101
|
Geeson M, Cummins CC. Let's Make White Phosphorus Obsolete. ACS CENTRAL SCIENCE 2020; 6:848-860. [PMID: 32607432 PMCID: PMC7318074 DOI: 10.1021/acscentsci.0c00332] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Indexed: 05/20/2023]
Abstract
Industrial and laboratory methods for incorporating phosphorus atoms into molecules within the framework of Green Chemistry are in their infancy. Current practice requires large inputs of energy, involves toxic intermediates, and generates substantial waste. Furthermore, a negligible fraction of phosphorus-containing waste is recycled which in turn contributes to negative environmental impacts, such as eutrophication. Methods that begin to address some of these drawbacks are reviewed, and some key opportunities to be realized by pursuing organophosphorus chemistry under the principles of Green Chemistry are highlighted. Methods used by nature, or in the chemistry of other elements such as silicon, are discussed as model processes for the future of phosphorus in chemical synthesis.
Collapse
|
102
|
Beddoe RH, Edwards DC, Goodman L, Sneddon HF, Denton RM. Synthesis of 18O-labelled alcohols from unlabelled alcohols. Chem Commun (Camb) 2020; 56:6480-6483. [PMID: 32453324 DOI: 10.1039/d0cc02855j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The synthesis of primary, secondary and tertiary 18O-enriched alcohols from readily available 16O-alcohols via a Mitsunobu esterification and hydrolysis is described. The method is further exemplified in the labelling of the active pharmaceutical ingredient, dropropizine and is shown to be tolerant of modern, separation friendly Mitsunobu reagents.
Collapse
Affiliation(s)
- Rhydian H Beddoe
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, 6 Triumph Road, Nottingham, NG7 2GA, UK.
| | - Daniel C Edwards
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, 6 Triumph Road, Nottingham, NG7 2GA, UK.
| | - Louis Goodman
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, 6 Triumph Road, Nottingham, NG7 2GA, UK.
| | - Helen F Sneddon
- Green Chemistry, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Ross M Denton
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, 6 Triumph Road, Nottingham, NG7 2GA, UK.
| |
Collapse
|
103
|
Affiliation(s)
- Romain Morodo
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| | - Pauline Bianchi
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| | - Jean‐Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| |
Collapse
|
104
|
Eren NM, Orr SA, Thompson CD, Border EC, Stevens MA, Blair VL. Synthesis, Structure, and Solution Studies of Lithiated Allylic Phosphines and Phosphine Oxides. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nimrod M. Eren
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Samantha A. Orr
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | | | - Emily C. Border
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Michael A. Stevens
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Victoria L. Blair
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| |
Collapse
|
105
|
Cui B, Gao J, Fan L, Jiao Y, Lu T, Feng J. Dehydroxylated C-3 Alkylation of Indole Accompanied by 1,2-Sulfur Migration. J Org Chem 2020; 85:6206-6215. [DOI: 10.1021/acs.joc.0c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- BingBing Cui
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, P.R. China
| | - Jian Gao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, P.R. China
| | - Lu Fan
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, P.R. China
| | - Yu Jiao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, P.R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, P.R. China
| | - Jie Feng
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, P.R. China
| |
Collapse
|
106
|
Sharma S, Anand R, Cham PS, Raina S, Vishwakarma RA, Singh PP. A concise and sequential synthesis of the nitroimidazooxazole based drug, Delamanid and related compounds. RSC Adv 2020; 10:17085-17093. [PMID: 35521460 PMCID: PMC9053479 DOI: 10.1039/d0ra01662d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/16/2020] [Indexed: 11/21/2022] Open
Abstract
