101
|
Nucleocytoplasmic shuttling of cytoskeletal proteins: molecular mechanism and biological significance. Int J Cell Biol 2011; 2012:494902. [PMID: 22229032 PMCID: PMC3249633 DOI: 10.1155/2012/494902] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/03/2011] [Accepted: 10/06/2011] [Indexed: 01/04/2023] Open
Abstract
Various nuclear functional complexes contain cytoskeletal proteins as regulatory subunits; for example, nuclear actin participates in transcriptional complexes, and actin-related proteins are integral to chromatin remodeling complexes. Nuclear complexes such as these are involved in both basal and adaptive nuclear functions. In addition to nuclear import via classical nuclear transport pathways or passive diffusion, some large cytoskeletal proteins spontaneously migrate into the nucleus in a karyopherin-independent manner. The balance of nucleocytoplasmic distribution of such proteins can be altered by several factors, such as import versus export, or capture and release by complexes. The resulting accumulation or depletion of the nuclear populations thereby enhances or attenuates their nuclear functions. We propose that such molecular dynamics constitute a form of cytoskeleton-modulated regulation of nuclear functions which is mediated by the translocation of cytoskeletal components in and out of the nucleus.
Collapse
|
102
|
Nuclear actin-related protein is required for chromosome segregation in Toxoplasma gondii. Mol Biochem Parasitol 2011; 181:7-16. [PMID: 21963440 DOI: 10.1016/j.molbiopara.2011.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 09/10/2011] [Accepted: 09/15/2011] [Indexed: 12/30/2022]
Abstract
Apicomplexa parasites use complex cell cycles to replicate that are not well understood mechanistically. We have established a robust forward genetic strategy to identify the essential components of parasite cell division. Here we describe a novel temperature sensitive Toxoplasma strain, mutant 13-20C2, which growth arrests due to a defect in mitosis. The primary phenotype is the mis-segregation of duplicated chromosomes with chromosome loss during nuclear division. This defect is conditional-lethal with respect to temperature, although relatively mild in regard to the preservation of the major microtubule organizing centers. Despite severe DNA loss many of the physical structures associated with daughter budding and the assembly of invasion structures formed and operated normally at the non-permissive temperature before completely arresting. These results suggest there are coordinating mechanisms that govern the timing of these events in the parasite cell cycle. The defect in mutant 13-20C2 was mapped by genetic complementation to Toxoplasma chromosome III and to a specific mutation in the gene encoding an ortholog of nuclear actin-related protein 4. A change in a conserved isoleucine to threonine in the helical structure of this nuclear actin related protein leads to protein instability and cellular mis-localization at the higher temperature. Given the age of this protist family, the results indicate a key role for nuclear actin-related proteins in chromosome segregation was established very early in the evolution of eukaryotes.
Collapse
|
103
|
Abstract
Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the "Chromatome") is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes.
Collapse
|
104
|
Inhibitor of kappa B epsilon (IκBε) is a non-redundant regulator of c-Rel-dependent gene expression in murine T and B cells. PLoS One 2011; 6:e24504. [PMID: 21915344 PMCID: PMC3167847 DOI: 10.1371/journal.pone.0024504] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 08/12/2011] [Indexed: 01/03/2023] Open
Abstract
Inhibitors of kappa B (IκBs) -α, -β and -ε effect selective regulation of specific nuclear factor of kappa B (NF-κB) dimers according to cell lineage, differentiation state or stimulus, in a manner that is not yet precisely defined. Lymphocyte antigen receptor ligation leads to degradation of all three IκBs but activation only of subsets of NF-κB-dependent genes, including those regulated by c-Rel, such as anti-apoptotic CD40 and BAFF-R on B cells, and interleukin-2 (IL-2) in T cells. We report that pre-culture of a mouse T cell line with tumour necrosis factor-α (TNF) inhibits IL-2 gene expression at the level of transcription through suppressive effects on NF-κB, AP-1 and NFAT transcription factor expression and function. Selective upregulation of IκBε and suppressed nuclear translocation of c-Rel were very marked in TNF-treated, compared to control cells, whether activated via T cell receptor (TCR) pathway or TNF receptor. IκBε associated with newly synthesised c-Rel in activated cells and, in contrast to IκBα and -β, showed enhanced association with p65/c-Rel in TNF-treated cells relative to controls. Studies in IκBε-deficient mice revealed that basal nuclear expression and nuclear translocation of c-Rel at early time-points of receptor ligation were higher in IκBε-/- T and B cells, compared to wild-type. IκBε-/- mice exhibited increased lymph node cellularity and enhanced basal thymidine incorporation by lymphoid cells ex vivo. IκBε-/- T cell blasts were primed for IL-2 expression, relative to wild-type. IκBε-/- splenic B cells showed enhanced survival ex vivo, compared to wild-type, and survival correlated with basal expression of CD40 and induced expression of CD40 and BAFF-R. Enhanced basal nuclear translocation of c-Rel, and upregulation of BAFF-R and CD40 occurred despite increased IκBα expression in IκBε-/- B cells. The data imply that regulation of these c-Rel-dependent lymphoid responses is a non-redundant function of IκBε.
Collapse
|
105
|
Dai Y, Pierson S, Dudney C, Zeng Y, Macleod V, Shaughnessy JD, Stack BC. Ribosomal protein metallopanstimulin-1 impairs multiple myeloma CAG cells growth and inhibits fibroblast growth factor receptor 3. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2011; 11:490-7. [PMID: 21889435 DOI: 10.1016/j.clml.2011.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/19/2011] [Accepted: 06/10/2011] [Indexed: 10/17/2022]
Abstract
INTRODUCTION It was demonstrated that metallopanstimulin-1 (MPS-1, RPS27) inhibited the growth of tumors formed by head and neck squamous cell carcinoma cells and reduced paxillin gene expression. METHODS The present study examined whether and how MPS-1 affects another type of cancer, multiple myeloma (CAG). Enhanced expression of MPS-1 dramatically inhibited CAG in vitro and in vivo. RESULTS Overexpression of MPS-1 resulted in decreased fibroblast growth factor (FGF2) receptor 3 and impaired endogenous MAPK/ErK signaling. MAPK/ErK signaling was not stimulated by adding recombinant FGF2 to myeloma cells overexpressing MPS-1. CONCLUSIONS These data suggest that MPS-1 suppresses CAG growth and that weakened FGF2 signaling may contribute to this effect.
Collapse
Affiliation(s)
- Yuemeng Dai
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Miyamoto K, Pasque V, Jullien J, Gurdon JB. Nuclear actin polymerization is required for transcriptional reprogramming of Oct4 by oocytes. Genes Dev 2011; 25:946-58. [PMID: 21536734 DOI: 10.1101/gad.615211] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amphibian oocytes can rapidly and efficiently reprogram the transcription of transplanted somatic nuclei. To explore the factors and mechanisms involved, we focused on nuclear actin, an especially abundant component of the oocyte's nucleus (the germinal vesicle). The existence and significance of nuclear actin has long been debated. Here, we found that nuclear actin polymerization plays an essential part in the transcriptional reactivation of the pluripotency gene Oct4 (also known as Pou5f1). We also found that an actin signaling protein, Toca-1, enhances Oct4 reactivation by regulating nuclear actin polymerization. Toca-1 overexpression has an effect on the chromatin state of transplanted nuclei, including the enhanced binding of nuclear actin to gene regulatory regions. This is the first report showing that naturally stored actin in an oocyte nucleus helps transcriptional reprogramming in a polymerization-dependent manner.
