101
|
Foissac S, Djebali S, Munyard K, Vialaneix N, Rau A, Muret K, Esquerré D, Zytnicki M, Derrien T, Bardou P, Blanc F, Cabau C, Crisci E, Dhorne-Pollet S, Drouet F, Faraut T, Gonzalez I, Goubil A, Lacroix-Lamandé S, Laurent F, Marthey S, Marti-Marimon M, Momal-Leisenring R, Mompart F, Quéré P, Robelin D, Cristobal MS, Tosser-Klopp G, Vincent-Naulleau S, Fabre S, der Laan MHPV, Klopp C, Tixier-Boichard M, Acloque H, Lagarrigue S, Giuffra E. Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biol 2019; 17:108. [PMID: 31884969 PMCID: PMC6936065 DOI: 10.1186/s12915-019-0726-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells). RESULTS RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs) and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data. Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species. CONCLUSIONS We report the first multi-species and multi-assay genome annotation results obtained by a FAANG project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals, the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets being generated by this community on different species.
Collapse
Affiliation(s)
- Sylvain Foissac
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Sarah Djebali
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Kylie Munyard
- Curtin University, School of Pharmacy & Biomedical Sciences, CHIRI Biosciences, Perth, 24105 Australia
| | - Nathalie Vialaneix
- MIAT, Université de Toulouse, INRA, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Andrea Rau
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | - Kevin Muret
- PEGASE, Agrocampus-Ouest, INRA, Saint-Gilles Cedex, F-35590 France
| | - Diane Esquerré
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
- INRA, US1426, GeT-PlaGe, Genotoul, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Matthias Zytnicki
- MIAT, Université de Toulouse, INRA, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Philippe Bardou
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Fany Blanc
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | - Cédric Cabau
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Elisa Crisci
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607 USA
| | - Sophie Dhorne-Pollet
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | | | - Thomas Faraut
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Ignacio Gonzalez
- MIAT, Université de Toulouse, INRA, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Adeline Goubil
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | | | | | - Sylvain Marthey
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | - Maria Marti-Marimon
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Florence Mompart
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - David Robelin
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Magali San Cristobal
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Gwenola Tosser-Klopp
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Christophe Klopp
- MIAT, Université de Toulouse, INRA, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Hervé Acloque
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | | | - Elisabetta Giuffra
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| |
Collapse
|
102
|
Functionally Annotating Regulatory Elements in the Equine Genome Using Histone Mark ChIP-Seq. Genes (Basel) 2019; 11:genes11010003. [PMID: 31861495 PMCID: PMC7017286 DOI: 10.3390/genes11010003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 01/02/2023] Open
Abstract
One of the primary aims of the Functional Annotation of ANimal Genomes (FAANG) initiative is to characterize tissue-specific regulation within animal genomes. To this end, we used chromatin immunoprecipitation followed by sequencing (ChIP-Seq) to map four histone modifications (H3K4me1, H3K4me3, H3K27ac, and H3K27me3) in eight prioritized tissues collected as part of the FAANG equine biobank from two thoroughbred mares. Data were generated according to optimized experimental parameters developed during quality control testing. To ensure that we obtained sufficient ChIP and successful peak-calling, data and peak-calls were assessed using six quality metrics, replicate comparisons, and site-specific evaluations. Tissue specificity was explored by identifying binding motifs within unique active regions, and motifs were further characterized by gene ontology (GO) and protein–protein interaction analyses. The histone marks identified in this study represent some of the first resources for tissue-specific regulation within the equine genome. As such, these publicly available annotation data can be used to advance equine studies investigating health, performance, reproduction, and other traits of economic interest in the horse.
