|
104
|
An SHR-SCR module specifies legume cortical cell fate to enable nodulation. Nature 2020; 589:586-590. [PMID: 33299183 DOI: 10.1038/s41586-020-3016-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/19/2020] [Indexed: 11/08/2022]
Abstract
Legumes, unlike other plants, have the ability to establish symbiosis with nitrogen-fixing rhizobia. It has been theorized that a unique property of legume root cortical cells enabled the initial establishment of rhizobial symbiosis1-3. Here we show that a SHORTROOT-SCARECROW (SHR-SCR) stem cell program in cortical cells of the legume Medicago truncatula specifies their distinct fate. Regulatory elements drive the cortical expression of SCR, and stele-expressed SHR protein accumulates in cortical cells of M. truncatula but not Arabidopsis thaliana. The cortical SHR-SCR network is conserved across legume species, responds to rhizobial signals, and initiates legume-specific cortical cell division for de novo nodule organogenesis and accommodation of rhizobia. Ectopic activation of SHR and SCR in legumes is sufficient to induce root cortical cell division. Our work suggests that acquisition of the cortical SHR-SCR module enabled cell division coupled to rhizobial infection in legumes. We propose that this event was central to the evolution of rhizobial endosymbiosis.
Collapse
|
105
|
Wang C, Reid JB, Foo E. The role of CLV1, CLV2 and HPAT homologues in the nitrogen-regulation of root development. PHYSIOLOGIA PLANTARUM 2020; 170:607-621. [PMID: 32880978 DOI: 10.1111/ppl.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Plants use a variety of signals to control root development, including in modifying root development in response to nutrient stress. For example, in response to nitrogen (N) stress, plants dramatically modulate root development, including the formation of N-fixing nodules in legumes. Recently, specific CLE peptides and/or receptors important for their perception, including CLV1 and CLV2, have been found to play roles in root development, including in response to N supply. In the legume Medicago truncatula, this response also appears to be influenced by RDN1, a member of the hydroxyproline-O-arabinosyltransferase (HPAT) family which can modify specific CLE peptides. However, it is not known if this signalling pathway plays a central role in root development across species, and in particular root responses to N. In this study, we systematically examined the role of the CLV signalling pathway genes in root development of the legume pea (Pisum sativum) and non-legume tomato (Solanum lycopersicum) using a mutant-based approach. This included a detailed examination of root development in response to N in tomato mutants disrupted in CLV1- or CLV2-like genes or HPAT family member FIN. We found no evidence for a role of these genes in pea seedling root development. Furthermore, the CLV1-like FAB gene did not influence tomato root development, including the root response to N supply. In contrast, both CLV2 and the HPAT gene FIN appear to positively influence root size in tomato but do not mediate root responses to N. These results suggest the function of these genes may vary somewhat in different species, including the N regulation of root architecture.