Collapse
Affiliation(s)
- Kei Miyamoto
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | | | | | | |
Collapse
|
107
|
Meyer AJ, Almendrala DK, Go MM, Krauss SW. Structural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome-nucleus association and transcriptional signaling. J Cell Sci 2011; 124:1433-44. [PMID: 21486941 DOI: 10.1242/jcs.077883] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The multifunctional structural protein 4.1R is required for assembly and maintenance of functional nuclei but its nuclear roles are unidentified. 4.1R localizes within nuclei, at the nuclear envelope, and in cytoplasm. Here we show that 4.1R, the nuclear envelope protein emerin and the intermediate filament protein lamin A/C co-immunoprecipitate, and that 4.1R-specific depletion in human cells by RNA interference produces nuclear dysmorphology and selective mislocalization of proteins from several nuclear subcompartments. Such 4.1R-deficiency causes emerin to partially redistribute into the cytoplasm, whereas lamin A/C is disorganized at nuclear rims and displaced from nucleoplasmic foci. The nuclear envelope protein MAN1, nuclear pore proteins Tpr and Nup62, and nucleoplasmic proteins NuMA and LAP2α also have aberrant distributions, but lamin B and LAP2β have normal localizations. 4.1R-deficient mouse embryonic fibroblasts show a similar phenotype. We determined the functional effects of 4.1R-deficiency that reflect disruption of the association of 4.1R with emerin and A-type lamin: increased nucleus-centrosome distances, increased β-catenin signaling, and relocalization of β-catenin from the plasma membrane to the nucleus. Furthermore, emerin- and lamin-A/C-null cells have decreased nuclear 4.1R. Our data provide evidence that 4.1R has important functional interactions with emerin and A-type lamin that impact upon nuclear architecture, centrosome-nuclear envelope association and the regulation of β-catenin transcriptional co-activator activity that is dependent on β-catenin nuclear export.
Collapse
Affiliation(s)
- Adam J Meyer
- Department of Genome Dynamics, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
108
|
Qi T, Tang W, Wang L, Zhai L, Guo L, Zeng X. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). J Biol Chem 2011; 286:15171-81. [PMID: 21378166 DOI: 10.1074/jbc.m110.184374] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin is a key regulator of RNA polymerase (Pol) II-dependent transcription. Positive transcription elongation factor b (P-TEFb), a Cdk9/cyclin T1 heterodimer, has been reported to play a critical role in transcription elongation. However, the relationship between actin and P-TEFb is still not clear. In this study, actin was found to interact with Cdk9, a catalytic subunit of P-TEFb, in elongation complexes. Using immunofluorescence and immunoprecipitation assays, Cdk9 was found to bind to G-actin through the conserved Thr-186 in the T-loop. Overexpression and in vitro kinase assays showed that G-actin promotes P-TEFb-dependent phosphorylation of the Pol II C-terminal domain. An in vitro transcription experiment revealed that the interaction between G-actin and Cdk9 stimulated Pol II transcription elongation. ChIP and immobilized template assays indicated that actin recruited Cdk9 to a transcriptional template in vivo and in vitro. Using cytokine IL-6-inducible p21 gene expression system, we revealed that actin recruited Cdk9 to endogenous gene. Moreover, overexpression of actin and Cdk9 increased histone H3 acetylation and acetylized histone H3 binding to a transcriptional template through the interaction with histone acetyltransferase, p300. Taken together, our results suggested that actin participates in transcription elongation by recruiting Cdk9 for phosphorylation of the Pol II C-terminal domain, and the actin-Cdk9 interaction promotes chromatin remodeling.
Collapse
Affiliation(s)
- Tianyang Qi
- Key Laboratory of Molecular Epigenetics of MOE and the Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
Epigenetic control mechanisms play a key role in the regulation of embryonic development and tissue homeostasis and modulate cardiovascular diseases. Increasing evidence suggests that lineage commitment of stem/progenitor cells is tightly regulated by epigenetic mechanisms. These epigenetic control mechanisms include DNA and histone modifications, which modulate the chromatin structure thereby regulating access of transcription factors. Particularly, the modification of histone acetylation and methylation, which is controlled by families of histone acetylases/deacetylases and methyltransferases/demethylases, respectively, controls stem cell maintenance, differentiation, and function. This review article summarizes our current understanding of epigenetic mechanisms regulating the differentiation of cardiovascular cells, specifically endothelial cells and cardiac muscle lineages. In particular, the article will focus on the enzymes which modify histones and are involved in chromatin remodelling.
Collapse
Affiliation(s)
- Kisho Ohtani
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | |
Collapse
|
110
|
Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 2011; 21:396-420. [PMID: 21358755 DOI: 10.1038/cr.2011.32] [Citation(s) in RCA: 641] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macromolecular assemblies that regulate chromatin structure using the energy of ATP hydrolysis have critical roles in development, cancer, and stem cell biology. The ATPases of this family are encoded by 27 human genes and are usually associated with several other proteins that are stable, non-exchangeable subunits. One fundamental mechanism used by these complexes is thought to be the movement or exchange of nucleosomes to regulate transcription. However, recent genetic studies indicate that chromatin remodelers may also be involved in regulating other aspects of chromatin structure during many cellular processes. The SWI/SNF family in particular appears to have undergone a substantial change in subunit composition and mechanism coincident with the evolutionary advent of multicellularity and the appearance of linking histones. The differential usage of this greater diversity of mammalian BAF subunits is essential for the development of specific cell fates, including the progression from pluripotency to multipotency to committed neurons. Recent human genetic screens have revealed that BRG1, ARID1A, BAF155, and hSNF5 are frequently mutated in tumors, indicating that BAF complexes also play a critical role in the initiation or progression of cancer. The mechanistic bases underlying the genetic requirements for BAF and other chromatin remodelers in development and cancer are relatively unexplored and will be a focus of this review.