Collapse
|
103
|
Henkel J, Saif R, Jagannathan V, Schmocker C, Zeindler F, Bangerter E, Herren U, Posantzis D, Bulut Z, Ammann P, Drögemüller C, Flury C, Leeb T. Selection signatures in goats reveal copy number variants underlying breed-defining coat color phenotypes. PLoS Genet 2019; 15:e1008536. [PMID: 31841508 PMCID: PMC6936872 DOI: 10.1371/journal.pgen.1008536] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/30/2019] [Accepted: 11/23/2019] [Indexed: 12/16/2022] Open
Abstract
Domestication and human selection have formed diverse goat breeds with characteristic phenotypes. This process correlated with the fixation of causative genetic variants controlling breed-specific traits within regions of reduced genetic diversity, so called selection signatures or selective sweeps. Using whole genome sequencing of DNA pools (pool-seq) from 20 genetically diverse modern goat breeds and bezoars, we identified 2,239 putative selection signatures. In two Pakistani goat breeds, Pak Angora and Barbari, we found selection signatures in a region harboring KIT, a gene involved in melanoblast development, migration, and survival. The search for candidate causative variants responsible for these selective sweeps revealed two different copy number variants (CNVs) downstream of KIT that were exclusively present in white Pak Angora and white-spotted Barbari goats. Several Swiss goat breeds selected for specific coat colors showed selection signatures at the ASIP locus encoding the agouti signaling protein. Analysis of these selective sweeps revealed four different CNVs associated with the white or tan (AWt), Swiss markings (Asm), badgerface (Ab), and the newly proposed peacock (Apc) allele. RNA-seq analyses on skin samples from goats with the different CNV alleles suggest that the identified structural variants lead to an altered expression of ASIP between eumelanistic and pheomelanistic body areas. Our study yields novel insights into the genetic control of pigmentation by identifying six functionally relevant CNVs. It illustrates how structural changes of the genome have contributed to phenotypic evolution in domestic goats. Domestic animals have been selected for hundreds or sometimes even thousands of years for traits that were appreciated by their human owners. This process correlated with the fixation of causative genetic variants controlling breed-specific traits within regions of reduced genetic diversity, so called selection signatures or selective sweeps. We conducted a comprehensive screen for selection signatures in 20 phenotypically and genetically diverse modern goat breeds and identified a total of 2,239 putative selection signatures in our dataset. Follow-up experiments on selection signatures harboring known candidate genes for coat color revealed six different copy number variants (CNVs). Two of these CNVs were located in the 3’-flanking region of KIT and associated with a completely white coat color phenotype in Pak Angora goats and a white-spotted coat color phenotype in Barbari goats, respectively. The other four CNVs were located at the ASIP locus. They were associated with four different types of coat color patterning in seven Swiss goat breeds. Their functional effect is mediated by region-specific quantitative changes in ASIP mRNA expression. Our study illustrates how structural changes of the genome have contributed to phenotypic evolution in domestic goats.
Collapse
Affiliation(s)
- Jan Henkel
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
| | - Rashid Saif
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Biotechnology, Gulab Devi Educational Complex, Lahore, Pakistan
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
| | - Corinne Schmocker
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Flurina Zeindler
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
| | | | - Ursula Herren
- Swiss Goat Breeding Association, Zollikofen, Switzerland
| | | | - Zafer Bulut
- Department of Biochemistry, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
| | - Christine Flury
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
104
|
Hayes BJ, Daetwyler HD. 1000 Bull Genomes Project to Map Simple and Complex Genetic Traits in Cattle: Applications and Outcomes. Annu Rev Anim Biosci 2019; 7:89-102. [PMID: 30508490 DOI: 10.1146/annurev-animal-020518-115024] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 1000 Bull Genomes Project is a collection of whole-genome sequences from 2,703 individuals capturing a significant proportion of the world's cattle diversity. So far, 84 million single-nucleotide polymorphisms (SNPs) and 2.5 million small insertion deletions have been identified in the collection, a very high level of genetic diversity. The project has greatly accelerated the identification of deleterious mutations for a range of genetic diseases, as well as for embryonic lethals. The rate of identification of causal mutations for complex traits has been slower, reflecting the typically small effect size of these mutations and the fact that many are likely in as-yet-unannotated regulatory regions. Both the deleterious mutations that have been identified and the mutations associated with complex trait variation have been included in low-cost SNP array designs, and these arrays are being genotyped in tens of thousands of dairy and beef cattle, enabling management of deleterious mutations in these populations as well as genomic selection.
