101
|
Alvarado S, Tajerian M, Suderman M, Machnes Z, Pierfelice S, Millecamps M, Stone LS, Szyf M. An epigenetic hypothesis for the genomic memory of pain. Front Cell Neurosci 2015; 9:88. [PMID: 25852480 PMCID: PMC4371710 DOI: 10.3389/fncel.2015.00088] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/26/2015] [Indexed: 11/13/2022] Open
Abstract
Chronic pain is accompanied with long-term sensory, affective and cognitive disturbances. What are the mechanisms that mediate the long-term consequences of painful experiences and embed them in the genome? We hypothesize that alterations in DNA methylation, an enzymatic covalent modification of cytosine bases in DNA, serve as a "genomic" memory of pain in the adult cortex. DNA methylation is an epigenetic mechanism for long-term regulation of gene expression. Neuronal plasticity at the neuroanatomical, functional, morphological, physiological and molecular levels has been demonstrated throughout the neuroaxis in response to persistent pain, including in the adult prefrontal cortex (PFC). We have previously reported widespread changes in gene expression and DNA methylation in the PFC many months following peripheral nerve injury. In support of this hypothesis, we show here that up-regulation of a gene involved with synaptic function, Synaptotagmin II (syt2), in the PFC in a chronic pain model is associated with long-term changes in DNA methylation. The challenges of understanding the contributions of epigenetic mechanisms such as DNA methylation within the PFC to pain chronicity and their therapeutic implications are discussed.
Collapse
Affiliation(s)
- Sebastian Alvarado
- Department of Biology, Stanford University Palo Alto, CA, USA ; Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University Montréal, QC, Canada ; Sackler Program for Epigenetics and Developmental Psychobiology, McGill University Montréal, QC, Canada
| | - Maral Tajerian
- Department of Anesthesiology, Stanford University Palo Alto, CA, USA ; Integrated Program in Neuroscience, McGill University Montréal, QC, Canada ; Alan Edwards Centre for Research on Pain, McGill University Montréal, QC, Canada
| | - Matthew Suderman
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University Montréal, QC, Canada ; Sackler Program for Epigenetics and Developmental Psychobiology, McGill University Montréal, QC, Canada
| | - Ziv Machnes
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University Montréal, QC, Canada ; Sackler Program for Epigenetics and Developmental Psychobiology, McGill University Montréal, QC, Canada
| | - Stephanie Pierfelice
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University Montréal, QC, Canada ; Sackler Program for Epigenetics and Developmental Psychobiology, McGill University Montréal, QC, Canada
| | - Magali Millecamps
- Alan Edwards Centre for Research on Pain, McGill University Montréal, QC, Canada ; Faculty of Dentistry, McGill University Montréal, QC, Canada
| | - Laura S Stone
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University Montréal, QC, Canada ; Integrated Program in Neuroscience, McGill University Montréal, QC, Canada ; Alan Edwards Centre for Research on Pain, McGill University Montréal, QC, Canada ; Faculty of Dentistry, McGill University Montréal, QC, Canada ; Department of Anesthesiology, Anesthesia Research Unit, Faculty of Medicine, McGill University Montréal, QC, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University Montréal, QC, Canada ; Sackler Program for Epigenetics and Developmental Psychobiology, McGill University Montréal, QC, Canada ; Integrated Program in Neuroscience, McGill University Montréal, QC, Canada
| |
Collapse
|
102
|
Bos SD, Page CM, Andreassen BK, Elboudwarej E, Gustavsen MW, Briggs F, Quach H, Leikfoss IS, Bjølgerud A, Berge T, Harbo HF, Barcellos LF. Genome-wide DNA methylation profiles indicate CD8+ T cell hypermethylation in multiple sclerosis. PLoS One 2015; 10:e0117403. [PMID: 25734800 PMCID: PMC4348521 DOI: 10.1371/journal.pone.0117403] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/21/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Determine whether MS-specific DNA methylation profiles can be identified in whole blood or purified immune cells from untreated MS patients. METHODS Whole blood, CD4+ and CD8+ T cell DNA from 16 female, treatment naïve MS patients and 14 matched controls was profiled using the HumanMethylation450K BeadChip. Genotype data were used to assess genetic homogeneity of our sample and to exclude potential SNP-induced DNA methylation measurement errors. RESULTS As expected, significant differences between CD4+ T cells, CD8+ T cells and whole blood DNA methylation profiles were observed, regardless of disease status. Strong evidence for hypermethylation of CD8+ T cell, but not CD4+ T cell or whole blood DNA in MS patients compared to controls was observed. Genome-wide significant individual CpG-site DNA methylation differences were not identified. Furthermore, significant differences in gene DNA methylation of 148 established MS-associated risk genes were not observed. CONCLUSION While genome-wide significant DNA methylation differences were not detected for individual CpG-sites, strong evidence for DNA hypermethylation of CD8+ T cells for MS patients was observed, indicating a role for DNA methylation in MS. Further, our results suggest that large DNA methylation differences for CpG-sites tested here do not contribute to MS susceptibility. In particular, large DNA methylation differences for CpG-sites within 148 established MS candidate genes tested in our study cannot explain missing heritability. Larger studies of homogenous MS patients and matched controls are warranted to further elucidate the impact of CD8+ T cell and more subtle DNA methylation changes in MS development and pathogenesis.
Collapse
Affiliation(s)
- Steffan D. Bos
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Christian M. Page
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bettina K. Andreassen
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, University of Oslo, Oslo, Norway
- Epi-Gen, Institute of Clinical Medicine, Akershus University Hospital, University of Oslo, Oslo, Norway
| | - Emon Elboudwarej
- Genetic Epidemiology and Genomics Laboratory, Division of Epidemiology, School of Public Health, University of California, Berkeley, United States of America
| | - Marte W. Gustavsen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Farren Briggs
- Genetic Epidemiology and Genomics Laboratory, Division of Epidemiology, School of Public Health, University of California, Berkeley, United States of America
| | - Hong Quach
- Genetic Epidemiology and Genomics Laboratory, Division of Epidemiology, School of Public Health, University of California, Berkeley, United States of America
| | - Ingvild S. Leikfoss
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anja Bjølgerud
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tone Berge
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Hanne F. Harbo
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lisa F. Barcellos
- Genetic Epidemiology and Genomics Laboratory, Division of Epidemiology, School of Public Health, University of California, Berkeley, United States of America
| |
Collapse
|
103
|
Abstract
Scientists have long considered genetics to be the key mechanism that alters gene expression because of exposure to the environment and toxic substances (toxicants). Recently, epigenetic mechanisms have emerged as an alternative explanation for alterations in gene expression resulting from such exposure. The fact that certain toxic substances that contribute to tumor development do not induce mutations probably results from underlying epigenetic mechanisms. The field of toxicoepigenomics emerged from the combination of epigenetics and classical toxicology. High-throughput technologies now enable evaluation of altered epigenomic profiling in response to toxins and environmental pollutants. Furthermore, differences in the epigenomic backgrounds of individuals may explain why, although whole populations are exposed to toxicants, only a few people in a population develop cancer. Metals in the environment and toxic substances not only alter DNA methylation patterns and histone modifications but also affect enzymes involved in posttranslational modifications of proteins and epigenetic regulation, and thereby contribute to carcinogenesis. This article describes different toxic substances and environmental pollutants that alter epigenetic profiling and discusses how this information can be used in screening populations at high risk of developing cancer. Research opportunities and challengers in the field also are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods and Technologies Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health (NIH), 9609 Medical Center Drive, Room 4E102, Rockville, MD, 20850, USA,
| |
Collapse
|
104
|
Blaze J, Asok A, Roth TL. Long-term effects of early-life caregiving experiences on brain-derived neurotrophic factor histone acetylation in the adult rat mPFC. Stress 2015; 18:607-15. [PMID: 26305287 PMCID: PMC4879775 DOI: 10.3109/10253890.2015.1071790] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Infant-caregiver experiences are major contributing factors to neural and behavioral development. Research indicates that epigenetic mechanisms provide a way in which infant-caregiver experiences affect gene activity and other downstream processes in the brain that influence behavioral development. Our laboratory previously demonstrated in a rodent model that exposure to maltreatment alters methylation of DNA associated with the brain-derived neurotrophic factor (bdnf) and reelin genes as well as mRNA of key epigenetic regulatory genes in the medial prefrontal cortex (mPFC). In the current study, we characterized patterns of histone acetylation at bdnf and reelin gene loci after our caregiver manipulations. Using a within-litter design (n = 8-10/group from eight litters), pups were exposed to adverse (maltreatment condition: exposure to a stressed caregiver) or nurturing (cross-foster condition: exposure to a nurturing caregiver) caregiving environments outside the home cage for 30 min daily during the first postnatal week. Remaining pups in a litter were left with the biological mother during each session (providing normal care controls). We then used chromatin immunoprecipitation (ChIP) and quantitative RT-PCR to measure histone 3 lysine 9/14 acetylation associated with bdnf promoters I and IV and the reelin promoter in the adult mPFC. Maltreated females had decreased acetylation at bdnf IV, while neither males nor females exhibited histone acetylation alterations at bdnf I or reelin. These data demonstrate the ability of maltreatment to have long-term consequences on histone acetylation in the mPFC, and provide further evidence of the epigenetic susceptibility of bdnf IV to the quality of infant-caregiver experiences.