Collapse
Affiliation(s)
- Diana C Hargreaves
- Howard Hughes Medical Institute, Beckman Center B211, 279 Campus Drive, Mailcode 5323, Stanford University School of Medicine, Stanford, CA 94305-5323, USA
| | | |
Collapse
|
111
|
Qiu P, Wheater MK, Qiu Y, Sosne G. Thymosin beta4 inhibits TNF-alpha-induced NF-kappaB activation, IL-8 expression, and the sensitizing effects by its partners PINCH-1 and ILK. FASEB J 2011; 25:1815-26. [PMID: 21343177 DOI: 10.1096/fj.10-167940] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanisms by which thymosin β 4 (Tβ(4)) regulates the inflammatory response to injury are poorly understood. Previously, we demonstrated that ectopic Tβ(4) treatment inhibits injury-induced proinflammatory cytokine and chemokine production. We have also shown that Tβ(4) suppresses TNF-α-mediated NF-κB activation. Herein, we present novel evidence that Tβ(4) directly targets the NF-κB RelA/p65 subunit. We find that enforced expression of Tβ(4) interferes with TNF-α-mediated NF-κB activation, as well as downstream IL-8 gene transcription. These activities are independent of the G-actin-binding properties of Tβ(4). Tβ(4) blocks RelA/p65 nuclear translocation and targeting to the cognate κB site in the proximal region of the IL-8 gene promoter. Tβ(4) also inhibits the sensitizing effects of its intracellular binding partners, PINCH-1 and ILK, on NF-κB activity after TNF-α stimulation. The identification of a functional regulatory role by Tβ(4) and the focal adhesion proteins PINCH-1 and ILK on NF-κB activity in this study opens a new window for scientific exploration of how Tβ(4) modulates inflammation. In addition, the results of this study serve as a foundation for developing Tβ(4) as a new anti-inflammatory therapy.
Collapse
Affiliation(s)
- Ping Qiu
- Department of Ophthalmology, Kresge Eye Institute, Detroit, Michigan, USA
| | | | | | | |
Collapse
|
112
|
Grzanka D, Marszałek A, Izdebska M, Gackowska L, Andrzej Szczepanski M, Grzanka A. Actin Cytoskeleton Reorganization Correlates with Cofilin Nuclear Expression and Ultrastructural Changes in CHO AA8 Cell Line after Apoptosis and Mitotic Catastrophe Induction by Doxorubicin. Ultrastruct Pathol 2011; 35:130-8. [DOI: 10.3109/01913123.2010.548113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
113
|
Xu YZ, Thuraisingam T, Marino R, Radzioch D. Recruitment of SWI/SNF complex is required for transcriptional activation of the SLC11A1 gene during macrophage differentiation of HL-60 cells. J Biol Chem 2011; 286:12839-49. [PMID: 21300803 DOI: 10.1074/jbc.m110.185637] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The solute carrier family 11 member 1 (SLC11A1) gene is strictly regulated and exclusively expressed in myeloid lineage cells. However, little is known about the transcriptional regulation of the SLC11A1 gene during myeloid development. In this study, we used HL-60 cells as a model to investigate the regulatory elements/factors involved in the transactivation of the SLC11A1 gene during phorbol 12-myristate 13-acetate (PMA)-induced macrophage differentiation of HL-60 cells. Promoter deletion analysis showed that a 7-base AP-1-like element (TGACTCT) was critical for the responsiveness of the SLC11A1 promoter to PMA. Stimulation by PMA induced the binding of ATF-3 and the recruitment of two components of the SWI/SNF complex, BRG1 and β-actin, to this element in an ATF-3-dependent manner. RNAi-mediated depletion of ATF-3 or BRG1 markedly decreased SLC11A1 gene expression and its promoter activity induced by PMA. Luciferase reporter experiments demonstrated that ATF-3 cooperated with BRG1 and β-actin to activate the SLC11A1 promoter. Furthermore, we showed that PMA can induce the proximal (GT/AC)(n) repeat sequence to convert to the Z-DNA structure in the SLC11A1 gene promoter, and depletion of BRG1 resulted in a significant decrease of Z-DNA formation. Our results demonstrated that recruitment of the SWI/SNF complex initiated Z-DNA formation and subsequently helped to transactivate the SLC11A1 gene.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Division of Experimental Medicine, Department of Medicine, Montreal General Hospital Research Institute, McGill University, Montreal, Quebec H3G 1A4, Canada
| | | | | | | |
Collapse
|
114
|
The Long Journey: Actin on the Road to Pro- and Eukaryotic Cells. Rev Physiol Biochem Pharmacol 2011; 161:67-85. [DOI: 10.1007/112_2011_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
115
|
Lavallée-Adam M, Cloutier P, Coulombe B, Blanchette M. Modeling contaminants in AP-MS/MS experiments. J Proteome Res 2010; 10:886-95. [PMID: 21117706 DOI: 10.1021/pr100795z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Identification of protein-protein interactions (PPI) by affinity purification (AP) coupled with tandem mass spectrometry (AP-MS/MS) produces large data sets with high rates of false positives. This is in part because of contamination at the AP level (due to gel contamination, nonspecific binding to the TAP columns in the context of tandem affinity purification, insufficient purification, etc.). In this paper, we introduce a Bayesian approach to identify false-positive PPIs involving contaminants in AP-MS/MS experiments. Specifically, we propose a confidence assessment algorithm (called Decontaminator) that builds a model of contaminants using a small number of representative control experiments. It then uses this model to determine whether the Mascot score of a putative prey is significantly larger than what was observed in control experiments and assigns it a p-value and a false discovery rate. We show that our method identifies contaminants better than previously used approaches and results in a set of PPIs with a larger overlap with databases of known PPIs. Our approach will thus allow improved accuracy in PPI identification while reducing the number of control experiments required.
Collapse
Affiliation(s)
- Mathieu Lavallée-Adam
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Canada
| | | | | | | |
Collapse
|
116
|
Nikolova-Krstevski V, Leimena C, Xiao XH, Kesteven S, Tan JC, Yeo LS, Yu ZY, Zhang Q, Carlton A, Head S, Shanahan C, Feneley MP, Fatkin D. Nesprin-1 and actin contribute to nuclear and cytoskeletal defects in lamin A/C-deficient cardiomyopathy. J Mol Cell Cardiol 2010; 50:479-86. [PMID: 21156181 DOI: 10.1016/j.yjmcc.2010.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
Lamin A/C mutations are the most common cause of familial dilated cardiomyopathy (DCM) but the pathogenetic mechanisms are incompletely understood. Nesprins are spectrin repeat-containing proteins that interact with lamin A/C and are components of the linker-of-nucleoskeleton-and-cytoskeleton (LINC) complex that connects the nuclear envelope to the actin cytoskeleton. Our aim was to determine whether changes in nesprin-1 and actin might contribute to DCM in homozygous Lmna knockout (Lmna(-/-)) mice. Here we find that Lmna(-/-) cardiomyocytes have altered nuclear envelope morphology, disorganization of nesprin-1 and heterogeneity in the distribution of nuclear and cytoskeletal actin. Functional interactions of nesprin-1 with nuclear G-actin and with the cytoskeletal γ-actin, α-cardiac actin and α-smooth muscle actin (α-SMA) isoforms were shown by immunoprecipitation and Western blotting. At 4-6 weeks of age, Lmna(-/-) mice had normal levels of γ-actin and α-cardiac actin, but α-SMA expression was increased by 50%. In contrast to the predominant vascular distribution of α-SMA in WT ventricular sections, α-SMA had a diffuse staining pattern in Lmna(-/-) sections. Osmotic swelling studies showed enhanced radial swelling in Lmna(-/-) cardiomyocytes indicative of cytoskeletal instability. The distensibility of Lmna(-/-) cardiomyocytes with osmotic stress was reduced by addition of α-SMA-specific fusion peptide. Our findings support a model in which uncoupling of the nucleus and cytoskeleton associated with disruption of the LINC complex promotes mechanical instability and defective force transmission in cardiomyocytes. Changes in the distribution and expression patterns of nuclear and cytoskeletal actin suggest that diverse transcriptional and structural defects may also contribute to DCM in Lmna(-/-) mice.