Collapse
Affiliation(s)
- Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4067, Australia; .,Agriculture Victoria Research, AgriBio, Bundoora, Victoria 3083, Australia
| | - Hans D Daetwyler
- Agriculture Victoria Research, AgriBio, Bundoora, Victoria 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
105
|
McHugo GP, Dover MJ, MacHugh DE. Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics. BMC Biol 2019; 17:98. [PMID: 31791340 PMCID: PMC6889691 DOI: 10.1186/s12915-019-0724-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Animal domestication has fascinated biologists since Charles Darwin first drew the parallel between evolution via natural selection and human-mediated breeding of livestock and companion animals. In this review we show how studies of ancient DNA from domestic animals and their wild progenitors and congeners have shed new light on the genetic origins of domesticates, and on the process of domestication itself. High-resolution paleogenomic data sets now provide unprecedented opportunities to explore the development of animal agriculture across the world. In addition, functional population genomics studies of domestic and wild animals can deliver comparative information useful for understanding recent human evolution.
Collapse
Affiliation(s)
- Gillian P McHugo
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Michael J Dover
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
106
|
Raudsepp T, Finno CJ, Bellone RR, Petersen JL. Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era. Anim Genet 2019; 50:569-597. [PMID: 31568563 PMCID: PMC6825885 DOI: 10.1111/age.12857] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite‐free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high‐quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Research, Texas A&M University, College Station, TX, 77843, USA
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - R R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,School of Veterinary Medicine, Veterinary Genetics Laboratory, University of California-Davis, Davis, CA, 95616, USA
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA
| |
Collapse
|
107
|
Xiang R, Berg IVD, MacLeod IM, Hayes BJ, Prowse-Wilkins CP, Wang M, Bolormaa S, Liu Z, Rochfort SJ, Reich CM, Mason BA, Vander Jagt CJ, Daetwyler HD, Lund MS, Chamberlain AJ, Goddard ME. Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits. Proc Natl Acad Sci U S A 2019; 116:19398-19408. [PMID: 31501319 PMCID: PMC6765237 DOI: 10.1073/pnas.1904159116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many genome variants shaping mammalian phenotype are hypothesized to regulate gene transcription and/or to be under selection. However, most of the evidence to support this hypothesis comes from human studies. Systematic evidence for regulatory and evolutionary signals contributing to complex traits in a different mammalian model is needed. Sequence variants associated with gene expression (expression quantitative trait loci [eQTLs]) and concentration of metabolites (metabolic quantitative trait loci [mQTLs]) and under histone-modification marks in several tissues were discovered from multiomics data of over 400 cattle. Variants under selection and evolutionary constraint were identified using genome databases of multiple species. These analyses defined 30 sets of variants, and for each set, we estimated the genetic variance the set explained across 34 complex traits in 11,923 bulls and 32,347 cows with 17,669,372 imputed variants. The per-variant trait heritability of these sets across traits was highly consistent (r > 0.94) between bulls and cows. Based on the per-variant heritability, conserved sites across 100 vertebrate species and mQTLs ranked the highest, followed by eQTLs, young variants, those under histone-modification marks, and selection signatures. From these results, we defined a Functional-And-Evolutionary Trait Heritability (FAETH) score indicating the functionality and predicted heritability of each variant. In additional 7,551 cattle, the high FAETH-ranking variants had significantly increased genetic variances and genomic prediction accuracies in 3 production traits compared to the low FAETH-ranking variants. The FAETH framework combines the information of gene regulation, evolution, and trait heritability to rank variants, and the publicly available FAETH data provide a set of biological priors for cattle genomic selection worldwide.