A concise, protection-group free and sequential route has been developed for the synthesis of the nitroimidazole based FDA-approved multi-drug resistant anti-tuberculosis drug, Delamanid and anti-leishmanial lead candidate VL-2098. The synthesis required chiral epoxides (11 and 17) as key intermediates. The chiral epoxide 11 was synthesised by sequential reaction cascades viz., allylation, selective N-arylation, Mitsunobu etherification, Sharpless asymmetric dihydroxylation and epoxidation, which do not require any special/dry reaction conditions. The steps involved towards the synthesis of epoxide also worked nicely in gram scales. After the synthesis of epoxide 11, the synthesis of Delamanid was achieved by reaction with 2-bromo-4-nitroimidazole 12 with an overall yield of 27%. Similarly, anti-leishmanial lead candidate VL-2098 was also synthesized in an overall yield of 36%. A concise, protection-group free and sequential route has been developed for the synthesis of the nitroimidazole based FDA-approved multi-drug resistant anti-tuberculosis drug, Delamanid and anti-leishmanial lead candidate VL-2098.![]()
Collapse
Affiliation(s)
- Sumit Sharma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Radhika Anand
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India
| | - Pankaj Singh Cham
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sushil Raina
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Parvinder Pal Singh
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
107
|
Zi Y, Schömberg F, Wagner K, Vilotijevic I. C–H Functionalization of Benzothiazoles via Thiazol-2-yl-phosphonium Intermediates. Org Lett 2020; 22:3407-3411. [DOI: 10.1021/acs.orglett.0c00882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- You Zi
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Fritz Schömberg
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Konrad Wagner
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Ivan Vilotijevic
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Humboldtstr. 10, 07743 Jena, Germany
| |
Collapse
|
108
|
Kurosawa MB, Isshiki R, Muto K, Yamaguchi J. Catalytic Deoxygenative Coupling of Aromatic Esters with Organophosphorus Compounds. J Am Chem Soc 2020; 142:7386-7392. [DOI: 10.1021/jacs.0c02839] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Miki B. Kurosawa
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Ryota Isshiki
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kei Muto
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
109
|
Li G, Nykaza TV, Cooper JC, Ramirez A, Luzung MR, Radosevich AT. An Improved P III/P V═O-Catalyzed Reductive C-N Coupling of Nitroaromatics and Boronic Acids by Mechanistic Differentiation of Rate- and Product-Determining Steps. J Am Chem Soc 2020; 142:6786-6799. [PMID: 32178514 PMCID: PMC7146866 DOI: 10.1021/jacs.0c01666] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Experimental,
spectroscopic, and computational studies are reported
that provide an evidence-based mechanistic description of an intermolecular
reductive C–N coupling of nitroarenes and arylboronic acids
catalyzed by a redox-active main-group catalyst (1,2,2,3,4,4-hexamethylphosphetane P-oxide, i.e., 1·[O]). The central observations
include the following: (1) catalytic reduction of 1·[O]
to PIII phosphetane 1 is kinetically fast
under conditions of catalysis; (2) phosphetane 1 represents
the catalytic resting state as observed by 31P NMR spectroscopy;
(3) there are no long-lived nitroarene partial-reduction intermediates
observable by 15N NMR spectroscopy; (4) the reaction is
sensitive to solvent dielectric, performing best in moderately polar
solvents (viz. cyclopentylmethyl ether); and (5) the reaction is largely
insensitive with respect to common hydrosilane reductants. On the
basis of the foregoing studies, new modified catalytic conditions
are described that expand the reaction scope and provide for mild
temperatures (T ≥ 60 °C), low catalyst
loadings (≥2 mol%), and innocuous terminal reductants (polymethylhydrosiloxane).
DFT calculations define a two-stage deoxygenation sequence for the
reductive C–N coupling. The initial deoxygenation involves
a rate-determining step that consists of a (3+1) cheletropic addition
between the nitroarene substrate and phosphetane 1; energy
decomposition techniques highlight the biphilic character of the phosphetane
in this step. Although kinetically invisible, the second deoxygenation
stage is implicated as the critical C–N product-forming event,
in which a postulated oxazaphosphirane intermediate is diverted from
arylnitrene dissociation toward heterolytic ring opening with the
arylboronic acid; the resulting dipolar intermediate evolves by antiperiplanar
1,2-migration of the organoboron residue to nitrogen, resulting in
displacement of 1·[O] and formation of the target
C–N coupling product upon in situ hydrolysis.
The method thus described constitutes a mechanistically well-defined
and operationally robust main-group complement to the current workhorse
transition-metal-based methods for catalytic intermolecular C–N
coupling.