Collapse
Affiliation(s)
- Chenglei Wang
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - James B Reid
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
106
|
Wu Z, Huang W, Qin E, Liu S, Liu H, Grennan AK, Liu H, Qin R. Comprehensive Identification and Expression Profiling of Circular RNAs During Nodule Development in Phaseolus vulgaris. FRONTIERS IN PLANT SCIENCE 2020; 11:587185. [PMID: 33193538 PMCID: PMC7655914 DOI: 10.3389/fpls.2020.587185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/05/2020] [Indexed: 05/03/2023]
Abstract
Symbiotic nitrogen fixation by legume nodules provides an abundant nitrogen source for plants, and understanding this process is key for developing green agriculture. Circular RNA (circRNA), a type of endogenous RNA produced by reverse splicing of mRNA precursors, plays important regulatory roles in plants at the transcriptional and post-transcriptional levels. However, the relationship between circRNAs and legume-rhizobium is unknown. Here, we performed comprehensive identification and expression profiling of circRNAs during nodulation in common bean (Phaseolus vulgaris) compared to uninoculated roots of corresponding ages by constructing circRNA-seq and mRNA-seq libraries. We identified 8,842 high-confident circRNAs, 3,448 of which were specifically produced during symbiosis, with the highest number at the nitrogen-fixing stage. Significantly, more circRNAs were derived from exons than from intergenic regions or introns in all samples. The lengths and GC contents of the circRNAs were similar in roots and nodules. However, circRNAs showed specific spatiotemporal expression patterns during nodule and root development. GO and other functional annotation of parental genes of differentially expressed circRNAs indicated their potential involvement in different biological processes. The expression of major circRNAs during symbiosis is independent of parental genes' expression to a certain degree, while expression of the remaining minor circRNAs showed positive correlation to parental genes. Functional annotation of the targeted mRNAs in the circRNA-miRNA-mRNA network showed that circRNAs may be involved in transmembrane transport and positive regulation of kinase activity during nodulation and nitrogen fixation as miRNA sponges. Our comprehensive analysis of the expression profile of circRNAs and their potential functions suggests that circRNAs may function as new post-transcriptional regulators in legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Zhihua Wu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen Huang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Erdai Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Huan Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Aleel K. Grennan
- Biology Department, Worcester State University, Worcester, MA, United States
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
107
|
Lin J, Frank M, Reid D. No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis. PLANT COMMUNICATIONS 2020; 1:100104. [PMID: 33367261 PMCID: PMC7747975 DOI: 10.1016/j.xplc.2020.100104] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/08/2023]
Abstract
The establishment of symbiotic nitrogen fixation requires the coordination of both nodule development and infection events. Despite the evolution of a variety of anatomical structures, nodule organs serve a common purpose in establishing a localized area that facilitates efficient nitrogen fixation. As in all plant developmental processes, the establishment of a new nodule organ is regulated by plant hormones. During nodule initiation, regulation of plant hormone signaling is one of the major targets of symbiotic signaling. We review the role of major developmental hormones in the initiation of the nodule organ and argue that the manipulation of plant hormones is a key requirement for engineering nitrogen fixation in non-legumes as the basis for improved food security and sustainability.
Collapse
Affiliation(s)
- Jieshun Lin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Corresponding author
| |
Collapse
|
108
|
Douglas AE. Housing microbial symbionts: evolutionary origins and diversification of symbiotic organs in animals. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190603. [PMID: 32772661 DOI: 10.1098/rstb.2019.0603] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In many animal hosts, microbial symbionts are housed within specialized structures known as symbiotic organs, but the evolutionary origins of these structures have rarely been investigated. Here, I adopt an evolutionary developmental (evo-devo) approach, specifically to apply knowledge of the development of symbiotic organs to gain insights into their evolutionary origins and diversification. In particular, host genetic changes associated with evolution of symbiotic organs can be inferred from studies to identify the host genes that orchestrate the development of symbiotic organs, recognizing that microbial products may also play a key role in triggering the developmental programme in some associations. These studies may also reveal whether higher animal taxonomic groups (order, class, phylum, etc.) possess a common genetic regulatory network for symbiosis that is latent in taxa lacking symbiotic organs, and activated at the origination of symbiosis in different host lineages. In this way, apparent instances of convergent evolution of symbiotic organs may be homologous in terms of a common genetic blueprint for symbiosis. Advances in genetic technologies, including reverse genetic tools and genome editing, will facilitate the application of evo-devo approaches to investigate the evolution of symbiotic organs in animals. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
109
|
Zanetti ME, Blanco F, Reynoso M, Crespi M. To keep or not to keep: mRNA stability and translatability in root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:109-117. [PMID: 32569975 DOI: 10.1016/j.pbi.2020.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/15/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Post-transcriptional control of gene expression allows plants to rapidly adapt to changes in their environment. Under low nitrogen conditions, legume plants engage into a symbiosis with soil bacteria that results in the formation of root nodules, where bacteria are allocated and fix atmospheric nitrogen for the plant's benefit. Recent studies highlighted the importance of small RNA-mediated mechanisms in the control of bacterial infection, nodule organogenesis, and the long-distance signaling that balances plant growth and nodulation. Examples of such mechanisms are shoot-to-root mobile microRNAs and small RNA fragments derived from degradation of bacterial transfer RNAs that repress complementary mRNAs in the host plant. Mechanisms of selective mRNA translation also contribute to rapidly modulate the expression of nodulation genes in a cell-specific manner during symbiosis. Here, the most recent advances made on the regulation of mRNA stability and translatability, and the emerging roles of long non-coding RNAs in symbiosis are summarized.