Collapse
Affiliation(s)
- Vesna Nikolova-Krstevski
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive immunodeficiency disorder of childhood that is caused by mutations in the WAS gene. WAS encodes WASp, a protein that is known to function in the cytoplasm of hematopoietic cells and is required for the induced differentiation of CD4+ T helper type 1 (TH1) lymphocytes. Now, a paper in Science Translational Medicine describes another mechanism for impaired immunity in WAS by showing that WASp localizes in the nucleus and regulates histone modifications and chromatin structure, thereby modulating expression of the TH1 master gene TBX21 (TBET).
Collapse
Affiliation(s)
- Michael A Teitell
- Department of Pathology, and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
118
|
Taylor MD, Sadhukhan S, Kottangada P, Ramgopal A, Sarkar K, D'Silva S, Selvakumar A, Candotti F, Vyas YM. Nuclear role of WASp in the pathogenesis of dysregulated TH1 immunity in human Wiskott-Aldrich syndrome. Sci Transl Med 2010; 2:37ra44. [PMID: 20574068 DOI: 10.1126/scitranslmed.3000813] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The clinical symptomatology in the X-linked Wiskott-Aldrich syndrome (WAS), a combined immunodeficiency and autoimmune disease resulting from WAS protein (WASp) deficiency, reflects the underlying coexistence of an impaired T helper 1 (TH1) immunity alongside intact TH2 immunity. This suggests a role for WASp in patterning T(H) subtype immunity, yet the molecular basis for the TH1-TH2 imbalance in human WAS is unknown. We have discovered a nuclear role for WASp in the transcriptional regulation of the TH1 regulator gene TBX21 at the chromatin level. In primary TH1-differentiating cells, a fraction of WASp is found in the nucleus, where it is recruited to the proximal promoter locus of the TBX21 gene, but not to the core promoter of GATA3 (a TH2 regulator gene) or RORc (a TH17 regulator gene). Genome-wide mapping demonstrates association of WASp in vivo with the gene-regulatory network that orchestrates TH1 cell fate choice in the human TH cell genome. Functionally, nuclear WASp associates with H3K4 trimethyltransferase [RBBP5 (retinoblastoma-binding protein 5)] and H3K9/H3K36 tridemethylase [JMJD2A (Jumonji domain-containing protein 2A)] proteins, and their enzymatic activity in vitro and in vivo is required for achieving transcription-permissive chromatin dynamics at the TBX21 proximal promoter in primary differentiating TH1 cells. During TH1 differentiation, the loss of WASp accompanies decreased enrichment of RBBP5 and, in a subset of WAS patients, also of filamentous actin at the TBX21 proximal promoter locus. Accordingly, human WASp-deficient TH cells, from natural mutation or RNA interference-mediated depletion, demonstrate repressed TBX21 promoter dynamics when driven under TH1-differentiating conditions. These chromatin derangements accompany deficient T-BET messenger RNA and protein expression and impaired TH1 function, defects that are ameliorated by reintroducing WASp. Our findings reveal a previously unappreciated role of WASp in the epigenetic control of T-BET transcription and provide a new mechanism for the pathogenesis of WAS by linking aberrant histone methylation at the TBX21 promoter to dysregulated adaptive immunity.
Collapse
Affiliation(s)
- Matthew D Taylor
- Division of Pediatric Hematology-Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Lin WS, Lu KM, Chung MH, Liu ST, Chen HH, Chang YL, Wang WM, Huang SM. The subcellular localization and protein stability of mouse alpha-actinin 2 is controlled by its nuclear receptor binding motif in C2C12 cells. Int J Biochem Cell Biol 2010; 42:2082-91. [DOI: 10.1016/j.biocel.2010.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 09/09/2010] [Accepted: 09/30/2010] [Indexed: 01/10/2023]
|
120
|
Sun X, Kovacs T, Hu YJ, Yang WX. The role of actin and myosin during spermatogenesis. Mol Biol Rep 2010; 38:3993-4001. [DOI: 10.1007/s11033-010-0517-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 11/13/2010] [Indexed: 01/08/2023]
|
121
|
Khurana S, Chakraborty S, Cheng X, Su YT, Kao HY. The actin-binding protein, actinin alpha 4 (ACTN4), is a nuclear receptor coactivator that promotes proliferation of MCF-7 breast cancer cells. J Biol Chem 2010; 286:1850-9. [PMID: 21078666 DOI: 10.1074/jbc.m110.162107] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha actinins (ACTNs) are known for their ability to modulate cytoskeletal organization and cell motility by cross-linking actin filaments. We show here that ACTN4 harbors a functional LXXLL receptor interaction motif, interacts with nuclear receptors in vitro and in mammalian cells, and potently activates transcription mediated by nuclear receptors. Whereas overexpression of ACTN4 potentiates estrogen receptor α (ERα)-mediated transcription in transient transfection reporter assays, knockdown of ACTN4 decreases it. In contrast, histone deacetylase 7 (HDAC7) inhibits estrogen receptor α (ERα)-mediated transcription. Moreover, the ACTN4 mutant lacking the CaM (calmodulin)-like domain that is required for its interaction with HDAC7 fails to activate transcription by ERα. Chromatin immunoprecipitation (ChIP) assays demonstrate that maximal associations of ACTN4 and HDAC7 with the pS2 promoter are mutually exclusive. Knockdown of ACTN4 significantly decreases the expression of ERα target genes including pS2 and PR and also affects cell proliferation of MCF-7 breast cancer cells with or without hormone, whereas knockdown of HDAC7 exhibits opposite effects. Interestingly, overexpression of wild-type ACTN4, but not the mutants defective in interacting with ERα or HDAC7, results in an increase in pS2 and PR mRNA accumulation in a hormone-dependent manner. In summary, we have identified ACTN4 as a novel, atypical coactivator that regulates transcription networks to control cell growth.
Collapse
Affiliation(s)
- Simran Khurana
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
122
|
Doxorubicin-induced F-actin reorganization in cofilin-1 (nonmuscle) down-regulated CHO AA8 cells. Folia Histochem Cytobiol 2010; 48:377-86. [DOI: 10.2478/v10042-010-0072-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
123
|
Abstract
The traditional view of cellular actin is a rather autarkic cytoskeletal framework function confined to the cytoplasm. However, there is now evidence that alterations in actin dynamics are sensed by the nucleus and subsequently modulate gene expression. In communicating with the nucleus, cytoplasmic, and most likely also nucleus-resident actin, provides a further (gene) regulatory loop to cell motility. A transcription module composed of MRTF (myocardin-related transcription factor) and SRF (serum response factor) emerges as prime target of such actin signaling. Here, I focus on the nervous system, where the actin-MRTF-SRF entity governs multiple aspects of neuronal motility.