Collapse
Affiliation(s)
- Ruidong Xiang
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, VIC 3052, Australia;
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
| | - Irene van den Berg
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, VIC 3052, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
| | - Benjamin J Hayes
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
- Centre for Animal Science, The University of Queensland, St. Lucia, QLD 4067, Australia
| | - Claire P Prowse-Wilkins
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, VIC 3052, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
| | - Min Wang
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Sunduimijid Bolormaa
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
| | - Zhiqian Liu
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
| | - Simone J Rochfort
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Coralie M Reich
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
| | - Brett A Mason
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
| | - Hans D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Mogens S Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
| | - Michael E Goddard
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, VIC 3052, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
| |
Collapse
|
108
|
Fang L, Liu S, Liu M, Kang X, Lin S, Li B, Connor EE, Baldwin RL, Tenesa A, Ma L, Liu GE, Li CJ. Functional annotation of the cattle genome through systematic discovery and characterization of chromatin states and butyrate-induced variations. BMC Biol 2019; 17:68. [PMID: 31419979 PMCID: PMC6698049 DOI: 10.1186/s12915-019-0687-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The functional annotation of genomes, including chromatin accessibility and modifications, is important for understanding and effectively utilizing the increased amount of genome sequences reported. However, while such annotation has been well explored in a diverse set of tissues and cell types in human and model organisms, relatively little data are available for livestock genomes, hindering our understanding of complex trait variation, domestication, and adaptive evolution. Here, we present the first complete global landscape of regulatory elements in cattle and explore the dynamics of chromatin states in rumen epithelial cells induced by the rumen developmental regulator-butyrate. RESULTS We established the first global map of regulatory elements (15 chromatin states) and defined their coordinated activities in cattle, through genome-wide profiling for six histone modifications, RNA polymerase II, CTCF-binding sites, DNA accessibility, DNA methylation, and transcriptome in rumen epithelial primary cells (REPC), rumen tissues, and Madin-Darby bovine kidney epithelial cells (MDBK). We demonstrated that each chromatin state exhibited specific enrichment for sequence ontology, transcription, methylation, trait-associated variants, gene expression-associated variants, selection signatures, and evolutionarily conserved elements, implying distinct biological functions. After butyrate treatments, we observed that the weak enhancers and flanking active transcriptional start sites (TSS) were the most dynamic chromatin states, occurred concomitantly with significant alterations in gene expression and DNA methylation, which was significantly associated with heifer conception rate and stature economic traits. CONCLUSION Our results demonstrate the crucial role of functional genome annotation for understanding genome regulation, complex trait variation, and adaptive evolution in livestock. Using butyrate to induce the dynamics of the epigenomic landscape, we were able to establish the correlation among nutritional elements, chromatin states, gene activities, and phenotypic outcomes.
Collapse
Affiliation(s)
- Lingzhao Fang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Mei Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, Shaanxi Key Laboratory of Agricultural Molecular Biology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaolong Kang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Agriculture, Ningxia University, Yinchuan, 750021 China
| | - Shudai Lin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou, 510642 China
| | - Bingjie Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Erin E. Connor
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Albert Tenesa
- The Roslin Institute, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| |
Collapse
|
109
|
Rexroad C, Vallet J, Matukumalli LK, Reecy J, Bickhart D, Blackburn H, Boggess M, Cheng H, Clutter A, Cockett N, Ernst C, Fulton JE, Liu J, Lunney J, Neibergs H, Purcell C, Smith TPL, Sonstegard T, Taylor J, Telugu B, Eenennaam AV, Tassell CPV, Wells K. Genome to Phenome: Improving Animal Health, Production, and Well-Being - A New USDA Blueprint for Animal Genome Research 2018-2027. Front Genet 2019; 10:327. [PMID: 31156693 PMCID: PMC6532451 DOI: 10.3389/fgene.2019.00327] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/26/2019] [Indexed: 11/15/2022] Open
Abstract
In 2008, a consortium led by the Agricultural Research Service (ARS) and the National Institute for Food and Agriculture (NIFA) published the "Blueprint for USDA Efforts in Agricultural Animal Genomics 2008-2017," which served as a guiding document for research and funding in animal genomics. In the decade that followed, many of the goals set forth in the blueprint were accomplished. However, several other goals require further research. In addition, new topics not covered in the original blueprint, which are the result of emerging technologies, require exploration. To develop a new, updated blueprint, ARS and NIFA, along with scientists in the animal genomics field, convened a workshop titled "Genome to Phenome: A USDA Blueprint for Improving Animal Production" in November 2017, and these discussions were used to develop new goals for the next decade. Like the previous blueprint, these goals are grouped into the broad categories "Science to Practice," "Discovery Science," and "Infrastructure." New goals for characterizing the microbiome, enhancing the use of gene editing and other biotechnologies, and preserving genetic diversity are included in the new blueprint, along with updated goals within many genome research topics described in the previous blueprint. The updated blueprint that follows describes the vision, current state of the art, the research needed to advance the field, expected deliverables, and partnerships needed for each animal genomics research topic. Accomplishment of the goals described in the blueprint will significantly increase the ability to meet the demands for animal products by an increasing world population within the next decade.