Collapse
Affiliation(s)
- María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina.
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - Mauricio Reynoso
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900 La Plata, Argentina
| | - Martín Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Saclay, Evry and de Paris, Batiment 630, 91405 Orsay, France
| |
Collapse
|
110
|
Liu J, Bisseling T. Evolution of NIN and NIN-like Genes in Relation to Nodule Symbiosis. Genes (Basel) 2020; 11:E777. [PMID: 32664480 PMCID: PMC7397163 DOI: 10.3390/genes11070777] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 07/09/2020] [Indexed: 01/06/2023] Open
Abstract
Legumes and actinorhizal plants are capable of forming root nodules symbiosis with rhizobia and Frankia bacteria. All these nodulating species belong to the nitrogen fixation clade. Most likely, nodulation evolved once in the last common ancestor of this clade. NIN (NODULE INCEPTION) is a transcription factor that is essential for nodulation in all studied species. Therefore, it seems probable that it was recruited at the start when nodulation evolved. NIN is the founding member of the NIN-like protein (NLP) family. It arose by duplication, and this occurred before nodulation evolved. Therefore, several plant species outside the nitrogen fixation clade have NLP(s), which is orthologous to NIN. In this review, we discuss how NIN has diverged from the ancestral NLP, what minimal changes would have been essential for it to become a key transcription controlling nodulation, and which adaptations might have evolved later.
Collapse
Affiliation(s)
- Jieyu Liu
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands;
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands;
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
111
|
Shahan R, Benfey PN. A Co-opted Regulator of Lateral Root Development Controls Nodule Organogenesis in Lotus. Dev Cell 2020; 52:6-7. [PMID: 31951556 DOI: 10.1016/j.devcel.2019.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Legumes, a subset of flowering plants, form root nodules in symbiosis with nitrogen-fixing bacteria. The regulatory network controlling nodule formation has remained mysterious. In a recent issue of Science, Soyano et al. (2019) demonstrate that co-option of an existing lateral root developmental program is used in Lotus for nodule organogenesis.
Collapse
Affiliation(s)
- Rachel Shahan
- Duke University and Howard Hughes Medical Institute, Durham, NC 27701, USA
| | - Philip N Benfey
- Duke University and Howard Hughes Medical Institute, Durham, NC 27701, USA.
| |
Collapse
|
112
|
Xiao A, Yu H, Fan Y, Kang H, Ren Y, Huang X, Gao X, Wang C, Zhang Z, Zhu H, Cao Y. Transcriptional regulation of NIN expression by IPN2 is required for root nodule symbiosis in Lotus japonicus. THE NEW PHYTOLOGIST 2020; 227:513-528. [PMID: 32187696 DOI: 10.1111/nph.16553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/09/2020] [Indexed: 05/14/2023]
Abstract
Expression of Nodule Inception (NIN) is essential for initiation of legume-rhizobial symbiosis. An existing model regarding the regulation of NIN expression involves two GRAS transcription factors - NSP1 (Nodulation Signaling Pathway 1) and NSP2. NSP2 forms a complex with NSP1 to directly bind to NIN promoter. However, rhizobial treatment-induced NIN expression could still be detected in the nsp1 mutant plants, suggesting that other proteins must be involved in the regulation of NIN expression. A combination of molecular, biochemical and genetic analyses was used to investigate the molecular basis of IPN2 in regulating root development and NIN expression in Lotus japonicus. In this study, we identified that IPN2 is a close homolog of Arabidopsis APL (ALTERED PHLOEM DEVELOPMENT) with essential function in root development. However, Lotus IPN2 has a different expression pattern compared with the Arabidopsis APL gene. IPN2 binds to the IPN2-responsive cis element (IPN2-RE) of NIN promoter and activates NIN expression. IPN2, NSP1 and NSP2 form a protein complex to directly target NIN promoter and activate NIN expression in the legume-rhizobial symbiosis. Our data refine the regulatory model of NIN expression that NSP2 works together with NSP1 and IPN2 to activate the NIN gene allowing nodulation in L. japonicus.