Collapse
Affiliation(s)
- Bernd Knöll
- Interfaculty Institute for Cell Biology, Department of Molecular Biology, Neuronal Gene Expression Laboratory, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany.
| |
Collapse
|
124
|
Mattagajasingh SN, Huang SC, Benz EJ. Inhibition of protein 4.1 R and NuMA interaction by mutagenization of their binding-sites abrogates nuclear localization of 4.1 R. Clin Transl Sci 2010; 2:102-11. [PMID: 20443879 DOI: 10.1111/j.1752-8062.2008.00087.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein 4.1R(4.1R) is a multifunctional structural protein recently implicated in nuclear assembly and cell division. We earlier demonstrated that 4.1R forms a multiprotein complex with mitotic spindle and spindle pole organizing proteins, such as NuMA, dynein, and dynactin, by binding to residues 1788-1810 of NuMA through amino acids encoded by exons 20 and 21 in 24 kD domain. Employing random-and site-directed mutagenesis combined with glycine- and alanine-scanning, we have identified amino acids of 4.1 R and NuMA that sustain their interaction, and have analyzed the effect of mutating the binding sites on their intracellular colocalization. We found that V762, V765, and V767 of 4.1 R, and 11800, 11801,11803, Tl 804, and M1805 of NuMA are necessary for their interaction. GST-fusion peptides of the 4.1R24 kD domain bound to residues 1785-2115 of NuMA in in vitro binding assays, but the binding was inhibited by alanine substitutions of V762, V765, and V767 of 4.1 R, or residues 1800-1805 of NuMA. Additionally, expression of variants of 4.1 R or NuMA that inhibit their in vitro binding also abrogated nuclear localization of 4.1 Rand colocalization with NuMA. Our findings suggest a crucial role of 4.1 R/NuMA interaction in localization and function of 4.1 R in the nucleus.
Collapse
|
125
|
Abstract
Atomic force microscopy (AFM) can directly visualize single molecules in solution, which makes it an extremely powerful technique for carrying out studies of biological complexes and the processes in which they are involved. A recent development, called Recognition Imaging, allows the identification of a specific type of protein in solution AFM images, a capability that greatly enhances the power of the AFM approach for studies of complex biological materials. In this technique, an antibody against the protein of interest is attached to an AFM tip. Scanning a sample with this tip generates a typical topographic image simultaneously and in exact spatial registration with a "recognition image." The latter identifies the locations of antibody-antigen binding events and thus the locations of the protein of interest in the image field. The recognition image can be electronically superimposed on the topographic image, providing a very accurate map of specific protein locations in the topographic image. This technique has been mainly used in in vitro studies of biological complexes and reconstituted chromatin, but has great potential for studying chromatin and protein complexes isolated from nuclei.
Collapse
|
126
|
Campos-Parra A, Hernández-Cuevas N, Hernandez-Rivas R, Vargas M. EhNCABP166: A nucleocytoplasmic actin-binding protein from Entamoeba histolytica. Mol Biochem Parasitol 2010; 172:19-30. [DOI: 10.1016/j.molbiopara.2010.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 01/06/2023]
|
127
|
Kim J, Kim J, Kim DW, Ha Y, Ihm MH, Kim H, Song K, Lee I. Wnt5a Induces Endothelial Inflammation via β-Catenin–Independent Signaling. THE JOURNAL OF IMMUNOLOGY 2010; 185:1274-82. [DOI: 10.4049/jimmunol.1000181] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
128
|
Kallappagoudar S, Varma P, Pathak RU, Senthilkumar R, Mishra RK. Nuclear matrix proteome analysis of Drosophila melanogaster. Mol Cell Proteomics 2010; 9:2005-18. [PMID: 20530634 DOI: 10.1074/mcp.m110.001362] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nucleus is a highly structured organelle and contains many functional compartments. Although the structural basis for this complex spatial organization of compartments is unknown, a major component of this organization is likely to be the non-chromatin scaffolding called nuclear matrix (NuMat). Experimental evidence over the past decades indicates that most of the nuclear functions are at least transiently associated with the NuMat, although the components of NuMat itself are poorly known. Here, we report NuMat proteome analysis from Drosophila melanogaster embryos and discuss its links with nuclear architecture and functions. In the NuMat proteome, we found structural proteins, chaperones, DNA/RNA-binding proteins, chromatin remodeling and transcription factors. This complexity of NuMat proteome is an indicator of its structural and functional significance. Comparison of the two-dimensional profile of NuMat proteome from different developmental stages of Drosophila embryos showed that less than half of the NuMat proteome is constant, and the rest of the proteins are stage-specific dynamic components. These NuMat dynamics suggest a possible functional link between NuMat and embryonic development. Finally, we also showed that a subset of NuMat proteins remains associated with the mitotic chromosomes, implicating their role in mitosis and possibly the epigenetic cellular memory. NuMat proteome analysis provides tools and opens up ways to understand nuclear organization and function.
Collapse
Affiliation(s)
- Satish Kallappagoudar
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | | | | | |
Collapse
|
129
|
A fluorophore ligase for site-specific protein labeling inside living cells. Proc Natl Acad Sci U S A 2010; 107:10914-9. [PMID: 20534555 DOI: 10.1073/pnas.0914067107] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Biological microscopy would benefit from smaller alternatives to green fluorescent protein for imaging specific proteins in living cells. Here we introduce PRIME (PRobe Incorporation Mediated by Enzymes), a method for fluorescent labeling of peptide-fused recombinant proteins in living cells with high specificity. PRIME uses an engineered fluorophore ligase, which is derived from the natural Escherichia coli enzyme lipoic acid ligase (LplA). Through structure-guided mutagenesis, we created a mutant ligase capable of recognizing a 7-hydroxycoumarin substrate and catalyzing its covalent conjugation to a transposable 13-amino acid peptide called LAP (LplA Acceptor Peptide). We showed that this fluorophore ligation occurs in cells in 10 min and that it is highly specific for LAP fusion proteins over all endogenous mammalian proteins. By genetically targeting the PRIME ligase to specific subcellular compartments, we were able to selectively label spatially distinct subsets of proteins, such as the surface pool of neurexin and the nuclear pool of actin.
Collapse
|
130
|
Effect of arsenic trioxide (Trisenox) on actin organization in K-562 erythroleukemia cells. Folia Histochem Cytobiol 2010; 47:453-9. [PMID: 20164031 DOI: 10.2478/v10042-009-0080-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin is one of the cytoskeletal proteins that take part in many cellular processes. The aim of this study was to show the influence of Trisenox (arsenic trioxide), on the cytoplasmic and nuclear F-actin organization. Arsenic trioxide is the proapoptotic factor. Together with increasing doses, it caused the increase in the number of cells undergoing apoptosis. Under arsenic trioxide treatment, cytoplasmic and nuclear F-actin (polymerized form of G-actin) was found reorganized. It was transformed into granulated structures. In cytometer studies fluorescence intensity of cytoplasmic F-actin after ATO treatment decreasing urgently in comparison to control. The obtained results may suggest the involvement of F-actin in apoptosis, especially in chromatin reorganization.