Collapse
Affiliation(s)
- Caird Rexroad
- Office of National Programs, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Jeffrey Vallet
- Office of National Programs, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Lakshmi Kumar Matukumalli
- National Institute of Food and Agriculture, United States Department of Agriculture, Washington, DC, United States
| | - James Reecy
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Derek Bickhart
- Dairy Forage Research Center, Agricultural Research Service, United States Department of Agriculture, Madison, WI, United States
| | - Harvey Blackburn
- National Animal Germplasm Program, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Mark Boggess
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Hans Cheng
- Avian Disease and Oncology Laboratory, Agricultural Research Service, United States Department of Agriculture, East Lansing, MI, United States
| | - Archie Clutter
- Agricultural Research Division, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Noelle Cockett
- President’s Office, Utah State University, Logan, UT, United States
| | - Catherine Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | | | - John Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States
| | - Joan Lunney
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Holly Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Catherine Purcell
- Department of Commerce, National Oceanic and Atmospheric Administration, La Jolla, CA, United States
| | - Timothy P. L. Smith
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Tad Sonstegard
- Acceligen, A Recombinetics Company, St. Paul, MN, United States
| | - Jerry Taylor
- Division of Animal Science, University of Missouri, Columbia, MO, United States
| | - Bhanu Telugu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Alison Van Eenennaam
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Curtis P. Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Kevin Wells
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
110
|
Robic A, Morisson M, Leroux S, Gourichon D, Vignal A, Thebault N, Fillon V, Minvielle F, Bed’Hom B, Zerjal T, Pitel F. Two new structural mutations in the 5' region of the ASIP gene cause diluted feather color phenotypes in Japanese quail. Genet Sel Evol 2019; 51:12. [PMID: 30987584 PMCID: PMC6466734 DOI: 10.1186/s12711-019-0458-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/03/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In quail, two feather colour phenotypes i.e. fawn-2/beige and yellow are associated with the ASIP locus. The aim of our study was to characterize the structural modifications within this locus that explain the yellow mutation (large deletion) and the fawn-2/beige mutation (assumed to be caused by a different structural modification). RESULTS For the yellow phenotype, we identified a complex mutation that involves a 141,162-bp long deletion. For the fawn-2/beige phenotype, we identified a 71-kb tandem duplication that comprises one unchanged copy of ASIP and one copy present in the ITCH-ASIP fusion gene, which leads to a transcript coding for a normal ASIP protein. Although this agrees with previous reports that reported an increased level of ASIP transcripts in the skin of mutant animals, we show that in the skin from fawn-2/beige embryos, this level is higher than expected with a simple duplication of the ASIP gene. Thus, we hypothesize that the 5' region of the ITCH-ASIP fusion gene leads to a higher transcription level than the 5' region of the ASIP gene. CONCLUSIONS We were able to conclude that the fawn-2 and beige phenotypes are caused by the same allele at the ASIP locus. Both of the associated mutations fawn-2/beige and yellow lead to the formation of a fusion gene, which encodes a transcript for the ASIP protein. In both cases, transcription of ASIP depends on the promoter of a different gene, which includes alternative up-regulating sequences. However, we cannot exclude the possibility that the loss of the 5' region of the ASIP gene itself has additional impacts, especially for the fawn-2/beige mutation. In addition, in several other species including mammals, the existence of other dominant gain-of-function structural modifications that are localized upstream of the ASIP coding sequences has been reported, which supports our hypothesis that repressors in the 5' region of ASIP are absent in the fawn-2/beige mutant.
Collapse
Affiliation(s)
- Annie Robic
- GenPhySE, Université de Toulouse, INRA, ENVT, 31326 Castanet-Tolosan, France
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRA, ENVT, 31326 Castanet-Tolosan, France
| | - Sophie Leroux
- GenPhySE, Université de Toulouse, INRA, ENVT, 31326 Castanet-Tolosan, France
| | | | - Alain Vignal
- GenPhySE, Université de Toulouse, INRA, ENVT, 31326 Castanet-Tolosan, France
| | - Noémie Thebault
- GenPhySE, Université de Toulouse, INRA, ENVT, 31326 Castanet-Tolosan, France
| | - Valérie Fillon
- GenPhySE, Université de Toulouse, INRA, ENVT, 31326 Castanet-Tolosan, France
| | - Francis Minvielle
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Bertrand Bed’Hom
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Tatiana Zerjal
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Frédérique Pitel
- GenPhySE, Université de Toulouse, INRA, ENVT, 31326 Castanet-Tolosan, France
| |
Collapse
|