Collapse
Affiliation(s)
- Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Trevor V Nykaza
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Julian C Cooper
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Antonio Ramirez
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Michael R Luzung
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
110
|
Mo JY, Epifanov M, Hodgson JW, Dubois R, Sammis GM. One‐Pot Substitution of Aliphatic Alcohols Mediated by Sulfuryl Fluoride. Chemistry 2020; 26:4958-4962. [DOI: 10.1002/chem.202000721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Jia Yi Mo
- Department of ChemistryUniversity of British Columbia 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| | - Maxim Epifanov
- Department of ChemistryUniversity of British Columbia 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| | - Jack W. Hodgson
- Department of ChemistryUniversity of British Columbia 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| | - Rudy Dubois
- Department of ChemistryUniversity of British Columbia 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| | - Glenn M. Sammis
- Department of ChemistryUniversity of British Columbia 2036 Main Mall Vancouver, British Columbia V6T 1Z1 Canada
| |
Collapse
|
111
|
Liu B, Elder WZ, Miyake GM. Scalable and Phosphine-Free Conversion of Alcohols to Carbon-Heteroatom Bonds through the Blue Light-Promoted Iodination Reaction. J Org Chem 2020; 85:3717-3727. [PMID: 32019308 DOI: 10.1021/acs.joc.9b03373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the fundamental and highly valuable transformations in organic chemistry is the nucleophilic substitution of alcohols. Traditionally, these reactions require strategies that employ stoichiometric hazardous reagents and are associated with difficulty in purification of the by-products. To overcome these challenges, here, we report a simple route toward the diverse conversion of alcohols via an SN2 pathway, in which blue light-promoted iodination is used to form alkyl iodide intermediates from simple unreactive alcohols. The scope of the process tolerates a range of nucleophiles to construct C-N, C-O, C-S, and C-C bonds. Furthermore, we also demonstrate that this method can be used for the preparation and late-stage functionalization of pharmaceuticals, as highlighted by the syntheses of thiocarlide, butoxycaine, and pramoxine.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - W Zachary Elder
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
112
|
Hubbard PJ, Benzie JW, Bakhmutov VI, Blümel J. Disentangling different modes of mobility for triphenylphosphine oxide adsorbed on alumina. J Chem Phys 2020; 152:054718. [PMID: 32035468 DOI: 10.1063/1.5142568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Triphenylphosphine oxide (TPPO, 1) has been adsorbed on neutral alumina by dry grinding of the components in the absence of a solvent. The adsorption proves translational mobility of 1 on the surface of alumina. Different surface coverages from a densely packed monolayer (99% coverage) to a dilute sub-monolayer (25%) have been produced. The samples have been studied by diverse multinuclear 1H, 13C, and 31P variable temperature solid-state nuclear magnetic resonance (NMR) techniques. The interactions of 1 with the surface are determined by hydrogen bonding of the P=O group to OH groups on the surface. The 31P solid-state NMR spectra prove that even at low temperatures, the molecules of 1 are highly mobile on the surface. Using T1 and T2 relaxation time analyses of the 31P resonance in the solid state at variable temperatures allowed the identification and quantification of two different modes of mobility. Besides the translational mobility that consists of jumps from one hydrogen-bonding OH site on the surface to an adjacent one, a rotational movement around the axis defined by the P=O group of 1 occurs.
Collapse
Affiliation(s)
- Patrick J Hubbard
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA
| | - Jordon W Benzie
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA
| | - Vladimir I Bakhmutov
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA
| | - Janet Blümel
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA
| |
Collapse
|
113
|
Boyle BT, Nottingham KG, McNally A. An Organocatalytic Mitsunobu Reaction. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2019.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
114
|
Manabe S, Wong CM, Sevov CS. Direct and Scalable Electroreduction of Triphenylphosphine Oxide to Triphenylphosphine. J Am Chem Soc 2020; 142:3024-3031. [PMID: 31948233 DOI: 10.1021/jacs.9b12112] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuhei Manabe
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Curt M. Wong
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Christo S. Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
115
|
Li H, Hou Y, Liu C, Lai Z, Ning L, Szostak R, Szostak M, An J. Pentafluorophenyl Esters: Highly Chemoselective Ketyl Precursors for the Synthesis of α,α-Dideuterio Alcohols Using SmI2 and D2O as a Deuterium Source. Org Lett 2020; 22:1249-1253. [DOI: 10.1021/acs.orglett.9b04383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hengzhao Li
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing 100193, China
| | - Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Zemin Lai
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lei Ning
- College of Science, China Agricultural University, Beijing 100193, China
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jie An
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
116
|
Hjerrild P, Tørring T, Poulsen TB. Dehydration reactions in polyfunctional natural products. Nat Prod Rep 2020; 37:1043-1064. [DOI: 10.1039/d0np00009d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here, we review methods for chemical dehydration of alcohols to alkenes and discuss the potential of late-stage functionalization by direct, site- and chemo-selective dehydration of complex molecular substrates.
