101
|
Xu WB, Sun M, Shu M, Li C. Rhodium-Catalyzed Regio- and Enantioselective Allylic Amination of Racemic 1,2-Disubstituted Allylic Phosphates. J Am Chem Soc 2021; 143:8255-8260. [PMID: 34029072 DOI: 10.1021/jacs.1c04016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alkynylphosphines are rarely used as ligands in asymmetric metal catalysis. We synthesized a series of chiral bis(oxazoline)alkynylphosphine ligands and used them in Rh-catalyzed highly regio- and enantioselective allylic amination reactions of 1,2-disubstituted allylic phosphates. Chiral 1,2-disubstituted allylic amines were synthesized in up to 95% yield with >20:1 branched/linear (b/l) ratio and 99% ee from racemic 1,2-disubstituted allylic precursors. The sterically smaller linear alkynyl group on the P atom in the bis(oxazoline)alkynylphosphine ligands was the key to fit the new requirements of the introduction of bulky 2-R' groups.
Collapse
Affiliation(s)
- Wen-Bin Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Minghe Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mouhai Shu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
102
|
Huang L, Xie JH, Cai Y, Zheng C, Hou XL, Dai LX, You SL. Enantioselective synthesis of polycyclic pyrrole derivatives by iridium-catalyzed asymmetric allylic dearomatization and ring-expansive migration reactions. Chem Commun (Camb) 2021; 57:5390-5393. [PMID: 33949525 DOI: 10.1039/d1cc01929e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we report an N-alkylation of pyrroles triggered by an unprecedented selective ring-expansive migration of the spiro-2H-pyrrole intermediates obtained via Ir-catalyzed asymmetric allylic dearomatization. The reaction affords a series of tetrahydropyrrolo[1,2-c]pyrimidine derivatives in good yields (up to 88%) with excellent enantioselectivity (up to >99% ee). The proposed reaction mechanism is supported by DFT calculations and the characterization of the key intermediate.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Yue Cai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Xue-Long Hou
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Li-Xin Dai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
103
|
Yang WL, Liu TT, Ni T, Zhu B, Luo X, Deng WP. Iridium-Catalyzed Asymmetric Cascade Allylation/Pictet-Spengler Cyclization Reaction for the Enantioselective Synthesis of 1,3,4-Trisubstituted Tetrahydroisoquinolines. Org Lett 2021; 23:2790-2796. [PMID: 33734718 DOI: 10.1021/acs.orglett.1c00709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An iridium-catalyzed trifluoroacetic acid-promoted asymmetric cascade allylation/Pictet-Spengler cyclization reaction of azomethine ylides with aromatic allylic alcohols is reported. This protocol provides a facile and scalable method for the construction of 1,3,4-trisubstituted tetrahydroisoquinolines containing two stereogenic centers in good yields (up to 96%) with generally excellent diastereo- and enantioselectivities (up to >20:1 dr and >99% ee). Furthermore, a series of aromatic heterocycle-fused piperidines were also obtained with excellent enantiocontrol by this methodology.
Collapse
|
104
|
Duan S, Deng G, Zi Y, Wu X, Tian X, Liu Z, Li M, Zhang H, Yang X, Walsh PJ. Nickel-catalyzed enantioselective vinylation of aryl 2-azaallyl anions. Chem Sci 2021; 12:6406-6412. [PMID: 34084440 PMCID: PMC8115067 DOI: 10.1039/d1sc00972a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A unique enantioselective nickel-catalyzed vinylation of 2-azaallyl anions is advanced for the first time. This method affords diverse vinyl aryl methyl amines with high enantioselectivities, which are frequently occurring scaffolds in natural products and medications. This C-H functionalization method can also be extended to the synthesis of enantioenriched 1,3-diamine derivatives by employing suitably elaborated vinyl bromides. Key to the success of this process is the identification of a Ni/chiraphos catalyst system and a less reducing 2-azaallyl anion, all of which favor an anionic vinylation route over a background radical reaction. A telescoped gram scale synthesis and a product derivatization study confirmed the scalability and synthetic potential of this method.
Collapse
Affiliation(s)
- Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Yujin Zi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Xiaomei Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Xun Tian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Zhengfen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Minyan Li
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA USA
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA USA
| |
Collapse
|
105
|
Qu BL, Zhang MM, Lu LQ, Xiao WJ. Intercepting a labile anti-π-allyl-iridium complex before its isomerization. Chem 2021. [DOI: 10.1016/j.chempr.2021.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
106
|
|
107
|
Li S, Qiu J, Li B, Sun Z, Xie P, Loh TP. Practical allylation with unactivated allylic alcohols under mild conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00490e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A practical palladium/calcium catalytic system was developed for dehydrative allylation with unactivated allylic alcohols.
Collapse
Affiliation(s)
- Shuangshuang Li
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Ju Qiu
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Bowen Li
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Zuolian Sun
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- Division of Chemistry and Biological Chemistry
| |
Collapse
|
108
|
Yang P, Liu CX, Zhang WW, You SL. Ir-Catalyzed Enantioselective Friedel-Crafts Type Allylic Substitution of Indolizines. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
109
|
Mei GJ, Koay WL, Tan CXA, Lu Y. Catalytic asymmetric preparation of pyrroloindolines: strategies and applications to total synthesis. Chem Soc Rev 2021; 50:5985-6012. [DOI: 10.1039/d0cs00530d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pyrroloindolines are widely present in natural products. In this review, we summarize state-of-the-art of catalytic asymmetric synthesis of pyrroloindolines, as well as related applications to natural products total synthesis.
Collapse
Affiliation(s)
- Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
- Department of Chemistry
| | - Wai Lean Koay
- Department of Chemistry
- National University of Singapore
- Singapore
- Graduate School for Integrative Sciences & Engineering (NGS)
- National University of Singapore
| | - Chuan Xiang Alvin Tan
- Department of Chemistry
- National University of Singapore
- Singapore
- Graduate School for Integrative Sciences & Engineering (NGS)
- National University of Singapore
| | - Yixin Lu
- Department of Chemistry
- National University of Singapore
- Singapore
- Graduate School for Integrative Sciences & Engineering (NGS)
- National University of Singapore
| |
Collapse
|
110
|
Pan B, Ouyang JS, Zhang Y, Liang H, Ni Q, Chen B, Pu X, Jiang L, Cao R, Qiu L. Iridium-catalyzed intramolecular asymmetric allylic etherification of salicylic acid derivatives with chiral-bridged biphenyl phosphoramidite ligands. Org Chem Front 2021. [DOI: 10.1039/d1qo00566a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Iridium-catalyzed intramolecular asymmetric allylic etherification of salicylic acid derivatives was successfully realized for the first time.
Collapse
|
111
|
Zhao QR, Jiang R, You SL. Ir-catalyzed Sequential Asymmetric Allylic Substitution/Olefin Isomerization for the Synthesis of Axially Chiral Compounds. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21070320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|