Collapse
Affiliation(s)
- Jennifer Blaze
- a Department of Psychological and Brain Sciences , University of Delaware , Newark , DE , USA
| | - Arun Asok
- a Department of Psychological and Brain Sciences , University of Delaware , Newark , DE , USA
| | - Tania L Roth
- a Department of Psychological and Brain Sciences , University of Delaware , Newark , DE , USA
| |
Collapse
|
105
|
Abstract
Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs' physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Department of Structural and Chemical Biology, ‡Department of Oncological Sciences, §Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | | | | |
Collapse
|
106
|
Tang ZH, Wang L, Zeng F, Zhang K. Human genetics of diabetic retinopathy. J Endocrinol Invest 2014; 37:1165-74. [PMID: 25201002 DOI: 10.1007/s40618-014-0172-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 08/25/2014] [Indexed: 01/03/2023]
Abstract
There is evidence demonstrating that genetic factors contribute to the risk of diabetic retinopathy (DR). Genetics variants, structural variants (copy number variation, CNV) and epigenetic changes play important roles in the development of DR. Genetic linkage and association studies have uncovered a number of genetic loci and common genetic variants susceptibility to DR. CNV and interactions of gene by environment have also been detected by association analysis. Apart from nucleus genome, mitochondrial DNA plays critical roles in regulation of development of DR. Epigenetic studies have indicated epigenetic changes in chromatin affecting gene transcription in response to environmental stimuli, which provided a large body of evidence of regulating development of diabetes mellitus. Identification of genetic variants and epigenetic changes contributed to risk or protection of DR will benefit uncovering the complex mechanism underlying DR. This review focused on the current knowledge of the genetic and epigenetic basis of DR.
Collapse
Affiliation(s)
- Z-H Tang
- Department of Endocrinology and Metabolism, Shanghai Tongji Hospital, Tongji University School of Medicine, Room 517 Building 2nd, NO. 389 Xincun Road, Shanghai, 200063, China,
| | | | | | | |
Collapse
|
107
|
Acharya A, Brima W, Burugu S, Rege T. Prediction of Preeclampsia-Bench to Bedside. Curr Hypertens Rep 2014; 16:491. [DOI: 10.1007/s11906-014-0491-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
108
|
Abstract
Around 70% of all breast cancers are estrogen receptor alpha positive and hence their development is highly dependent on estradiol. While the invention of endocrine therapies has revolusioned the treatment of the disease, resistance to therapy eventually occurs in a large number of patients. This paper seeks to illustrate and discuss the complexity and heterogeneity of the mechanisms which underlie resistance and the approaches proposed to combat them. It will also focus on the use and development of methods for predicting which patients are likely to develop resistance.
Collapse
|
109
|
Lewis CR, Olive MF. Early-life stress interactions with the epigenome: potential mechanisms driving vulnerability toward psychiatric illness. Behav Pharmacol 2014; 25:341-51. [PMID: 25003947 PMCID: PMC4119485 DOI: 10.1097/fbp.0000000000000057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Throughout the 20th century a body of literature concerning the long-lasting effects of the early environment was produced. Adverse experiences in early life, or early-life stress (ELS), is associated with a higher risk of developing various psychiatric illnesses. The mechanisms driving the complex interplay between ELS and adult phenotype has baffled many investigators for decades. Over the last decade, the new field of neuroepigenetics has emerged as one possible mechanism by which ELS can have far-reaching effects on adult phenotype, behavior, and risk for psychiatric illness. Here we review two commonly investigated epigenetic mechanisms, histone modifications and DNA methylation, and the emerging field of neuroepigenetics as they relate to ELS. We discuss the current animal literature demonstrating ELS-induced epigenetic modulation of gene expression that results in altered adult phenotypes. We also briefly discuss other areas in which neuroepigenetics has emerged as a potential mechanism underlying environmental and genetic interactions.
Collapse
Affiliation(s)
- Candace Renee Lewis
- Arizona State University, Tempe, AZ, 930 S McAllister Ave, Tempe, AZ 85281, , Phone: (602) 680 – 8786
| | - Michael Foster Olive
- Arizona State University, Tempe, AZ, 930 S McAllister Ave, Tempe, AZ 85281, , Phone: (480) 727-9557
| |
Collapse
|
110
|
Bailus BJ, Segal DJ. The prospect of molecular therapy for Angelman syndrome and other monogenic neurologic disorders. BMC Neurosci 2014; 15:76. [PMID: 24946931 PMCID: PMC4069279 DOI: 10.1186/1471-2202-15-76] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/06/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Angelman syndrome is a monogenic neurologic disorder that affects 1 in 15,000 children, and is characterized by ataxia, intellectual disability, speech impairment, sleep disorders, and seizures. The disorder is caused by loss of central nervous system expression of UBE3A, a gene encoding a ubiquitin ligase. Current treatments focus on the management of symptoms, as there have not been therapies to treat the underlying molecular cause of the disease. However, this outlook is evolving with advances in molecular therapies, including artificial transcription factors a class of engineered DNA-binding proteins that have the potential to target a specific site in the genome. RESULTS Here we review the recent progress and prospect of targeted gene expression therapies. Three main issues that must be addressed to advance toward human clinical trials are specificity, toxicity, and delivery. CONCLUSIONS Artificial transcription factors have the potential to address these concerns on a level that meets and in some cases exceeds current small molecule therapies. We examine the possibilities of such approaches in the context of Angelman syndrome, as a template for other single-gene, neurologic disorders.
Collapse
Affiliation(s)
- Barbara J Bailus
- Genome Center, MIND Institute, and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David J Segal
- Genome Center, MIND Institute, and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
111
|
Yan B, Yao J, Tao ZF, Jiang Q. Epigenetics and ocular diseases: from basic biology to clinical study. J Cell Physiol 2014; 229:825-33. [PMID: 24318407 DOI: 10.1002/jcp.24522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022]
Abstract
Epigenetics is an emerging field in ophthalmology and has opened a new avenue for understanding ocular development and ocular diseases related to aging and environment. Epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and deployment of non-coding RNAs, result in the heritable silencing of gene expression without any change in DNA sequence. Accumulating evidence suggests a potential link between gene expression, chromatin structure, non-coding RNAs, and cellular differentiation during ocular development. Disruption of the balance of epigenetic networks could become the etiology of several ocular diseases. Here, we summarized the current knowledge about epigenetic regulatory mechanisms in ocular development and diseases.
Collapse
Affiliation(s)
- Biao Yan
- Eye Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | |
Collapse
|
112
|
Abstract
Epigenetic regulation of cellular identity and function is at least partly achieved through changes in covalent modifications on DNA and histones. Much progress has been made in recent years to understand how these covalent modifications affect cell identity and function. Despite the advances, whether and how epigenetic factors contribute to memory formation is still poorly understood. In this review, we discuss recent progress in elucidating epigenetic mechanisms of learning and memory, primarily at the DNA level, and look ahead to discuss their potential implications in reward memory and development of drug addiction.
Collapse
Affiliation(s)
- Luis M Tuesta
- Howard Hughes Medical Institute, Boston, MA, USA Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, USA Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston, MA, USA Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, USA Department of Genetics, Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| |
Collapse
|
113
|
Stefanska B, Cheishvili D, Suderman M, Arakelian A, Huang J, Hallett M, Han ZG, Al-Mahtab M, Akbar SMF, Khan WA, Raqib R, Tanvir I, Khan HA, Rabbani SA, Szyf M. Genome-wide study of hypomethylated and induced genes in patients with liver cancer unravels novel anticancer targets. Clin Cancer Res 2014; 20:3118-32. [PMID: 24763612 DOI: 10.1158/1078-0432.ccr-13-0283] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We utilized whole-genome mapping of promoters that are activated by DNA hypomethylation in hepatocellular carcinoma (HCC) clinical samples to shortlist novel targets for anticancer therapeutics. We provide a proof of principle of this approach by testing six genes short-listed in our screen for their essential role in cancer growth and invasiveness. EXPERIMENTAL DESIGN We used siRNA- or shRNA-mediated depletion to determine whether inhibition of these genes would reduce human tumor xenograft growth in mice as well as cell viability, anchorage-independent growth, invasive capacities, and state of activity of nodal signaling pathways in liver, breast, and bladder cancer cell lines. RESULTS Depletion of EXOSC4, RNMT, SENP6, WBSCR22, RASAL2, and NENF effectively and specifically inhibits cancer cell growth and cell invasive capacities in different types of cancer, but, remarkably, there is no effect on normal cell growth, suggesting a ubiquitous causal role for these genes in driving cancer growth and metastasis. Depletion of RASAL2 and NENF in vitro reduces their growth as explants in vivo in mice. RASAL2 and NENF depletion interferes with AKT, WNT, and MAPK signaling pathways as well as regulation of epigenetic proteins that were previously demonstrated to drive cancer growth and metastasis. CONCLUSION Our results prove that genes that are hypomethylated and induced in tumors are candidate targets for anticancer therapeutics in multiple cancer cell types. Because these genes are particularly activated in cancer, they constitute a group of targets for specific pharmacologic inhibitors of cancer and cancer metastasis. Clin Cancer Res; 20(12); 3118-32. ©2014 AACR.
