101
|
Kim SJ, Swanson MJ, Qiu H, Govind CK, Hinnebusch AG. Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo. Mol Cell Biol 2006; 25:11171-83. [PMID: 16314536 PMCID: PMC1316967 DOI: 10.1128/mcb.25.24.11171-11183.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cyc8p/Tup1p complex mediates repression of diverse genes in Saccharomyces cerevisiae and is recruited by DNA binding proteins specific for the different sets of repressed genes. By screening the yeast deletion library, we identified Cyc8p as a coactivator for Gcn4p, a transcriptional activator of amino acid biosynthetic genes. Deletion of CYC8 confers sensitivity to an inhibitor of isoleucine/valine biosynthesis and impairs activation of Gcn4p-dependent reporters and authentic amino acid biosynthetic target genes. Deletion of TUP1 produces similar but less severe activation defects in vivo. Although expression of Gcn4p is unaffected by deletion of CYC8, chromatin immunoprecipitation assays reveal a strong defect in binding of Gcn4p at the target genes ARG1 and ARG4 in cyc8Delta cells and to a lesser extent in tup1Delta cells. The defects in Gcn4p binding and transcriptional activation in cyc8Delta cells cannot be overcome by Gcn4p overexpression but are partially suppressed in tup1Delta cells. The impairment of Gcn4p binding in cyc8Delta and tup1Delta cells is severe enough to reduce recruitment of SAGA, Srb mediator, TATA binding protein, and RNA polymerase II to the ARG1 and ARG4 promoters, accounting for impaired transcriptional activation of these genes in both mutants. Cyc8p and Tup1p are recruited to the ARG1 and ARG4 promoters, consistent with a direct role for this complex in stimulating Gcn4p occupancy of the upstream activation sequence (UAS). Interestingly, Gcn4p also stimulates binding of Cyc8p/Tup1p at the 3' ends of these genes, raising the possibility that Cyc8p/Tup1p influences transcription elongation. Our findings reveal a novel coactivator function for Cyc8p/Tup1p at the level of activator binding and suggest that Gcn4p may enhance its own binding to the UAS by recruiting Cyc8p/Tup1p.
Collapse
Affiliation(s)
- Soon-Ja Kim
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
102
|
Fan X, Chou DM, Struhl K. Activator-specific recruitment of Mediator in vivo. Nat Struct Mol Biol 2006; 13:117-20. [PMID: 16429153 DOI: 10.1038/nsmb1049] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 12/08/2005] [Indexed: 11/09/2022]
Abstract
The Mediator complex associates with eukaryotic RNA polymerase (Pol) II and is recruited to transcriptional enhancers by activator proteins. It is believed that Mediator is a general component of the Pol II machinery that is crucial to connect enhancer-bound activators to basic transcription factors. However, we show that Mediator does not detectably associate with many highly active Pol II promoters in yeast cells. Furthermore, in response to stress conditions, Mediator association is not directly related to Pol II association and in some cases is not detectable at highly activated promoters. Thus, Mediator is recruited to enhancers in an activator-specific manner, and it does not seem to be a stoichiometric component of the basic Pol II machinery in vivo. Mediator is recruited by many activators involved in stress responses, but not by the major activators that function under optimal conditions.
Collapse
Affiliation(s)
- Xiaochun Fan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
103
|
Abstract
Cells reprogram gene expression in response to environmental changes by mobilizing transcriptional activators. The activator protein Gcn4 of the yeast Saccharomyces cerevisiae is regulated by an intricate translational control mechanism, which is the primary focus of this review, and also by the modulation of its stability in response to nutrient availability. Translation of GCN4 mRNA is derepressed in amino acid-deprived cells, leading to transcriptional induction of nearly all genes encoding amino acid biosynthetic enzymes. The trans-acting proteins that control GCN4 translation have general functions in the initiation of protein synthesis, or regulate the activities of initiation factors, so that the molecular events that induce GCN4 translation also reduce the rate of general protein synthesis. This dual regulatory response enables cells to limit their consumption of amino acids while diverting resources into amino acid biosynthesis in nutrient-poor environments. Remarkably, mammalian cells use the same strategy to downregulate protein synthesis while inducing transcriptional activators of stress-response genes under various stressful conditions, including amino acid starvation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| |
Collapse
|
104
|
Romero C, Desai P, DeLillo N, Vancura A. Expression of FLR1 transporter requires phospholipase C and is repressed by Mediator. J Biol Chem 2005; 281:5677-85. [PMID: 16352614 DOI: 10.1074/jbc.m506728200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In budding yeast, phosphoinositide-specific phospholipase C (Plc1p encoded by PLC1 gene) is important for function of kinetochores. Deletion of PLC1 results in benomyl sensitivity, alterations in chromatin structure of centromeres, mitotic delay, and a higher frequency of chromosome loss. Here we intended to utilize benomyl sensitivity as a phenotype that would allow us to identify genes that are important for kinetochore function and are downstream of Plc1p. However, our screen identified SIN4, encoding a component of the Mediator complex of RNA polymerase II. Deletion of SIN4 gene (sin4Delta) does not suppress benomyl sensitivity of plc1Delta cells by improving the function of kinetochores. Instead, benomyl sensitivity of plc1Delta cells is caused by a defect in expression of FLR1, and the suppression of benomyl sensitivity in plc1Delta sin4Delta cells occurs by derepression of FLR1 transcription. FLR1 encodes a plasma membrane transporter that mediates resistance to benomyl. Several other mutations in the Mediator complex also result in significant derepression of FLR1 and greatly increased resistance to benomyl. Thus, benomyl sensitivity is not a phenotype exclusively associated with mitotic spindle defect. These results demonstrate that in addition to promoter-specific transcription factors that are components of the pleiotropic drug resistance network, expression of the membrane transporters can be regulated by Plc1p, a component of a signal transduction pathway, and by Mediator, a general transcription factor. The results thus suggest another layer of complexity in regulation of pleiotropic drug resistance.