Collapse
|
131
|
Gordon JL, Buguliskis JS, Buske PJ, Sibley LD. Actin-like protein 1 (ALP1) is a component of dynamic, high molecular weight complexes in Toxoplasma gondii. ACTA ACUST UNITED AC 2010; 67:23-31. [PMID: 19701930 DOI: 10.1002/cm.20414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apicomplexan parasites, such as Toxoplasma gondii, rely on actin-based motility for cell invasion, yet conventional actin does not appear to be required for cell division in these parasites. Apicomplexans also contain a variety of actin-related proteins (Arps); however, most of these not directly orthologous to Arps in well-studied systems. We recently identified an apicomplexan-specific member of this family called Actin-Like Protein 1, (ALP1), which plays a role in the assembly of vesicular components recruited to the inner membrane complex (IMC) of daughter cells during cell division. In addition to its enrichment at daughter cell membranes, ALP1 is localized throughout the cytoplasm both diffusely distributed and concentrated in clusters that are detected by fluorescence microscopy, suggesting it forms complexes. Using quantitative optical imaging methods, including fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP), we demonstrated that ALP1 is a component of a large complex, and that it readily exchanges between diffusible and complex-bound forms. Sedimentation and density gradient analyses revealed that ALP1 is found in a freely soluble state as well as high molecular weight complexes. During cell division, ALP1 was dynamically associated with the IMC, suggesting it rapidly cycles between freely diffusible and complex forms during daughter cell assembly.
Collapse
Affiliation(s)
- Jennifer L Gordon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
132
|
Litwiniec A, Grzanka A, Helmin-Basa A, Gackowska L, Grzanka D. Features of senescence and cell death induced by doxorubicin in A549 cells: organization and level of selected cytoskeletal proteins. J Cancer Res Clin Oncol 2010; 136:717-36. [PMID: 19898866 DOI: 10.1007/s00432-009-0711-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 10/19/2009] [Indexed: 01/15/2023]
Abstract
PURPOSE Senescence and cell death are fail-safe mechanisms protecting against tumorigenesis. Both these forms of cellular response could be induced in cancer cells, thus suppressing tumor progression. Therefore, to fully understand chemotherapeutic effects, not only symptoms of cell death, but also of senescence should be evaluated. Since the involvement of cytoskeleton components in these processes has been reported, changes in the organization and level of some cytoskeletal proteins may be indicative of cell fate. METHODS We analyzed selected markers of senescence and cell death, including possible alterations in vimentin and G-actin cytoskeleton in A549 cells after treatment with doxorubicin. Light (SA-beta-galactosidase), fluorescent (vimentin and G-actin labeling) and electron microscopic examinations along with flow cytometry methods (TUNEL, Annexin V/PI staining, cell cycle analysis, intracellular level of vimentin) were employed to determine the outcome of the treatment. RESULTS Uncoupling between senescent cell morphology and stable cell cycle arrest occurred. Some differences in the organization and level of cytoskeletal proteins, especially of vimentin, like fluctuations in its level, were observed. On the other hand, G-actin seemed to be more stable than vimentin. CONCLUSIONS G-actin stability may imply its potential usefulness for permanent senescence detection. Along with slight to moderate cytoskeletal alterations, the obtained results suggest transient senescence-like state induction, followed by morphology typical of mitotic catastrophe in part of the A549 cells.
Collapse
Affiliation(s)
- Anna Litwiniec
- Department of Histology and Embryology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland.
| | | | | | | | | |
Collapse
|
133
|
Abstract
Actin participates in several essential processes in the cell nucleus. Even though the presence of actin in the nucleus was proposed more than 30 years ago, nuclear processes that require actin have been only recently identified. Actin is part of chromatin remodeling complexes; it is associated with the transcription machineries; it becomes incorporated into newly synthesized ribonucleoproteins; and it influences long-range chromatin organization. As in the cytoplasm, nuclear actin works in conjunction with different types of actin-binding proteins that regulate actin function and bridge interactions between actin and other nuclear components.
Collapse
|
134
|
Expression and Distribution of Thymosin-β4 in Mouse Oocytes and Early Embryos. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
135
|
Kapoor P, Kumar A, Naik R, Ganguli M, Siddiqi MI, Sahasrabuddhe AA, Gupta CM. Leishmania actin binds and nicks kDNA as well as inhibits decatenation activity of type II topoisomerase. Nucleic Acids Res 2010; 38:3308-17. [PMID: 20147461 PMCID: PMC2879525 DOI: 10.1093/nar/gkq051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leishmania actin (LdACT) is an unconventional form of eukaryotic actin in that it markedly differs from other actins in terms of its filament forming as well as toxin and DNase-1-binding properties. Besides being present in the cytoplasm, cortical regions, flagellum and nucleus, it is also present in the kinetoplast where it appears to associate with the kinetoplast DNA (kDNA). However, nothing is known about its role in this organelle. Here, we show that LdACT is indeed associated with the kDNA disc in Leishmania kinetoplast, and under in vitro conditions, it specifically binds DNA primarily through electrostatic interactions involving its unique DNase-1-binding region and the DNA major groove. We further reveal that this protein exhibits DNA-nicking activity which requires its polymeric state as well as ATP hydrolysis and through this activity it converts catenated kDNA minicircles into open form. In addition, we show that LdACT specifically binds bacterial type II topoisomerase and inhibits its decatenation activity. Together, these results strongly indicate that LdACT could play a critical role in kDNA remodeling.
Collapse
Affiliation(s)
- Prabodh Kapoor
- Division of Molecular and Structural Biology, Central Drug Research Institute, Chattar Manzil Palace, CSIR, Lucknow 226001, India
| | | | | | | | | | | | | |
Collapse
|
136
|
Lorès P, Visvikis O, Luna R, Lemichez E, Gacon G. The SWI/SNF protein BAF60b is ubiquitinated through a signalling process involving Rac GTPase and the RING finger protein Unkempt. FEBS J 2010; 277:1453-64. [PMID: 20148946 DOI: 10.1111/j.1742-4658.2010.07575.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The SWI/SNF chromatin remodelling complexes are important regulators of transcription; they consist of large multisubunit assemblies containing either Brm or Brg1 as the catalytic ATPase subunit and a variable subset of approximately 10 Brg/Brm-associated factors (BAF). Among these factors, BAF60 proteins (BAF60a, BAF60b or BAF60c), which are found in most complexes, are thought to bridge interactions between transcription factors and SWI/SNF complexes. We report here on a Rac-dependent process leading to BAF60b ubiquitination. Using two-hybrid cloning procedures, we identified a mammalian RING finger protein homologous to drosophila Unkempt as a new partner of the activated form of RacGTPases and demonstrated that mammalian Unkempt specifically binds to BAF60b and promotes its ubiquitination in a Rac1-dependent manner. Immunofluorescence studies demonstrated that Unkempt is primarily localized in the cytoplasmic compartment, but has the ability to shuttle between the nucleus and the cytoplasm, suggesting that the Rac- and Unkempt-dependent process leading to BAF60b ubiquitination takes place in the nuclear compartment. Ubiquitinated forms of BAF60b were found to accumulate upon treatment with the proteasome inhibitor MG132, indicating that BAF60b ubiquitination is of the degradative type and could regulate the level of BAF60b in SWI/SNF complexes. Our observations support the new idea of a direct connection between Rac signalling and chromatin remodelling.