Collapse
Affiliation(s)
- Barbara Stefanska
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, PakistanAuthors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - David Cheishvili
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Matthew Suderman
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Ani Arakelian
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Jian Huang
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Michael Hallett
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Ze-Guang Han
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Mamun Al-Mahtab
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Sheikh Mohammad Fazle Akbar
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Wasif Ali Khan
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Rubhana Raqib
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Imrana Tanvir
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Haseeb Ahmed Khan
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Shafaat A Rabbani
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| | - Moshe Szyf
- Authors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, PakistanAuthors' Affiliations: Departments of Pharmacology and Therapeutics and Medicine, McGill University Health Centre, Montreal; McGill Centre for Bioinformatics; and Sackler program for Psychobiology and Epigenetics at McGill University, Montreal, Quebec, Canada; Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China; Department of Hepatology, Bangabandhu Sheikh Mujib Medical University; International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Dhaka District, Bangladesh; Department of Medical Sciences, Toshiba General Hospital, Tokyo, Kanto, Japan; and Department of Pathology, Fatima Memorial Hospital College of Medicine and Dentistry Lahore, Pakistan
| |
Collapse
|
114
|
Garcés-Eisele SJ, Cedillo-Carvallo B, Reyes-Núñez V, Estrada-Marín L, Vázquez-Pérez R, Juárez-Calderón M, Guzmán-García MO, Dueñas-González A, Ruiz-Argüelles A. Genetic selection of volunteers and concomitant dose adjustment leads to comparable hydralazine/valproate exposure. J Clin Pharm Ther 2014; 39:368-75. [PMID: 24702251 DOI: 10.1111/jcpt.12155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/24/2014] [Indexed: 12/31/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Hydralazine is an inhibitor of DNA methyltransferases, whereas valproate interferes with histone deacetylation. In combination, they show a marked synergism in reducing tumour growth as well as development of metastasis and inducing cell differentiation. Hydralazine is metabolized by the highly polymorphic N-acetyltransferase 2. The current pilot study was performed to analyse the pharmacokinetic parameters of a single dose of hydralazine in 24 h (one tablet with 83 mg for slow acetylators and one tablet with 182 mg for fast acetylators) and three fixed doses of valproate (one tablet of controlled liberation with 700 mg every 8 h) in healthy genetically selected volunteers. Selection was performed based on their NAT2 activity as deduced from their genotype. METHODS An open label non-randomized single arm study was conducted in two groups of six healthy volunteers of both genders aged 20-45 years with a body mass index 22·2-26·9 which were classified as fast or slow acetylators after genotyping 3 SNPs that cover 99·9% of the NAT2 variants in the Mexican population. Blood samples were collected predose and serially post-dose in an interval of 48 h. Hydralazine and valproate concentrations were determined by ultra-high performance liquid chromatography (UPLC) coupled to tandem mass spectroscopy (MS/MS). RESULTS AND DISCUSSION The AUC0-48 h and Cmax of hydralazine were almost identical (1410 ± 560 vs. 1446 ± 509 ng h/mL and 93·4 ± 16·7 vs. 112·5 ± 42·1 ng/mL) in both groups with NAT2 genotype-adjusted doses, whereas the multidose parameters of valproate were not significantly affected neither by the selection of the NAT2 genotype (AUC0-48 h 2064 ± 455 vs. 1896 ± 185 μg h/mL; Cmax 96·4 ± 21·1 vs. 88·8 ± 7·2 μg/mL, for the fast and slow acetylators, respectively) nor the co-administration of 83 or 182 mg of hydralazine. WHAT IS NEW AND CONCLUSION Comparable hydralazine exposures (differences in AUC0-inf of only 7%) were observed in this study with genetic selection of volunteers and concomitant dose adjustment. However, the conclusions have yet to be confirmed with a full-powered 2 × 2 crossover study.
Collapse
Affiliation(s)
- S J Garcés-Eisele
- Clínica Ruiz Laboratorios, Puebla, México; Universidad Popular Autónoma del Estado de Puebla, Puebla, México
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Sharad S, Ravindranath L, Haffner MC, Li H, Yan W, Sesterhenn IA, Chen Y, Ali A, Srinivasan A, McLeod DG, Yegnasubramanian S, Srivastava S, Dobi A, Petrovics G. Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer. Epigenetics 2014; 9:918-27. [PMID: 24694733 PMCID: PMC4065188 DOI: 10.4161/epi.28710] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The prostate transmembrane protein androgen induced 1 (PMEPA1) gene is highly expressed in prostate epithelial cells and is a direct transcriptional target for the androgen receptor (AR). AR protein levels are controlled by the AR-PMEPA1 negative feedback loop through NEDD4-E3 ligase. Reduced expression of PMEPA1 observed in prostate tumors, suggests that loss of PMEPA1 may play critical roles in prostate tumorigenesis. This study focuses on epigenetic mechanisms of reduced PMEPA1 expression in the cancer of the prostate (CaP). Benign (n = 77) and matched malignant (n = 77) prostate epithelial cells were laser capture micro-dissected from optimum cutting temperature embedded frozen prostate sections from 42 Caucasian American (CA) and 35 African American (AA) cases. Purified DNA specimens were analyzed for CpG methylation of the PMEPA1 gene. PMEPA1 mRNA expression levels were evaluated by qRT-PCR. Analysis of PMEPA1 methylation and mRNA expression in the same tumor cell populations indicated a significant inverse correlation between mRNA expression and methylation in CaP (P = 0.0115). We noted higher frequency of CpG methylation within the evaluated first intronic region of the PMEPA1 gene in prostate tumors of CA men as compared with AA. In CaP cell lines, PMEPA1 expression was induced and AR protein levels were diminished in response to treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (decitabine). Cell culture-based studies demonstrated that decitabine restores PMEPA1 expression in AR-positive CaP cell lines. This report reveals the potential role of PMEPA1 gene methylation in the regulation of AR stability. Thus, downregulation of PMEPA1 may result in increased AR protein levels and function in CaP cells, contributing to prostate tumorigenesis.
Collapse
Affiliation(s)
- Shashwat Sharad
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - Michael C Haffner
- Sidney Kimmel Comprehensive Cancer Center; Johns Hopkins University; Baltimore, MD USA
| | - Hua Li
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - Wusheng Yan
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | | | - Yongmei Chen
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - Amina Ali
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA; Urology Service; Walter Reed National Military Medical Center; Bethesda, MD USA
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - David G McLeod
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA; Urology Service; Walter Reed National Military Medical Center; Bethesda, MD USA
| | | | - Shiv Srivastava
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - Albert Dobi
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| |
Collapse
|
116
|
Bevilacqua A, Willis MS, Bultman SJ. SWI/SNF chromatin-remodeling complexes in cardiovascular development and disease. Cardiovasc Pathol 2014; 23:85-91. [PMID: 24183004 PMCID: PMC3946279 DOI: 10.1016/j.carpath.2013.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022] Open
Abstract
Our understanding of congenital heart defects has been recently advanced by whole exome sequencing projects, which have identified de novo mutations in many genes encoding epigenetic regulators. Notably, multiple subunits of switching defective/sucrose non-fermenting (SWI/SNF) chromatin-remodeling complexes have been identified as strong candidates underlying these defects because they physically and functionally interact with cardiogenic transcription factors critical to cardiac development, such as TBX5, GATA-4, and NKX2-5. While these studies indicate a critical role of SWI/SNF complexes in cardiac development and congenital heart disease, many exciting new discoveries have identified their critical role in the adult heart in both physiological and pathological conditions involving multiple cell types in the heart, including cardiomyocytes, vascular endothelial cells, pericytes, and neural crest cells. This review summarizes the role of SWI/SNF chromatin-remodeling complexes in cardiac development, congenital heart disease, cardiac hypertrophy, and vascular endothelial cell survival. Although the clinical relevance of SWI/SNF mutations has traditionally been focused primarily on their role in tumor suppression, these recent studies illustrate their critical role in the heart whereby they regulate cell proliferation, differentiation, and apoptosis of cardiac derived cell lines.
