101
|
|
102
|
Wills AG, Charvet S, Battilocchio C, Scarborough CC, Wheelhouse KMP, Poole DL, Carson N, Vantourout JC. High-Throughput Electrochemistry: State of the Art, Challenges, and Perspective. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alfie G. Wills
- Medicinal Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
- Department of Pure & Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Sylvain Charvet
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bâtiment LEDERER, 1 rue Victor Grignard, 69622 Villeurbanne Cedex, France
| | - Claudio Battilocchio
- Research Chemistry, Syngenta Crop Protection, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | | | - Katherine M. P. Wheelhouse
- Chemical Development, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Darren L. Poole
- Medicinal Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Nessa Carson
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Julien C. Vantourout
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bâtiment LEDERER, 1 rue Victor Grignard, 69622 Villeurbanne Cedex, France
| |
Collapse
|
103
|
Blum SP, Hofman K, Manolikakes G, Waldvogel SR. Advances in photochemical and electrochemical incorporation of sulfur dioxide for the synthesis of value-added compounds. Chem Commun (Camb) 2021; 57:8236-8249. [PMID: 34319313 DOI: 10.1039/d1cc03018c] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Organic photochemistry and electrochemistry currently receive tremendous attention in organic synthesis as both techniques enable the reagent-less activation of organic molecules without using expensive and hazardous redox reagents. The incorporation of SO2 into organic molecules is a relatively modern research topic, which likewise gains immense popularity since the discovery of the SO2 surrogate DABSO. Sulfur-containing organic molecules are omnipresent in pharmaceuticals and agrochemicals. This review covers the recent progress in electrochemical and photochemical methodologies for the incorporation and uses of SO2 in the synthesis of value-added compounds. Additionally, different work techniques are demonstrated for the synthetic application of SO2.
Collapse
Affiliation(s)
- Stephan P Blum
- Department of Chemistry, Johannes Gutenberg University Mainz, D-55128 Mainz, Germany.
| | | | | | | |
Collapse
|
104
|
von Wolff N, Robert M. Taming Electron Transfers: From Breaking Bonds to Creating Molecules. CHEM REC 2021; 21:2095-2106. [PMID: 34235842 DOI: 10.1002/tcr.202100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/07/2022]
Abstract
The electron is the ultimate redox reagent to build and reshape molecular structures. Understanding and controlling the parameters underlying dissociative electron transfer (DET) reactivity and its coupling with proton transfer is crucial for combining selectivity, kinetics and energy efficiency in molecular chemistry. Reactivity understanding and mechanistic elements in DET processes are traced back and key examples of current research efforts are presented, demonstrating a large variety of applications. The involvement of DET pathways indeed encompasses a broad range of processes such as photoredox catalysis, CO2 reduction and alcohol oxidation. Interplay between these experimental examples and fundamental mechanistic study provides a powerful path to the understanding of driving force-rate relationships, which is crucial for the development of future generations of energy efficient catalytic schemes in redox organic chemistry.
Collapse
Affiliation(s)
- Niklas von Wolff
- Université de Paris, Laboratoire d'Électrocimie Moléculaire, CNRS, F-75006, Paris, France
| | - Marc Robert
- Université de Paris, Laboratoire d'Électrocimie Moléculaire, CNRS, F-75006, Paris, France.,Institut Universitaire de France (IUF), F-75005, Paris, France
| |
Collapse
|
105
|
Shibuya A, Nokami T. Electrochemical Assembly for Synthesis of Middle-Sized Organic Molecules. CHEM REC 2021; 21:2389-2396. [PMID: 34101967 DOI: 10.1002/tcr.202100085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/21/2021] [Indexed: 12/23/2022]
Abstract
Electrochemical methods offer a powerful, reliable, and environmentally benign approach for the synthesis of small organic molecules, and such methods are useful not only for the transformation of small molecules, but also for the preparation of oligomers and polymers. Electrochemical assembly is a concept that allows structurally well-defined middle-sized organic molecules to be synthesized by applying electrochemical methods. The preparation of dendrimers, dendronized polymers, and oligosaccharides are introduced as examples of such an approach. Automated electrochemical assembly of oligosaccharides is also demonstrated using the electrochemical synthesizer developed by our group.
Collapse
Affiliation(s)
- Akito Shibuya
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori city, 680-8552 Tottori, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori city, 680-8552 Tottori, Japan.,Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori city, 680-8552 Tottori, Japan
| |
Collapse
|
106
|
Vantourout JC. From Bench to Plant: An Opportunity for Transition Metal Paired Electrocatalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Julien C. Vantourout
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bâtiment LEDERER, 1 rue Victor Grignard, 69622 Villeurbanne Cedex, France
| |
Collapse
|
107
|
Liu F, Wu N, Cheng X. Chlorination Reaction of Aromatic Compounds and Unsaturated Carbon-Carbon Bonds with Chlorine on Demand. Org Lett 2021; 23:3015-3020. [PMID: 33792338 DOI: 10.1021/acs.orglett.1c00704] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chlorination with chlorine is straightforward, highly reactive, and versatile, but it has significant limitations. In this Letter, we introduce a protocol that could combine the efficiency of electrochemical transformation and the high reactivity of chlorine. By utilizing Cl3CCN as the chloride source, donating up to all three chloride atom, the reaction could generate and consume the chlorine in situ on demand to achieve the chlorination of aromatic compounds and electrodeficient alkenes.
Collapse
Affiliation(s)
- Feng Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Na Wu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
108
|
Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS CENTRAL SCIENCE 2021; 7:415-431. [PMID: 33791425 PMCID: PMC8006177 DOI: 10.1021/acscentsci.0c01532] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C-H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Collapse
Affiliation(s)
- Cuiju Zhu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nate W. J. Ang
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|