Collapse
Affiliation(s)
- Patrick Lorès
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
| | | | | | | | | |
Collapse
|
137
|
Lindsay AJ, McCaffrey MW. Myosin Vb localises to nucleoli and associates with the RNA polymerase I transcription complex. ACTA ACUST UNITED AC 2010; 66:1057-72. [PMID: 19610025 DOI: 10.1002/cm.20408] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It is becoming increasingly clear that the mammalian class V myosins are involved in a wide range of cellular processes such as receptor trafficking, mRNA transport, myelination in oligodendrocytes and cell division. Using paralog-specific antibodies, we observed significant nuclear localisation for both myosin Va and myosin Vb. Myosin Vb was present in nucleoli where it co-localises with RNA polymerase I, and newly synthesised ribosomal RNA (rRNA), indicating that it may play a role in transcription. Indeed, its nucleolar pattern was altered upon treatment with RNA polymerase I inhibitors. In contrast, myosin Va is largely excluded from nucleoli and is unaffected by these inhibitors. Myosin Vb was also found to physically associate with RNA polymerase I and actin in co-immunoprecipitation experiments. We propose that myosin Vb serves a role in rRNA transcription.
Collapse
Affiliation(s)
- Andrew J Lindsay
- Molecular Cell Biology Laboratory, Department of Biochemistry, Biosciences Institute, University College Cork, Cork, Ireland
| | | |
Collapse
|
138
|
Xu YZ, Thuraisingam T, Morais DADL, Rola-Pleszczynski M, Radzioch D. Nuclear translocation of beta-actin is involved in transcriptional regulation during macrophage differentiation of HL-60 cells. Mol Biol Cell 2010; 21:811-20. [PMID: 20053683 PMCID: PMC2828967 DOI: 10.1091/mbc.e09-06-0534] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The functional significance of nuclear translocation of β-actin remains unclear. Here, we demonstrate that PMA induces β-actin accumulation in the nucleus and binding to various target genes with different functions. We also find that accumulated nuclear β-actin is involved in recruitment of RNA polymerase II and in transcription regulation. Studies have shown that nuclear translocation of actin occurs under certain conditions of cellular stress; however, the functional significance of actin import remains unclear. Here, we demonstrate that during the phorbol 12-myristate 13-acetate (PMA)-induced differentiation of HL-60 cells toward macrophages, β-actin translocates from the cytoplasm to the nucleus and that this process is dramatically inhibited by pretreatment with p38 mitogen-activated protein kinase inhibitors. Using chromatin immunoprecipitation-on-chip assays, the genome-wide maps of β-actin binding to gene promoters in response to PMA treatment is analyzed in HL-60 cells. A gene ontology-based analysis shows that the identified genes belong to a broad spectrum of functional categories such as cell growth and differentiation, signal transduction, response to external stimulus, ion channel activity, and immune response. We also demonstrate a correlation between β-actin occupancy and the recruitment of RNA polymerase II at six selected target genes, and β-actin knockdown decreases the mRNA expression levels of these target genes induced by PMA. We further show that nuclear β-actin is required for PMA-induced transactivation of one target gene, solute carrier family 11 member 1, which is important for macrophage activation. Our data provide novel evidence that nuclear accumulation of β-actin is involved in transcriptional regulation during macrophage-like differentiation of HL-60 cells.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Department of Medicine and Human Genetics and Department of Biology, Bioinformatics Centre, McGill University, McGill University Health Centre, Montreal General Hospital Research Institute, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
139
|
Zhong Z, Wilson KL, Dahl KN. Beyond lamins other structural components of the nucleoskeleton. Methods Cell Biol 2010; 98:97-119. [PMID: 20816232 DOI: 10.1016/s0091-679x(10)98005-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The nucleus is bordered by a double bilayer nuclear envelope, communicates with the cytoplasm via embedded nuclear pore complexes, and is structurally supported by an underlying nucleoskeleton. The nucleoskeleton includes nuclear intermediate filaments formed by lamin proteins, which provide major structural and mechanical support to the nucleus. However, other structural proteins also contribute to the function of the nucleoskeleton and help connect it to the cytoskeleton. This chapter reviews nucleoskeletal components beyond lamins and summarizes specific methods and strategies useful for analyzing nuclear structural proteins including actin, spectrin, titin, linker of nucleoskeleton and cytoskeleton (LINC) complex proteins, and nuclear spindle matrix proteins. These components can localize to highly specific functional subdomains at the nuclear envelope or nuclear interior and can interact either stably or dynamically with a variety of partners. These components confer upon the nucleoskeleton a functional diversity and mechanical resilience that appears to rival the cytoskeleton. To facilitate the exploration of this understudied area of biology, we summarize methods useful for localizing, solubilizing, and immunoprecipitating nuclear structural proteins, and a state-of-the-art method to measure a newly-recognized mechanical property of nucleus.
Collapse
Affiliation(s)
- Zhixia Zhong
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
140
|
Chevanne M, Zampieri M, Caldini R, Rizzo A, Ciccarone F, Catizone A, D'Angelo C, Guastafierro T, Biroccio A, Reale A, Zupi G, Caiafa P. Inhibition of PARP activity by PJ-34 leads to growth impairment and cell death associated with aberrant mitotic pattern and nucleolar actin accumulation in M14 melanoma cell line. J Cell Physiol 2009; 222:401-10. [PMID: 19890834 DOI: 10.1002/jcp.21964] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The capability of PARP activity inhibitors to prevent DNA damage recovery suggested the use of these drugs as chemo- and radio-sensitisers for cancer therapy. Our research, carried out on cultured human M14 melanoma cells, was aimed to examine if PJ-34, a potent PARP activity inhibitor of second generation, was per se able to affect the viability of these cancer cells without any DNA damaging agents. Using time-lapse videomicroscopy, we evidenced that 10 microM PJ-34 treatment induced severe mitotic defects leading to dramatic reduction of cell proliferation and to cell death. PJ-34 cytotoxic effect was further confirmed by analysis of cell viability and clonogenic assay. Absence of canonic apoptosis markers allowed us to exclude this kind of cell death. No single and/or double stranded DNA damage was evidenced. Immunofluorescence analysis showed an aberrant mitotic scenario in several cells and subsequent multinucleation suggesting an atypical way for cells to die: the mitotic catastrophe. The detection of aberrant accumulation of polymerised actin inside the nucleolus was noteworthy. Taken together, our results demonstrate that, targeting PARP activity by PJ-34, cancer cell survival is affected independently of DNA damage repair. Two findings are remarkable: (a) cisplatin concentration can be reduced by three quarters if it is followed by treatment with 10 microM PJ-34 for 24 h to obtain the same cytotoxic effect; (b) effects dependent on PJ-34 treatment are reversible. Our data suggest that, to reduce the harm done to non-tumour cells during chemotherapy with cisplatin, the latter could be coupled with PJ-34 treatment.