Collapse
Affiliation(s)
- Ariana Bevilacqua
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
| | - Scott J Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
117
|
Fujiwara T, Saitoh H, Inoue A, Kobayashi M, Okitsu Y, Katsuoka Y, Fukuhara N, Onishi Y, Ishizawa K, Ichinohasama R, Harigae H. 3-Deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase, promotes erythroid differentiation. J Biol Chem 2014; 289:8121-34. [PMID: 24492606 PMCID: PMC3961643 DOI: 10.1074/jbc.m114.548651] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
EZH2, a core component of polycomb repressive complex 2 (PRC2), plays a role in transcriptional repression through histone H3 Lys-27 trimethylation and is involved in various biological processes, including hematopoiesis. It is well known that 3-deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase that targets the degradation of EZH2, preferentially induces apoptosis in various hematological malignancies, suggesting that EZH2 may be a new target for epigenetic treatment. Because PRC2 participates in epigenetic silencing of a subset of GATA-1 target genes during erythroid differentiation, inhibition of EZH2 may influence erythropoiesis. To explore this possibility, we evaluated the impact of DZNep on erythropoiesis. DZNep treatment significantly induced erythroid differentiation of K562 cells, as assessed by benzidine staining and quantitative RT-PCR analysis for representative erythroid-related genes, including globins. When we evaluated the effects of DZNep in human primary erythroblasts derived from cord blood CD34-positive cells, the treatment significantly induced erythroid-related genes, as observed in K562 cells, suggesting that DZNep induces erythroid differentiation. Unexpectedly, siRNA-mediated EZH2 knockdown had no significant effect on the expression of erythroid-related genes. Transcriptional profiling of DZNep-treated K562 cells revealed marked up-regulation of SLC4A1 and EPB42, previously reported as representative targets of the transcriptional corepressor ETO2. In addition, DZNep treatment reduced the protein level of ETO2. These data suggest that erythroid differentiation by DZNep may not be directly related to EZH2 inhibition but may be partly associated with reduced protein level of hematopoietic corepressor ETO2. These data provide a better understanding of the mechanism of action of DZNep, which may be exploited for therapeutic applications for hematological diseases, including anemia.
Collapse
|
118
|
Montenegro MF, Sánchez-del-Campo L, Fernández-Pérez MP, Sáez-Ayala M, Cabezas-Herrera J, Rodríguez-López JN. Targeting the epigenetic machinery of cancer cells. Oncogene 2014; 34:135-43. [PMID: 24469033 DOI: 10.1038/onc.2013.605] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023]
Abstract
Cancer is characterized by uncontrolled cell growth and the acquisition of metastatic properties. In most cases, the activation of oncogenes and/or deactivation of tumour suppressor genes lead to uncontrolled cell cycle progression and inactivation of apoptotic mechanisms. Although the underlying mechanisms of carcinogenesis remain unknown, increasing evidence links aberrant regulation of methylation to tumourigenesis. In addition to the methylation of DNA and histones, methylation of nonhistone proteins, such as transcription factors, is also implicated in the biology and development of cancer. Because the metabolic cycling of methionine is a key pathway for many of these methylating reactions, strategies to target the epigenetic machinery of cancer cells could result in novel and efficient anticancer therapies. The application of these new epigenetic therapies could be of utility in the promotion of E2F1-dependent apoptosis in cancer cells, in avoiding metastatic pathways and/or in sensitizing tumour cells to radiotherapy.
Collapse
Affiliation(s)
- M F Montenegro
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| | - L Sánchez-del-Campo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - M P Fernández-Pérez
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| | - M Sáez-Ayala
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| | - J Cabezas-Herrera
- Translational Cancer Research Group, University Hospital Virgen de la Arrixaca (IMIB), Murcia, Spain
| | - J N Rodríguez-López
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| |
Collapse
|
119
|
Asgatay S, Champion C, Marloie G, Drujon T, Senamaud-Beaufort C, Ceccaldi A, Erdmann A, Rajavelu A, Schambel P, Jeltsch A, Lequin O, Karoyan P, Arimondo PB, Guianvarc’h D. Synthesis and Evaluation of Analogues of N-Phthaloyl-l-tryptophan (RG108) as Inhibitors of DNA Methyltransferase 1. J Med Chem 2014; 57:421-34. [DOI: 10.1021/jm401419p] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saâdia Asgatay
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Christine Champion
- MNHN CNRS
UMR 7196, INSERM U565, 43 Rue Cuvier, 75005 Paris, France
- UPMC Université Paris 6, 75005 Paris, France
| | - Gaël Marloie
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Thierry Drujon
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | | | - Alexandre Ceccaldi
- MNHN CNRS
UMR 7196, INSERM U565, 43 Rue Cuvier, 75005 Paris, France
- UPMC Université Paris 6, 75005 Paris, France
| | - Alexandre Erdmann
- USR ETaC CNRS-Pierre Fabre No. 3388, CRDPF BP 13562, 3 Avenue Hubert Curien, 31100 Toulouse, France
| | - Arumugam Rajavelu
- Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Philippe Schambel
- Institut de Recherche Pierre
Fabre, Centre de Recherche Pierre Fabre, 17 Rue Jean Moulin, 81 106, Castres Cedex, France
| | - Albert Jeltsch
- Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Olivier Lequin
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Philippe Karoyan
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Paola B. Arimondo
- MNHN CNRS
UMR 7196, INSERM U565, 43 Rue Cuvier, 75005 Paris, France
- USR ETaC CNRS-Pierre Fabre No. 3388, CRDPF BP 13562, 3 Avenue Hubert Curien, 31100 Toulouse, France
| | - Dominique Guianvarc’h
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
120
|
Guidotti A, Dong E, Tueting P, Grayson DR. Modeling the molecular epigenetic profile of psychosis in prenatally stressed mice. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 128:89-101. [PMID: 25410542 PMCID: PMC4283473 DOI: 10.1016/b978-0-12-800977-2.00004-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Based on postmortem brain studies, our overarching epigenetic hypothesis is that chronic schizophrenia (SZ) is a psychopathological condition involving dysregulation of the dynamic equilibrium among DNA methylation/demethylation network components and the expression of SZ target genes, including GABAergic and glutamatergic genes. SZ has a natural course, starting with a prodromal phase, a first episode that occurs in adolescents or in young adults, and later deterioration over the adult years. Hence, the epigenetic status at each neurodevelopmental stage of the disease cannot be studied just in postmortem brain of chronic SZ patients, but requires the use of neurodevelopmental animal models. We have directed the focus of our research toward studying the epigenetic signature of the SZ brain in the offspring of dams stressed during pregnancy (PRS mice). Adult PRS mice have behavioral deficits reminiscent of behaviors observed in psychotic patients. The adult PRS brain, like that of postmortem chronic SZ patients, is characterized by a significant increase in DNA methyltransferase 1, Tet methylcytosine dioxygenase 1 (TET1), 5-methylcytosine, and 5-hydroxymethylcytosine at SZ candidate gene promoters and a reduction in the expression of glutamatergic and GABAergic genes. In PRS mice, measurements of epigenetic biomarkers for SZ can be assessed at different stages of development with the goal of further elucidating the pathophysiology of this disease and predicting treatment responses at specific stages of the illness, with particular attention to early detection and possibly early intervention.
Collapse
Affiliation(s)
- Alessandro Guidotti
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Erbo Dong
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Patricia Tueting
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Dennis R Grayson
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
121
|
Lolak S, Suwannarat P, Lipsky RH. Epigenetics of Depression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 128:103-37. [DOI: 10.1016/b978-0-12-800977-2.00005-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
122
|
Abstract
Over the past 25 years, the broad field of epigenetics and, over the past decade in particular, the emerging field of neuroepigenetics have begun to have tremendous impact in the areas of learned behavior, neurotoxicology, CNS development, cognition, addiction, and psychopathology. However, epigenetics is such a new field that in most of these areas the impact is more in the category of fascinating implications as opposed to established facts. In this brief commentary, I will attempt to address and delineate some of the open questions and areas of opportunity that discoveries in epigenetics are providing to the discipline of neuroscience.