Collapse
Affiliation(s)
- Per Hjerrild
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Thomas Tørring
- Department of Engineering – Microbial Biosynthesis
- Aarhus University
- Aarhus C
- Denmark
| | | |
Collapse
|
117
|
Xie P, Li S, Liu Y, Cai X, Wang J, Yang X, Loh TP. Alkaline-Earth Metal Catalyzed Dehydrative Allylic Alkylation. Org Lett 2019; 22:31-35. [DOI: 10.1021/acs.orglett.9b03730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Peizhong Xie
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Shuangshuang Li
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yanan Liu
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Xinying Cai
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Jinyu Wang
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Xiaobo Yang
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P.R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
118
|
Akkarasamiyo S, Samec JSM. Intermolecular Stereospecific Substitution of Underivatized Enantioenriched Secondary Alcohols by Organocatalysis. Angew Chem Int Ed Engl 2019; 58:17908-17910. [DOI: 10.1002/anie.201911532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sunisa Akkarasamiyo
- Laboratory of Medicinal ChemistryChulabhorn Research Institute 54 Kamphaeng Phet 6 Road, Laksi Bangkok 10210 Thailand
| | - Joseph S. M. Samec
- Department of Organic ChemistryStockholm University, Arrheniuslaboratorierna 10691 Stockholm Sweden
| |
Collapse
|
119
|
Huy PH. Lewis Base Catalysis Promoted Nucleophilic Substitutions – Recent Advances and Future Directions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901495] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter H. Huy
- Institute for Organic Chemistry Saarland University P. O. Box 151150 66041 Saarbruecken Germany
| |
Collapse
|
120
|
Akkarasamiyo S, Samec JSM. Intermolekulare stereospezifische Substitution von underivatisierten enantiomerenangereicherten sekundären Alkoholen durch Organokatalyse. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sunisa Akkarasamiyo
- Laboratory of Medicinal ChemistryChulabhorn Research Institute 54 Kamphaeng Phet 6 Road, Laksi Bangkok 10210 Thailand
| | - Joseph S. M. Samec
- Department of Organic ChemistryStockholm University, Arrheniuslaboratorierna 10691 Stockholm Schweden
| |
Collapse
|
121
|
Mitsunobu gets a makeover. Nat Chem 2019; 11:966-967. [DOI: 10.1038/s41557-019-0362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
122
|
Affiliation(s)
- Lars Longwitz
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
123
|
Arp FF, Ahn SH, Bhuvanesh N, Blümel J. Selective synthesis and stabilization of peroxides via phosphine oxides. NEW J CHEM 2019. [DOI: 10.1039/c9nj04858h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
MEKPO (methyl ethyl ketone peroxide) and other peroxides can be synthesized selectively and stabilized as hydrogen-bonded phosphine oxide adducts.
Collapse
Affiliation(s)
- Fabian F. Arp
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Shin Hye Ahn
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Janet Blümel
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| |
Collapse
|
124
|
Xu Z, Zheng Y, Wang Z, Shao X, Tian L, Wang Y. Triphenylphosphine-assisted dehydroxylative Csp3–N bond formation via electrochemical oxidation. Chem Commun (Camb) 2019; 55:15089-15092. [DOI: 10.1039/c9cc08622f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A dehydroxylative Csp3–N coupling by electrochemical oxidation with readily available alcohols as substrates and a wide variety of azoles and amides as N-nucleophiles.
Collapse
Affiliation(s)
- Zhimin Xu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yue Zheng
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhihui Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xiaoqing Shao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Lifang Tian
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yahui Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|