Collapse
Affiliation(s)
- Carlos Romero
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | | | | | | |
Collapse
|
105
|
Béve J, Hu GZ, Myers LC, Balciunas D, Werngren O, Hultenby K, Wibom R, Ronne H, Gustafsson CM. The structural and functional role of Med5 in the yeast Mediator tail module. J Biol Chem 2005; 280:41366-72. [PMID: 16230344 DOI: 10.1074/jbc.m511181200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Med5 (Nut1) is identified here as a component of the Mediator tail region. Med5 is positioned peripherally to Med16 (Sin4) together with the three members of the putative Gal11 module, Med15 (Gal11), Med2, and Med3 (Pgd1). The biochemical analysis receives support from genetic interactions between med5delta and med15delta deletions. The med5delta and med16delta deletion strains share many phenotypes, including effects on mitochondrial function with enhanced growth on nonfermentable carbon sources, increased citrate synthase activity, and increased oxygen consumption. Deletion of the MED5 gene leads to increased transcription of nuclear genes encoding components of the oxidative phosphorylation machinery, whereas mitochondrial genes encoding components of the same machinery are down-regulated. We discuss a possible role for Med5 in coordinating nuclear and mitochondrial gene transcription.
Collapse
Affiliation(s)
- Jenny Béve
- Division of Metabolic Diseases, Karolinska Institutet, Novum, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
van de Peppel J, Kettelarij N, van Bakel H, Kockelkorn TTJP, van Leenen D, Holstege FCP. Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol Cell 2005; 19:511-22. [PMID: 16109375 DOI: 10.1016/j.molcel.2005.06.033] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 06/21/2005] [Accepted: 06/30/2005] [Indexed: 11/17/2022]
Abstract
Mediator is an evolutionarily conserved coregulator of RNA polymerase II transcription. Microarray structure-function analysis of S. cerevisiae Mediator reveals functional antagonism between the cyclin-dependent kinase (Cdk) submodule and components from the Tail (Med15, Med2, Med3), Head (Med20, Med18), and Middle (Med31). Certain genes exhibit increased or decreased expression, depending on which subunit is deleted. Epistasis analysis with expression-profile phenotypes shows that MED2 and MED18 are downstream of CDK8. Strikingly, Cdk8-mediated modification of a single amino acid within Mediator represses the regulon of a single transcription factor, Rcs1/Aft1. Highly specific gene regulation is thought to be determined by activators and combinatorial use of cofactors. Here, subtle modification of the general transcription machinery through one of its own components is shown to determine highly specific expression patterns. Expression profiling can therefore precisely map regulatory cascades, and our findings support a role for Mediator as a direct processor of signaling pathways for determining specificity.