Collapse
|
123
|
Peng H, Yang M, Chen ZY, Chen P, Guan CX, Xiang XD, Cai S, Chen Y, Fang X. Expression and methylation of mitochondrial transcription factor a in chronic obstructive pulmonary disease patients with lung cancer. PLoS One 2013; 8:e82739. [PMID: 24367550 PMCID: PMC3867397 DOI: 10.1371/journal.pone.0082739] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 10/28/2013] [Indexed: 11/25/2022] Open
Abstract
Background Apoptosis plays a central role in the pathogenesis of chronic obstructive pulmonary disease (COPD), and this process can be regulated by mitochondrial transcription factor A (mtTFA). Epigenetics is involved in the regulation and modification of the genes involved in lung cancer and COPD. In this study, we determined the expression of mtTFA and its methylation levels in the COPD patients with lung cancer. Methods Twenty-one squamous cell lung cancer patients, 11 with COPD and 10 without COPD, undergoing pneumonectomy were enrolled. The apoptotic index (AI) of pulmonary vascular endothelial cells was analyzed by transferase-mediated deoxyuridine triphosphate-biotin nick end labeling assay. The expression of mtTFA mRNA and protein was measured using PCR, immunohistochemistry and Western-blot. Methylation of the mtTFA promoter was detected using bisulfite sequencing PCR. Results Compared to the non-COPD group, the AI was higher, and expression of mtTFA mRNA and protein was lower in the COPD group (P<0.001). Expression of the mtTFA protein was positively correlated with FEV1/Pre (r = 0.892, P<0.001), and negatively correlated with AI (r = −0.749, P<0.001) and smoke index (r = −0.763, P<0.001). Percentage of mtTFA promoter methylation in the COPD patients was significantly higher compared to the non-COPD patients (P<0.05). Conclusion These results suggest that the expression of mtTFA mRNA and protein is down-regulated in the lung tissue from the COPD patients with squamous cell lung cancer, and the level of mtTFA protein is related to apoptosis of pulmonary vascular endothelial cells. Aberrant mtTFA methylation may also play an important role in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Hong Peng
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central-South University, Changsha, Hunan, PR China
| | - Min Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central-South University, Changsha, Hunan, PR China ; Human Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central-South University, Changsha, Hunan, PR China
| | - Zhi-yong Chen
- Department of Urology, Xiangya Hospital of Central-South University, Changsha, Hunan, PR China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central-South University, Changsha, Hunan, PR China
| | - Cha-xiang Guan
- Physiological Research Center, Xiangya Medical School of Central-South University, Changsha, Hunan, PR China
| | - Xu-dong Xiang
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central-South University, Changsha, Hunan, PR China
| | - Shan Cai
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central-South University, Changsha, Hunan, PR China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central-South University, Changsha, Hunan, PR China
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
124
|
Bomotti SM, Smith JA, Zagel AL, Taylor JY, Turner ST, Kardia SLR. Epigenetic markers of renal function in african americans. Nurs Res Pract 2013; 2013:687519. [PMID: 24396594 PMCID: PMC3874945 DOI: 10.1155/2013/687519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/27/2013] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) is an increasing concern in the United States due to its rapidly rising prevalence, particularly among African Americans. Epigenetic DNA methylation markers are becoming important biomarkers of chronic diseases such as CKD. To better understand how these methylation markers play a role in kidney function, we measured 26,428 DNA methylation sites in 972 African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. We then evaluated (1) whether epigenetic markers are associated with estimated glomerular filtration rate (eGFR), (2) whether the significantly associated markers are also associated with traditional risk factors and/or novel biomarkers for eGFR, and (3) how much additional variation in eGFR is explained by epigenetic markers beyond established risk factors and biomarkers. The majority of methylation markers most significantly associated with eGFR (24 out of the top 30) appeared to function, at least in part, through pathways related to aging, inflammation, or cholesterol. However, six epigenetic markers were still able to significantly predict eGFR after adjustment for other risk factors. This work shows that epigenetic markers may offer valuable new insight into the complex pathophysiology of CKD in African Americans.
Collapse
Affiliation(s)
- Samantha M. Bomotti
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, No. 4629, Ann Arbor, MI 48109, USA
| | - Alicia L. Zagel
- Center for Health Statistics, Washington State Department of Health, Olympia, WA 98501, USA
| | | | - Stephen T. Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, No. 4629, Ann Arbor, MI 48109, USA
| |
Collapse
|
125
|
|
126
|
Clofarabine, a novel adenosine analogue, reactivates DNA methylation-silenced tumour suppressor genes and inhibits cell growth in breast cancer cells. Eur J Pharmacol 2013; 723:276-87. [PMID: 24296317 DOI: 10.1016/j.ejphar.2013.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/07/2013] [Accepted: 11/03/2013] [Indexed: 11/20/2022]
Abstract
Clofarabine (2-chloro-2'-fluoro-2'-deoxyarabinosyladenine, ClF) is a second-generation 2'-deoxyadenosine analogue that is structurally related to cladribine (2-chloro-2'-deoxyadenosine, 2CdA) and fludarabine (9-beta-d-arabinosyl-2-fluoroadenine, F-ara-A). It demonstrates potent antitumour activity at much lower doses than parent compounds with high therapeutic efficacy in paediatric blood cancers. Our previous studies in breast cancer cells indicate that 2CdA and F-ara-A are involved in epigenetic regulation of gene transcription. We therefore investigated whether ClF influences methylation and expression of selected tumour suppressor genes, such as adenomatous polyposis coli (APC), phosphatase and tensin homologue (PTEN), and retinoic acid receptor beta 2 (RARbeta2), as well as expression of p53, p21 and DNA methyltransferase 1 (DNMT1) in MCF-7 and MDA-MB-231 breast cancer cell lines with different invasive potential. Promoter methylation and gene expression were estimated using methylation-sensitive restriction analysis (MSRA) and real-time PCR, respectively. ClF demonstrated potent growth inhibitory activity in MCF-7 and MDA-MB-231 cells after 96h treatment with IC50 determined as equal to 640nM and 50nM, respectively. In both breast cancer cell lines, ClF led to hypomethylation and up-regulation of APC, PTEN and RARbeta2 as well as increase in p21 expression. Only in non-invasive MCF-7 cells, these changes were associated with down-regulation of DNMT1. Our results provide first evidence of ClF implications in epigenetic regulation of transcriptional activity of selected tumour suppressor genes in breast cancer. It seems to be a new important element of ClF anticancer activity and may indicate its potential efficacy in epigenetic therapy of solid tumours, especially at early stages of carcinogenesis.
Collapse
|
127
|
Malan-Müller S, Seedat S, Hemmings SMJ. Understanding posttraumatic stress disorder: insights from the methylome. GENES BRAIN AND BEHAVIOR 2013; 13:52-68. [DOI: 10.1111/gbb.12102] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022]
Affiliation(s)
- S. Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences; Stellenbosch University; Tygerberg South Africa
| | - S. Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences; Stellenbosch University; Tygerberg South Africa
| | - S. M. J. Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences; Stellenbosch University; Tygerberg South Africa
| |
Collapse
|
128
|
Lessans S, Dorsey SG. The role for epigenetic modifications in pain and analgesia response. Nurs Res Pract 2013; 2013:961493. [PMID: 24228176 PMCID: PMC3817675 DOI: 10.1155/2013/961493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022] Open
Abstract
Pain remains a poorly understood and managed symptom. A limited mechanistic understanding of interindividual differences in pain and analgesia response shapes current approaches to assessment and treatment. Opportunities exist to improve pain care through increased understanding of how dynamic epigenomic remodeling shapes injury, illness, pain, and treatment response. Tightly regulated alterations of the DNA-histone chromatin complex enable cells to control transcription, replication, gene expression, and protein production. Pathological alterations to chromatin shape the ability of the cell to respond to physiologic and environmental cues leading to disease and reduced treatment effectiveness. This review provides an overview of critical epigenetic processes shaping pathology and pain, highlights current research support for the role of epigenomic modification in the development of chronic pain, and summarizes the therapeutic potential to alter epigenetic processes to improve health outcomes.
Collapse
Affiliation(s)
- Sherrie Lessans
- School of Nursing, University of Maryland, Baltimore, USA
- Program in Neuroscience, University of Maryland, Baltimore, USA
| | - Susan G. Dorsey
- School of Nursing, University of Maryland, Baltimore, USA
- Program in Neuroscience, University of Maryland, Baltimore, USA
| |
Collapse
|
129
|
Machnes ZM, Huang TCT, Chang PKY, Gill R, Reist N, Dezsi G, Ozturk E, Charron F, O'Brien TJ, Jones NC, McKinney RA, Szyf M. DNA methylation mediates persistent epileptiform activity in vitro and in vivo. PLoS One 2013; 8:e76299. [PMID: 24098468 PMCID: PMC3788713 DOI: 10.1371/journal.pone.0076299] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 08/25/2013] [Indexed: 01/23/2023] Open
Abstract
Epilepsy is a chronic brain disorder involving recurring seizures often precipitated by an earlier neuronal insult. The mechanisms that link the transient neuronal insult to the lasting state of epilepsy are unknown. Here we tested the possible role of DNA methylation in mediating long-term induction of epileptiform activity by transient kainic acid exposure using in vitro and in vivo rodent models. We analyzed changes in the gria2 gene, which encodes for the GluA2 subunit of the ionotropic glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor and is well documented to play a role in epilepsy. We show that kainic acid exposure for two hours to mouse hippocampal slices triggers methylation of a 5’ regulatory region of the gria2 gene. Increase in methylation persists one week after removal of the drug, with concurrent suppression of gria2 mRNA expression levels. The degree of kainic acid-induced hypermethylation of gria2 5’ region varies between individual slices and correlates with the changes in excitability induced by kainic acid. In a rat in vivo model of post kainic acid-induced epilepsy, we show similar hypermethylation of the 5’ region of gria2. Inter-individual variations in gria2 methylation, correlate with the frequency and intensity of seizures among epileptic rats. Luciferase reporter assays support a regulatory role for methylation of gria2 5’ region. Inhibition of DNA methylation by RG108 blocked kainic acid-induced hypermethylation of gria2 5’ region in hippocampal slice cultures and bursting activity. Our results suggest that DNA methylation of such genes as gria2 mediates persistent epileptiform activity and inter-individual differences in the epileptic response to neuronal insult and that pharmacological agents that block DNA methylation inhibit epileptiform activity raising the prospect of DNA methylation inhibitors in epilepsy therapeutics.