Collapse
Affiliation(s)
- Aifang Xiao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haixiang Yu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqian Fan
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heng Kang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaping Ren
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqin Huang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiumei Gao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Wang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
113
|
Concha C, Doerner P. The impact of the rhizobia-legume symbiosis on host root system architecture. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3902-3921. [PMID: 32337556 PMCID: PMC7316968 DOI: 10.1093/jxb/eraa198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
Legumes form symbioses with rhizobia to fix N2 in root nodules to supplement their nitrogen (N) requirements. Many studies have shown how symbioses affect the shoot, but far less is understood about how they modify root development and root system architecture (RSA). RSA is the distribution of roots in space and over time. RSA reflects host resource allocation into below-ground organs and patterns of host resource foraging underpinning its resource acquisition capacity. Recent studies have revealed a more comprehensive relationship between hosts and symbionts: the latter can affect host resource acquisition for phosphate and iron, and the symbiont's production of plant growth regulators can enhance host resource flux and abundance. We review the current understanding of the effects of rhizobia-legume symbioses on legume root systems. We focus on resource acquisition and allocation within the host to conceptualize the effect of symbioses on RSA, and highlight opportunities for new directions of research.
Collapse
Affiliation(s)
- Cristobal Concha
- Institute for Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Doerner
- Institute for Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
114
|
Bu F, Rutten L, Roswanjaya YP, Kulikova O, Rodriguez‐Franco M, Ott T, Bisseling T, van Zeijl A, Geurts R. Mutant analysis in the nonlegume Parasponia andersonii identifies NIN and NF-YA1 transcription factors as a core genetic network in nitrogen-fixing nodule symbioses. THE NEW PHYTOLOGIST 2020; 226:541-554. [PMID: 31863481 PMCID: PMC7154530 DOI: 10.1111/nph.16386] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/04/2019] [Indexed: 05/13/2023]
Abstract
●Nitrogen-fixing nodulation occurs in 10 taxonomic lineages, with either rhizobia or Frankia bacteria. To establish such an endosymbiosis, two processes are essential: nodule organogenesis and intracellular bacterial infection. In the legume-rhizobium endosymbiosis, both processes are guarded by the transcription factor NODULE INCEPTION (NIN) and its downstream target genes of the NUCLEAR FACTOR Y (NF-Y) complex. ●It is hypothesized that nodulation has a single evolutionary origin c. 110 Ma, followed by many independent losses. Despite a significant body of knowledge of the legume-rhizobium symbiosis, it remains elusive which signalling modules are shared between nodulating species in different taxonomic clades. We used Parasponia andersonii to investigate the role of NIN and NF-YA genes in rhizobium nodulation in a nonlegume system. ●Consistent with legumes, P. andersonii PanNIN and PanNF-YA1 are coexpressed in nodules. By analyzing single, double and higher-order CRISPR-Cas9 knockout mutants, we show that nodule organogenesis and early symbiotic expression of PanNF-YA1 are PanNIN-dependent and that PanNF-YA1 is specifically required for intracellular rhizobium infection. ●This demonstrates that NIN and NF-YA1 have conserved symbiotic functions. As Parasponia and legumes diverged soon after the birth of the nodulation trait, we argue that NIN and NF-YA1 represent core transcriptional regulators in this symbiosis.