Collapse
Affiliation(s)
- Jeroen van de Peppel
- Department of Physiological Chemistry, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
107
|
Park SW, Li G, Lin YP, Barrero MJ, Ge K, Roeder RG, Wei LN. Thyroid hormone-induced juxtaposition of regulatory elements/factors and chromatin remodeling of Crabp1 dependent on MED1/TRAP220. Mol Cell 2005; 19:643-53. [PMID: 16137621 DOI: 10.1016/j.molcel.2005.08.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 07/20/2005] [Accepted: 08/10/2005] [Indexed: 11/24/2022]
Abstract
The cellular retinoic acid binding protein I gene is induced by thyroid hormone (T3) through a T3 response element (TRE) approximately 1 kb upstream of the basal promoter. The upstream region is organized into a positioned nucleosomal array with the N1 nucleosome spanning the GC box region. T3 induces apparent interactions between chromatin segments containing the TRE and the GC box regions and the sliding of upstream nucleosomes toward N1 with concomitant N1 remodeling. Concurrently, the chromatin-remodeling factor BRM is replaced by BRG1 and histones are hyperacetylated. All these events are abolished in Med1/Trap220 null cells, indicating a key role for TRAP/Mediator in these processes. A MED1/TRAP220-containing Mediator complex constitutively occupies the GC box region but not the TRE, serving as a nexus for distal and proximal factors. This indicates new TRAP/Mediator functions in facilitating ultimate recruitment and function of RNA polymerase II and the general transcription machinery.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Qiu H, Hu C, Zhang F, Hwang GJ, Swanson MJ, Boonchird C, Hinnebusch AG. Interdependent recruitment of SAGA and Srb mediator by transcriptional activator Gcn4p. Mol Cell Biol 2005; 25:3461-74. [PMID: 15831453 PMCID: PMC1084306 DOI: 10.1128/mcb.25.9.3461-3474.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation by Gcn4p is enhanced by the coactivators SWI/SNF, SAGA, and Srb mediator, which stimulate recruitment of TATA binding protein (TBP) and polymerase II to target promoters. We show that wild-type recruitment of SAGA by Gcn4p is dependent on mediator but independent of SWI/SNF function at three different promoters. Recruitment of mediator is also independent of SWI/SNF but is enhanced by SAGA at a subset of Gcn4p target genes. Recruitment of all three coactivators to ARG1 is independent of the TATA element and preinitiation complex formation, whereas efficient recruitment of the general transcription factors requires the TATA box. We propose an activation pathway involving interdependent recruitment of SAGA and Srb mediator to the upstream activation sequence, enabling SWI/SNF recruitment and the binding of TBP and other general factors to the promoter. We also found that high-level recruitment of Tra1p and other SAGA subunits is independent of the Ada2p/Ada3p/Gcn5p histone acetyltransferase module but requires Spt3p in addition to subunits required for SAGA integrity. Thus, while Tra1p can bind directly to Gcn4p in vitro, it requires other SAGA subunits for efficient recruitment in vivo.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, National Institute of Child Health & Human Development/NIH, Building 6A, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
The Mediator complex acts as a bridge, conveying regulatory information from enhancers and other control elements to the basal RNA polymerase II transcription machinery. Mediator is required for the regulated transcription of nearly all RNA polymerase II-dependent genes in Saccharomyces cerevisiae, and post-translational modifications of specific Mediator subunits can affect global patterns of gene transcription.
Collapse
Affiliation(s)
- Stefan Björklund
- Department of Medical Biochemistry, Umeå University, S-901 87 Umeå, Sweden.
| | | |
Collapse
|
110
|
Biddick R, Young ET. Yeast mediator and its role in transcriptional regulation. C R Biol 2005; 328:773-82. [PMID: 16168358 DOI: 10.1016/j.crvi.2005.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 03/23/2005] [Accepted: 03/26/2005] [Indexed: 11/20/2022]
Abstract
Activated eukaryotic transcription requires the components of the Mediator complex, which can act as both a positive and negative regulator of transcription. This review of the yeast Saccharomyces cerevisiae Mediator complex describes the role of Mediator and its effects on transcriptional regulation. One focal point of the review is to summarize new information regarding the negative effect of Mediator on transcription and suggest a possible mechanism that encompasses the latest results.
Collapse
Affiliation(s)
- Rhiannon Biddick
- Department of Biochemistry, University of Washington, Box 357350, Seattle, WA 98195-7350, USA
| | | |
Collapse
|
111
|
Cheng JX, Gandolfi M, Ptashne M. Activation of the Gal1 Gene of Yeast by Pairs of 'Non-Classical' Activators. Curr Biol 2004; 14:1675-9. [PMID: 15380071 DOI: 10.1016/j.cub.2004.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/09/2004] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
Eukaryotic transcriptional activators work by recruiting to DNA the transcriptional machinery, including protein complexes required for chromatin modification, transcription initiation, and elongation. Which of these complexes must be directly recruited to trigger transcription? We test various "non-classical" transcription activators (comprising a component of the transcriptional machinery fused to a DNA binding domain) for their abilities to activate transcription of a chromosomally integrated reporter in yeast. Among these newly constructed fusion proteins, none efficiently activated transcription when working on its own. However, in several instances transcription was activated by a pair of such fusion proteins tethered to adjacent sites on DNA. In each of these cases, one fusion protein bore a component of the SAGA complex, and the other bore a component of the Mediator complex. Transcription was also activated by certain tripartite fusion proteins comprising a Mediator and a SAGA component fused to a DNA binding domain. The results are consistent with the finding that the classical activator Gal4, working at the GAL1 promoter, activates transcription by (at least in part) independently recruiting SAGA and Mediator.
Collapse
Affiliation(s)
- Jason X Cheng
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | |
Collapse
|