Collapse
Affiliation(s)
- Ziv M Machnes
- Department of Pharmacology and Therapeutics McGill University, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Martin LJ, Wong M. Aberrant regulation of DNA methylation in amyotrophic lateral sclerosis: a new target of disease mechanisms. Neurotherapeutics 2013; 10:722-33. [PMID: 23900692 PMCID: PMC3805862 DOI: 10.1007/s13311-013-0205-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. A diagnosis is fatal owing to degeneration of motor neurons in brain and spinal cord that control swallowing, breathing, and movement. ALS can be inherited, but most cases are not associated with a family history of the disease. The mechanisms causing motor neuron death in ALS are still unknown. Given the suspected complex interplay between multiple genes, the environment, metabolism, and lifestyle in the pathogenesis of ALS, we have hypothesized that the mechanisms of disease in ALS involve epigenetic contributions that can drive motor neuron degeneration. DNA methylation is an epigenetic mechanism for gene regulation engaged by DNA methyltransferase (Dnmt)-catalyzed methyl group transfer to carbon-5 in cytosine residues in gene regulatory promoter and nonpromoter regions. Recent genome-wide analyses have found differential gene methylation in human ALS. Neuropathologic assessments have revealed that motor neurons in human ALS show significant abnormalities in Dnmt1, Dnmt3a, and 5-methylcytosine. Similar changes are seen in mice with motor neuron degeneration, and Dnmt3a was found abundantly at synapses and in mitochondria. During apoptosis of cultured motor neuron-like cells, Dnmt1 and Dnmt3a protein levels increase, and 5-methylcytosine accumulates. Enforced expression of Dnmt3a, but not Dnmt1, induces degeneration of cultured neurons. Truncation mutation of the Dnmt3a catalytic domain and Dnmt3a RNAi blocks apoptosis of cultured neurons. Inhibition of Dnmt catalytic activity with small molecules RG108 and procainamide protects motor neurons from excessive DNA methylation and apoptosis in cell culture and in a mouse model of ALS. Thus, motor neurons can engage epigenetic mechanisms to cause their degeneration, involving Dnmts and increased DNA methylation. Aberrant DNA methylation in vulnerable cells is a new direction for discovering mechanisms of ALS pathogenesis that could be relevant to new disease target identification and therapies for ALS.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD, 21205-2196, USA,
| | | |
Collapse
|
131
|
Noonan W, Dismuke AD, Turker MS. Epigenetic Patents: A Stressful Environment for an Emerging Science. Biotechnol Law Rep 2013; 32:302-312. [PMID: 24761053 DOI: 10.1089/blr.2013.9868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
132
|
Zaidi SK, Van Wijnen AJ, Lian JB, Stein JL, Stein GS. Targeting deregulated epigenetic control in cancer. J Cell Physiol 2013; 228:2103-8. [PMID: 23589100 DOI: 10.1002/jcp.24387] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022]
Abstract
Cancer is a multifaceted disease that involves acquisition of genetic mutations, deletions, and amplifications as well as deregulation of epigenetic mechanisms that fine-tune gene regulation. Key epigenetic mechanisms that include histone modifications, DNA methylation, and non-coding RNA-mediated gene silencing are often deregulated in a variety of cancers. Subnuclear localization of key proteins in the interphase nucleus and bookmarking of genes by lineage commitment factors in mitosis-a new dimension to epigenetic control of fundamental biological processes-is also modified in cancer. In this review, we discuss the various aspects of epigenetic control that are operative in a variety of cancers and their potential for risk assessment, early detection, targeted therapy, and personalized medicine.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | | | | | | | | |
Collapse
|
133
|
Siniscalco D, Cirillo A, Bradstreet JJ, Antonucci N. Epigenetic findings in autism: new perspectives for therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4261-73. [PMID: 24030655 PMCID: PMC3799534 DOI: 10.3390/ijerph10094261] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/14/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
Abstract
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, communications, restricted interests, and repetitive stereotypic behaviors. Despite extensive genetic and biological research, significant controversy surrounds our understanding of the specific mechanisms of their pathogenesis. However, accumulating evidence points to the involvement of epigenetic modifications as foundational in creating ASD pathophysiology. Epigenetic modifications or the alteration of DNA transcription via variations in DNA methylation and histone modifications but without alterations in the DNA sequence, affect gene regulation. These alterations in gene expression, obtained through DNA methylation and/or histone modifications, result from transcriptional regulatory influences of environmental factors, such as nutritional deficiencies, various toxicants, immunological effects, and pharmaceuticals. As such these effects are epigenetic regulators which determine the final biochemistry and physiology of the individual. In contrast to psychopharmacological interventions, bettering our understanding of how these gene-environmental interactions create autistic symptoms should facilitate the development of therapeutic targeting of gene expression for ASD biomedical care.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, Second University of Naples; via S. Maria di Costantinopoli, Napoli 16-80138, Italy
- Centre for Autism—La Forza del Silenzio, Caserta 81036, Italy
- Cancellautismo—Non-Profit Association for Autism Care, Florence 50132, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0-81-566-5880; Fax: +39-0-81-566-7503
| | - Alessandra Cirillo
- Institute of Protein Biochemistry, National Research Council of Italy; Naples 80128, Italy; E-Mail:
| | | | - Nicola Antonucci
- Biomedical Centre for Autism Research and Treatment, Bari 70126, Italy; E-Mail:
| |
Collapse
|
134
|
Small molecule epigenetic inhibitors targeted to histone lysine methyltransferases and demethylases. Q Rev Biophys 2013; 46:349-73. [PMID: 23991894 DOI: 10.1017/s0033583513000085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Altered chromatin structures and dynamics are responsible for a range of human malignancies, among which the status of histone lysine methylation remains of paramount importance. Histone lysine methylation is maintained by the relative activities of sequence-specific methyltransferase (KMT) writers and demethylase (KDM) erasers, with aberrant enzymatic activities or expression profiles closely correlated with multiple human diseases. Hence, targeting these epigenetic enzymes should provide a promising avenue for pharmacological intervention of aberrantly marked sites within the epigenome. Here we present an up-to-date critical evaluation on the development and optimization of potent small molecule inhibitors targeted to histone KMTs and KDMs, with the emphasis on contributions of structural biology to development of epigenetic drugs for therapeutic intervention. We anticipate that ongoing advances in the development of epigenetic inhibitors should lead to novel drugs that site-specifically target KMTs and KDMs, key enzymes responsible for maintenance of the lysine methylation landscape in the epigenome.
Collapse
|
135
|
Yao Y, Zhou J, Wang L, Gao X, Ning Q, Jiang M, Wang J, Wang L, Yu L. Increased PRAME-specific CTL killing of acute myeloid leukemia cells by either a novel histone deacetylase inhibitor chidamide alone or combined treatment with decitabine. PLoS One 2013; 8:e70522. [PMID: 23940586 PMCID: PMC3734248 DOI: 10.1371/journal.pone.0070522] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 06/25/2013] [Indexed: 12/15/2022] Open
Abstract
As one of the best known cancer testis antigens, PRAME is overexpressed exclusively in germ line tissues such as the testis as well as in a variety of solid and hematological malignant cells including acute myeloid leukemia. Therefore, PRAME has been recognized as a promising target for both active and adoptive anti-leukemia immunotherapy. However, in most patients with PRAME-expressing acute myeloid leukemia, PRAME antigen-specific CD8(+) CTL response are either undetectable or too weak to exert immune surveillance presumably due to the inadequate PRAME antigen expression and PRAME-specific antigen presentation by leukemia cells. In this study, we observed remarkably increased PRAME mRNA expression in human acute myeloid leukemia cell lines and primary acute myeloid leukemia cells after treatment with a novel subtype-selective histone deacetylase inhibitor chidamide in vitro. PRAME expression was further enhanced in acute myeloid leukemia cell lines after combined treatment with chidamide and DNA demethylating agent decitabine. Pre-treatment of an HLA-A0201(+) acute myeloid leukemia cell line THP-1 with chidamide and/or decitabine increased sensitivity to purified CTLs that recognize PRAME(100-108) or PRAME(300-309) peptide presented by HLA-A0201. Chidamide-induced epigenetic upregulation of CD86 also contributed to increased cytotoxicity of PRAME antigen-specific CTLs. Our data thus provide a new line of evidence that epigenetic upregulation of cancer testis antigens by a subtype-selective HDAC inhibitor or in combination with hypomethylating agent increases CTL cytotoxicity and may represent a new opportunity in future design of treatment strategy targeting specifically PRAME-expressing acute myeloid leukemia.
Collapse
Affiliation(s)
- Yushi Yao
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Jihao Zhou
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Lixin Wang
- Department of Hematology, Navy General Hospital, Beijing, China
| | - Xiaoning Gao
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Qiaoyang Ning
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Mengmeng Jiang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Jia Wang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Lili Wang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Li Yu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
136
|
Bardhan K, Liu K. Epigenetics and colorectal cancer pathogenesis. Cancers (Basel) 2013; 5:676-713. [PMID: 24216997 PMCID: PMC3730326 DOI: 10.3390/cancers5020676] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.