Collapse
Affiliation(s)
- Fengjiao Bu
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Luuk Rutten
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Yuda Purwana Roswanjaya
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
- Center of Technology for Agricultural ProductionAgency for the Assessment and Application of Technology (BPPT)10340JakartaIndonesia
| | - Olga Kulikova
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | | | - Thomas Ott
- Cell BiologyFaculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | - Ton Bisseling
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Arjan van Zeijl
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Rene Geurts
- Laboratory of Molecular BiologyDepartment of Plant ScienceWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| |
Collapse
|
115
|
Wang Z, Wang L, Wang Y, Li X. The NMN Module Conducts Nodule Number Orchestra. iScience 2020; 23:100825. [PMID: 31978752 PMCID: PMC6976932 DOI: 10.1016/j.isci.2020.100825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023] Open
Abstract
Legumes control nodule number through nodulation and autoregulation of nodulation (AON) pathways. Nodule Inception (NIN) is essential for rhizobial infection and nodule organogenesis in legumes. The GmNINa-miR172c-NNC1 (NMN) module, which consists of two positive regulators, GmNINa and miR172c, and a suppressor, NNC1, integrates both pathways. GmNINa activates miR172c to downregulate NNC1, leading to nodulation, while NNC1 inhibits miR172c expression, forming a negative feedback loop. GmNINa and NNC1 interact with each other and antagonistically fine-tune GmRIC1/RIC2 expression, turning AON on and off. Conversely, activation of AON inhibits GmNINa and miR172c expression, thereby reducing their inhibitory effects on NNC1 to attenuate both nodulation signaling and AON. The NMN module functions not only as an “accelerator” of the nodulation signal to promote nodulation but also as a “brake” on the signal by activating AON to orchestrate nodule number.
Collapse
Affiliation(s)
- Zhijuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Lixiang Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China; Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yongliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China.
| |
Collapse
|
116
|
Ichihashi Y, Hakoyama T, Iwase A, Shirasu K, Sugimoto K, Hayashi M. Common Mechanisms of Developmental Reprogramming in Plants-Lessons From Regeneration, Symbiosis, and Parasitism. FRONTIERS IN PLANT SCIENCE 2020; 11:1084. [PMID: 32765565 PMCID: PMC7378864 DOI: 10.3389/fpls.2020.01084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/30/2020] [Indexed: 05/09/2023]
Abstract
Most plants are exquisitely sensitive to their environment and adapt by reprogramming post-embryonic development. The systematic understanding of molecular mechanisms regulating developmental reprogramming has been underexplored because abiotic and biotic stimuli that lead to reprogramming of post-embryonic development vary and the outcomes are highly species-specific. In this review, we discuss the diversity and similarities of developmental reprogramming processes by summarizing recent key findings in reprogrammed development: plant regeneration, nodule organogenesis in symbiosis, and haustorial formation in parasitism. We highlight the potentially shared molecular mechanisms across the different developmental programs, especially a core network module mediated by the AUXIN RESPONSIVE FACTOR (ARF) and the LATERAL ORGAN BOUNDARIES DOMAIN (LBD) family of transcription factors. This allows us to propose a new holistic concept that will provide insights into the nature of plant development, catalyzing the fusion of subdisciplines in plant developmental biology.
Collapse
Affiliation(s)
- Yasunori Ichihashi
- RIKEN BioResource Research Center, Tsukuba, Japan
- *Correspondence: Yasunori Ichihashi,
| | - Tsuneo Hakoyama
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Makoto Hayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
117
|
Affiliation(s)
- Anthony Bishopp
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK.
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK.
| |
Collapse
|