Collapse
Affiliation(s)
- Kankana Bardhan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, and Cancer Center, Georgia Regents University, Augusta, GA 30912, USA.
| | | |
Collapse
|
137
|
Ghorpade DS, Holla S, Sinha AY, Alagesan SK, Balaji KN. Nitric oxide and KLF4 protein epigenetically modify class II transactivator to repress major histocompatibility complex II expression during Mycobacterium bovis bacillus Calmette-Guerin infection. J Biol Chem 2013; 288:20592-606. [PMID: 23733190 DOI: 10.1074/jbc.m113.472183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pathogenic mycobacteria employ several immune evasion strategies such as inhibition of class II transactivator (CIITA) and MHC-II expression, to survive and persist in host macrophages. However, precise roles for specific signaling components executing down-regulation of CIITA/MHC-II have not been adequately addressed. Here, we demonstrate that Mycobacterium bovis bacillus Calmette-Guérin (BCG)-mediated TLR2 signaling-induced iNOS/NO expression is obligatory for the suppression of IFN-γ-induced CIITA/MHC-II functions. Significantly, NOTCH/PKC/MAPK-triggered signaling cross-talk was found critical for iNOS/NO production. NO responsive recruitment of a bifunctional transcription factor, KLF4, to the promoter of CIITA during M. bovis BCG infection of macrophages was essential to orchestrate the epigenetic modifications mediated by histone methyltransferase EZH2 or miR-150 and thus calibrate CIITA/MHC-II expression. NO-dependent KLF4 regulated the processing and presentation of ovalbumin by infected macrophages to reactive T cells. Altogether, our study delineates a novel role for iNOS/NO/KLF4 in dictating the mycobacterial capacity to inhibit CIITA/MHC-II-mediated antigen presentation by infected macrophages and thereby elude immune surveillance.
Collapse
Affiliation(s)
- Devram Sampat Ghorpade
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
138
|
Gardner N, Magers D, Hill G. Theoretical study of the pre- and post-translational effects of adenine and thymine tautomers and methyl derivatives. J Mol Model 2013; 19:3543-9. [PMID: 23722555 DOI: 10.1007/s00894-013-1833-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/20/2013] [Indexed: 10/26/2022]
Abstract
The study of pre-translational effects (ionization, tautomerization) and post-translational effects (methylation) of adenine and thymine has only recently been the focus of some studies. These effects can potentially help regulate gene expression as well as potentially disrupt normal gene function. Because of this wide array of roles, greater insight into these effects in deoxyribonucleic acids (DNA) are paramount. There has been considerable research of each phenomenon (tautomerization, methylation and ionization) individually. In this work, we attempt to shed light upon the pre-translational effects and post translational effects of adenine and thymine by investigating the electron affinities (EAs) and ionization potentials (IPs) of the major and minor tautomers and their methyl derivatives. We performed all calculations using the density functional theory (DFT) B3LYP functional accompanied with 6-311G(d,p), 6-311+G(d,p) and 6-311++G(df,pd) basis sets. Our results reveal that the thymine tautomer has a higher EA and IP than the adenine tautomers. The higher EA suggests that an electron that attaches to the AT base pair would predominately attach to the thymine instead of adenine. The higher IP would suggest that an electron that is removed from the AT base pair would be predominately removed from the adenine within the base pair. Understanding how tautomerization, ionization and methylation differences change effects, discourages, or promotes one another is lacking. In this work, we begin the steps of integrating these effects with one another, to gain a greater understanding of molecular changes in DNA bases.
Collapse
Affiliation(s)
- Noel Gardner
- Jackson State University, 1400 J. R. Lynch, Jackson, MS 39217, USA
| | | | | |
Collapse
|
139
|
Amort T, Soulière MF, Wille A, Jia XY, Fiegl H, Wörle H, Micura R, Lusser A. Long non-coding RNAs as targets for cytosine methylation. RNA Biol 2013; 10:1003-8. [PMID: 23595112 PMCID: PMC4111728 DOI: 10.4161/rna.24454] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 12/18/2022] Open
Abstract
Post-synthetic modifications of nucleic acids have long been known to affect their functional and structural properties. For instance, numerous different chemical modifications modulate the structural organization, stability or translation efficiency of tRNAs and rRNAs. In contrast, little is known about modifications of poly(A)RNAs. Here, we demonstrate for the first time that the two well-studied regulatory long non-coding RNAs HOTAIR and XIST are targets of site-specific cytosine methylation. In both XIST and HOTAIR, we found methylated cytosines located within or near functionally important regions that are known to mediate interaction with chromatin-associated protein complexes. We show that cytosine methylation in the XIST A structure strongly affects binding to the chromatin-modifying complex PRC2 in vitro. These results suggest that cytosine methylation may serve as a general strategy to regulate the function of long non-coding RNAs.
Collapse
Affiliation(s)
- Thomas Amort
- Division of Molecular Biology; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | - Marie F. Soulière
- Department of Organic Chemistry and Center for Molecular Biosciences (CMBI); University of Innsbruck; Innsbruck, Austria
| | - Alexandra Wille
- Division of Molecular Biology; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | | | - Heidi Fiegl
- Department of Obstetrics and Gynecology; Innsbruck Medical University; Innsbruck, Austria
| | - Hildegard Wörle
- Division of Molecular Biology; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | - Ronald Micura
- Department of Organic Chemistry and Center for Molecular Biosciences (CMBI); University of Innsbruck; Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| |
Collapse
|
140
|
Molteni R, Macchi F, Riva MA. Gene expression profiling as functional readout of rodent models for psychiatric disorders. Cell Tissue Res 2013; 354:51-60. [DOI: 10.1007/s00441-013-1648-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
|
141
|
Seo S, Grzenda A, Lomberk G, Ou XM, Cruciani RA, Urrutia R. Epigenetics: a promising paradigm for better understanding and managing pain. THE JOURNAL OF PAIN 2013; 14:549-57. [PMID: 23602266 DOI: 10.1016/j.jpain.2013.01.772] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/05/2012] [Accepted: 01/11/2013] [Indexed: 12/26/2022]
Abstract
UNLABELLED Epigenetic regulation of gene expression is a rapidly growing area of research. Considering the longevity and plasticity of neurons, the studies on epigenetic pathways in the nervous system should be of special interest for both epigeneticists and neuroscientists. Activation or inactivation of different epigenetic pathways becomes more pronounced when the cells experience rapid changes in their environment, and such changes can be easily caused by injury and inflammation, resulting in pain perception or distortion of pain perception (eg, hyperalgesia). Therefore, in this regard, the field of pain is at an advantage to study the epigenetic pathways. More importantly, understanding pain from an epigenetics point of view would provide a new paradigm for developing drugs or strategies for pain management. In this review, we introduce basic concepts of epigenetics, including chromatin dynamics, histone modifications, DNA methylation, and RNA-induced gene silencing. In addition, we provide evidence from published studies suggesting wide implication of different epigenetic pathways within pain pathways. PERSPECTIVE This article provides a brief overview of epigenetic pathways for gene regulation and highlights their involvement in pain. Our goal is to expose the readers to these concepts so that pain-related phenotypes can be investigated from the epigenetic point of view.
Collapse
Affiliation(s)
- Seungmae Seo
- Laboratory of Epigenetics and Chromatin Dynamics, Translational Epigenomic Program, Center for Individualized Medicine, GIH Division, Department of Medicine, Physiology, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
142
|
Maternal separation with early weaning: a rodent model providing novel insights into neglect associated developmental deficits. Dev Psychopathol 2013; 24:1401-16. [PMID: 23062306 DOI: 10.1017/s095457941200079x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Child neglect is the most prevalent form of child maltreatment in the United States, and poses a serious public health concern. Children who survive such episodes go on to experience long-lasting psychological and behavioral problems, including higher rates of post-traumatic stress disorder symptoms, depression, alcohol and drug abuse, attention-deficit/hyperactivity disorder, and cognitive deficits. To date, most research into the causes of these life-long problems has focused on well-established targets such as stress responsive systems, including the hypothalamus-pituitary-adrenal axis. Using the maternal separation and early weaning model, we have attempted to provide comprehensive molecular profiling of a model of early-life neglect in an organism amenable to genomic manipulation: the mouse. In this article, we report new findings generated with this model using chromatin immunoprecipitation sequencing, diffuse tensor magnetic resonance imaging, and behavioral analyses. We also review the validity of the maternal separation and early weaning model, which reflects behavioral deficits observed in neglected humans including hyperactivity, anxiety, and attentional deficits. Finally, we summarize the molecular characterization of these animals, including RNA profiling and label-free proteomics, which highlight protein translation and myelination as novel pathways of interest.
Collapse
|
143
|
Smith Z, Ryerson D, Kemper JK. Epigenomic regulation of bile acid metabolism: emerging role of transcriptional cofactors. Mol Cell Endocrinol 2013; 368:59-70. [PMID: 22579755 PMCID: PMC3473118 DOI: 10.1016/j.mce.2012.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 01/07/2023]
Abstract
The traditional role of bile acids is to simply facilitate absorption and digestion of lipid nutrients, but bile acids also act as endocrine signaling molecules that activate nuclear and membrane receptors to control integrative metabolism and energy balance. The mechanisms by which bile acid signals are integrated to regulate target genes are, however, largely unknown. Recently emerging evidence has shown that transcriptional cofactors sense metabolic changes and modulate gene transcription by mediating reversible epigenomic post-translational modifications (PTMs) of histones and chromatin remodeling. Importantly, targeting these epigenomic changes has been a successful approach for treating human diseases, especially cancer. Here, we review emerging roles of transcriptional cofactors in the epigenomic regulation of liver metabolism, especially focusing on bile acid metabolism. Targeting PTMs of histones and chromatin remodelers, together with the bile acid-activated receptors, may provide new therapeutic options for bile acid-related disease, such as cholestasis, obesity, diabetes, and entero-hepatic cancers.
Collapse
Affiliation(s)
- Zachary Smith
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | | |
Collapse
|
144
|
Flashner BM, Russo ME, Boileau JE, Leong DW, Gallicano GI. Epigenetic factors and autism spectrum disorders. Neuromolecular Med 2013; 15:339-50. [PMID: 23468062 DOI: 10.1007/s12017-013-8222-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/13/2013] [Indexed: 12/28/2022]
Abstract
Autism is a complex neurodevelopmental disorder that has significant phenotypic overlap with several diseases, many of which fall within the broader category of autism spectrum disorders (ASDs). The etiology of the disorder is unclear and seems to involve a complex interplay of polygenic as well as environmental factors. We discuss evidence that suggests that epigenetic dysregulation is highly implicated as a contributing cause of ASDs and autism. Specifically, we examine neurodevelopmental disorders that share significant phenotypic overlap with ASDs and feature the dysregulation of epigenetically modified genes including UBE3A, GABA receptor genes, and RELN. We then look at the dysregulated expression of implicated epigenetic modifiers, namely MeCP2, that yield complex and varied downstream pleiotropic effects. Finally, we examine epigenetically mediated parent-of-origin effects through which paternal gene expression dominates that of maternal contributing to contrasting phenotypes implicated in ASDs. Such preliminary evidence suggests that elucidating the complex role of epigenetic regulations involved in ASDs could prove vital in furthering our understanding of the complex etiology of autism and ASDs.
Collapse
Affiliation(s)
- Bess M Flashner
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, 3900 Reservoir Rd. NW, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
145
|
Abstract
Chronic pain affects approximately one in five adults, resulting in a greatly reduced quality of life and a higher risk of developing co-morbidities such as depression. Available treatments often provide inadequate pain relief, but it is hoped that through deeper understanding of the molecular mechanisms underlying chronic pain states we can discover new and improved therapies. Although genetic research has flourished over the past decade and has identified many key genes in pain processing, the budding field of epigenetics promises to provide new insights and a more dynamic view of pain regulation. This review gives an overview of basic mechanisms and current therapies to treat pain, and discusses the clinical and preclinical evidence for the contribution of genetic and epigenetic factors, with a focus on how this knowledge can affect drug development.
Collapse
Affiliation(s)
- Megan Crow
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, UK
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, UK
| |
Collapse
|
146
|
Gertych A, Oh JH, Wawrowsky KA, Weisenberger DJ, Tajbakhsh J. 3-D DNA methylation phenotypes correlate with cytotoxicity levels in prostate and liver cancer cell models. BMC Pharmacol Toxicol 2013; 14:11. [PMID: 23394161 PMCID: PMC3598242 DOI: 10.1186/2050-6511-14-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 01/14/2013] [Indexed: 11/10/2022] Open
Abstract
Background The spatial organization of the genome is being evaluated as a novel indicator of toxicity in conjunction with drug-induced global DNA hypomethylation and concurrent chromatin reorganization. 3D quantitative DNA methylation imaging (3D-qDMI) was applied as a cell-by-cell high-throughput approach to investigate this matter by assessing genome topology through represented immunofluorescent nuclear distribution patterns of 5-methylcytosine (MeC) and global DNA (4,6-diamidino-2-phenylindole = DAPI) in labeled nuclei. Methods Differential progression of global DNA hypomethylation was studied by comparatively dosing zebularine (ZEB) and 5-azacytidine (AZA). Treated and untreated (control) human prostate and liver cancer cells were subjected to confocal scanning microscopy and dedicated 3D image analysis for the following features: differential nuclear MeC/DAPI load and codistribution patterns, cell similarity based on these patterns, and corresponding differences in the topology of low-intensity MeC (LIM) and low in intensity DAPI (LID) sites. Results Both agents generated a high fraction of similar MeC phenotypes across applied concentrations. ZEB exerted similar effects at 10–100-fold higher drug concentrations than its AZA analogue: concentration-dependent progression of global cytosine demethylation, validated by measuring differential MeC levels in repeat sequences using MethyLight, and the concurrent increase in nuclear LIM densities correlated with cellular growth reduction and cytotoxicity. Conclusions 3D-qDMI demonstrated the capability of quantitating dose-dependent drug-induced spatial progression of DNA demethylation in cell nuclei, independent from interphase cell-cycle stages and in conjunction with cytotoxicity. The results support the notion of DNA methylation topology being considered as a potential indicator of causal impacts on chromatin distribution with a conceivable application in epigenetic drug toxicology.
Collapse
Affiliation(s)
- Arkadiusz Gertych
- Translational Cytomics Group, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
147
|
Abstract
Harmful excessive use of alcohol has a severe impact on society and it remains one of the major causes of morbidity and mortality in the population. However, mechanisms that underlie excessive alcohol consumption are still poorly understood, and thus available medications for alcohol use disorders are limited. Here, we report that changing the level of chromatin condensation by affecting DNA methylation or histone acetylation limits excessive alcohol drinking and seeking behaviors in rodents. Specifically, we show that decreasing DNA methylation by inhibiting the activity of DNA methyltransferase (DNMT) with systemic administration of the FDA-approved drug, 5-azacitidine (5-AzaC) prevents excessive alcohol use in mice. Similarly, we find that increasing histone acetylation via systemic treatment with several histone deacetylase (HDAC) inhibitors reduces mice binge-like alcohol drinking. We further report that systemic administration of the FDA-approved HDAC inhibitor, SAHA, inhibits the motivation of rats to seek alcohol. Importantly, the actions of both DNMT and HDAC inhibitors are specific for alcohol, as no changes in saccharin or sucrose intake were observed. In line with these behavioral findings, we demonstrate that excessive alcohol drinking increases DNMT1 levels and reduces histone H4 acetylation in the nucleus accumbens (NAc) of rodents. Together, our findings illustrate that DNA methylation and histone acetylation control the level of excessive alcohol drinking and seeking behaviors in preclinical rodent models. Our study therefore highlights the possibility that DNMT and HDAC inhibitors can be used to treat harmful alcohol abuse.
Collapse
|
148
|
Trimarchi MP, Mouangsavanh M, Huang THM. Cancer epigenetics: a perspective on the role of DNA methylation in acquired endocrine resistance. CHINESE JOURNAL OF CANCER 2013; 30:749-56. [PMID: 22035855 PMCID: PMC3890241 DOI: 10.5732/cjc.011.10128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epigenetic mechanisms, including DNA methylation, are responsible for determining and maintaining cell fate, stably differentiating the various tissues in our bodies. Increasing evidence shows that DNA methylation plays a significant role in cancer, from the silencing of tumor suppressors to the activation of oncogenes and the promotion of metastasis. Recent studies also suggest a role for DNA methylation in drug resistance. This perspective article discusses how DNA methylation may contribute to the development of acquired endocrine resistance, with a focus on breast cancer. In addition, we discuss DNA methylome profiling and how recent developments in this field are shedding new light on the role of epigenetics in endocrine resistance. Hormone ablation is the therapy of choice for hormone-sensitive breast tumors, yet as many as 40% of patients inevitably relapse, and these hormone refractory tumors often have a poor prognosis. Epigenetic studies could provide DNA methylation biomarkers to predict and diagnose acquired resistance in response to treatment. Elucidation of epigenetic mechanisms may also lead to the development of new treatments that specifically target epigenetic abnormalities or vulnerabilities in cancer cells. Expectations must be tempered by the fact that epigenetic mechanisms of endocrine resistance remain poorly understood, and further study is required to better understand how altering epigenetic pathways with therapeutics can promote or inhibit endocrine resistance in different contexts. Going forward, DNA methylome profiling will become increasingly central to epigenetic research, heralding a network-based approach to epigenetics that promises to advance our understanding of the etiology of cancer in ways not previously possible.
Collapse
Affiliation(s)
- Michael P Trimarchi
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
149
|
Nagaraju GP, EI-Rayes BF. SPARC and DNA methylation: Possible diagnostic and therapeutic implications in gastrointestinal cancers. Cancer Lett 2013; 328:10-7. [DOI: 10.1016/j.canlet.2012.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/17/2012] [Accepted: 08/22/2012] [Indexed: 02/06/2023]
|
150
|
Bostrom JA, Sodhi M. A Look to the Future. Pharmacogenomics 2013. [DOI: 10.1016/b978-0-12-391918-2.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|