Collapse
Affiliation(s)
- Marta Chevanne
- Department of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Possible participation of calmodulin in the decondensation of nuclei isolated from guinea pig spermatozoa. ZYGOTE 2009; 18:217-29. [PMID: 19939332 DOI: 10.1017/s0967199409990220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The guinea pig spermatozoid nucleus contains actin, myosin, spectrin and cytokeratin. Also, it has been reported that phalloidin and/or 2,3-butanedione monoxime retard the sperm nuclear decondensation caused by heparin, suggesting a role for F-actin and myosin in nuclear stability. The presence of an F-actin/myosin dynamic system in these nuclei led us to search for proteins usually related to this system. In guinea pig sperm nuclei we detected calmodulin, F-actin, the myosin light chain and an actin-myosin complex. To define whether calmodulin participates in nuclear-dynamics, the effect of the calmodulin antagonists W5, W7 and calmidazolium was tested on the decondensation of nuclei promoted by either heparin or by a Xenopus laevis egg extract. All antagonists inhibited both the heparin- and the X. laevis egg extract-mediated nuclear decondensation. Heparin-mediated decondensation was faster and led to loss of nuclei. The X. laevis egg extract-promoted decondensation was slower and did not result in loss of the decondensed nuclei. It is suggested that in guinea pig sperm calmodulin participates in the nuclear decondensation process.
Collapse
|
142
|
Khotin MG, Turoverova LV, Podolskaya EP, Krasnov IA, Solovyeva AV, Aksenova VY, Magnusson KE, Pinaev GP, Tentler DG. Analysis of nuclear protein complexes comprising α-actinin-4 by 2D-electrophoresis and mass spectrometry. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x09050058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
143
|
Bogolyubova NA, Bogolyubova IO. Actin localization in nuclei of two-cell mouse embryos. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x09050034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
144
|
Kandasamy MK, McKinney EC, Deal RB, Smith AP, Meagher RB. Arabidopsis actin-related protein ARP5 in multicellular development and DNA repair. Dev Biol 2009; 335:22-32. [PMID: 19679120 PMCID: PMC2778271 DOI: 10.1016/j.ydbio.2009.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/31/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
Actin-related protein 5 (ARP5) is a conserved subunit of the INO80 chromatin-remodeling complex in yeast and mammals. We have characterized the expression and subcellular distribution of Arabidopsis thaliana ARP5 and explored its role in the epigenetic control of multicellular development and DNA repair. ARP5-specific monoclonal antibodies localized ARP5 protein to the nucleoplasm of interphase cells in Arabidopsis and Nicotiana tabacum. ARP5 promoter-reporter fusions and the ARP5 protein are ubiquitously expressed. A null mutant and a severe knockdown allele produced moderately dwarfed plants with all organs smaller than the wild type. The small and slightly deformed organs such as leaves and hypocotyls were composed of small-sized cells. The ratio of leaf stomata to epidermal cells was high in the mutant, which also exhibited a delayed stomatal development compared with the wild type. Mutant plants were hypersensitive to DNA-damaging reagents including hydroxyurea, methylmethane sulfonate, and bleocin, demonstrating a role for ARP5 in DNA repair. Interestingly, the hypersensitivity phenotype of ARP5 null allele arp5-1 is stronger than the severe knockdown allele arp5-2. Moreover, a wild-type transgene fully complemented all developmental and DNA repair mutant phenotypes. Despite the common participation of both ARP4 and ARP5 in the INO80 complex, ARP4- and ARP5-deficient plants displayed only a small subset of common phenotypes and each displayed novel phenotypes, suggesting that in Arabidopsis they have both shared and unique functions.
Collapse
Affiliation(s)
| | - Elizabeth C. McKinney
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, GA 30602, USA
| | - Roger B. Deal
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, GA 30602, USA
| | - Aaron P. Smith
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, GA 30602, USA
| | - Richard B. Meagher
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
145
|
Barlow CA, Laishram RS, Anderson RA. Nuclear phosphoinositides: a signaling enigma wrapped in a compartmental conundrum. Trends Cell Biol 2009; 20:25-35. [PMID: 19846310 DOI: 10.1016/j.tcb.2009.09.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/27/2009] [Accepted: 09/28/2009] [Indexed: 01/09/2023]
Abstract
While the presence of phosphoinositides in the nuclei of eukaryotes and the identity of the enzymes responsible for their metabolism have been known for some time, their functions in the nucleus are only now emerging. This is illustrated by the recent identification of effectors for nuclear phosphoinositides. Like the cytosolic phosphoinositide signaling pathway, nuclear phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) is at the center of the pathway and acts both as a messenger and as a precursor for many additional messengers. Here, recent advances in the understanding of nuclear phosphoinositide signaling and its functions are reviewed with an emphasis on PI4,5P(2) and its role in gene expression. The compartmentalization of nuclear phosphoinositide phosphates (PIP(n)) remains a mystery, but emerging evidence suggests that phosphoinositides occupy several functionally distinct compartments.
Collapse
Affiliation(s)
- Christy A Barlow
- University of Wisconsin-Madison, Department of Pharmacology, 1300 University Ave. University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | |
Collapse
|
146
|
Kim SI, Bresnick EH, Bultman SJ. BRG1 directly regulates nucleosome structure and chromatin looping of the alpha globin locus to activate transcription. Nucleic Acids Res 2009; 37:6019-6027. [PMID: 19696073 PMCID: PMC2764439 DOI: 10.1093/nar/gkp677] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/13/2009] [Accepted: 07/31/2009] [Indexed: 12/12/2022] Open
Abstract
Alpha globin expression must be regulated properly to prevent the occurrence of alpha-thalassemias, yet many questions remain unanswered regarding the mechanism of transcriptional activation. Identifying factors that regulate chromatin structure of the endogenous alpha globin locus in developing erythroblasts will provide important mechanistic insight. Here, we demonstrate that the BRG1 catalytic subunit of SWI/SNF-related complexes co-immunoprecipitates with GATA-1 and EKLF in murine fetal liver cells in vivo and is recruited to the far-upstream major-regulatory element (MRE) and alpha2 promoter. Furthermore, based on our analysis of Brg1(null/ENU1) mutant mice, BRG1 regulates DNase I sensitivity, H3ac, and H3K4me2 but not CpG methylation at both sites. Most importantly, BRG1 is required for chromatin loop formation between the MRE and alpha2 promoter and for maximal RNA Polymerase II occupancy at the alpha2 promoter. Consequently, Brg1 mutants express alpha globin mRNA at only 5-10% of wild-type levels and die at mid-gestation. These data identify BRG1 as a chromatin-modifying factor required for nucleosome remodeling and transcriptional activation of the alpha globin locus. These data also demonstrate that chromatin looping between the MRE and alpha2 promoter is required as part of the transcriptional activation mechanism.
Collapse
Affiliation(s)
- Shin-Il Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, Madison, WI and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Emery H. Bresnick
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, Madison, WI and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Scott J. Bultman
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, Madison, WI and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
147
|
The influence of Trisenox on actin organization in HL-60 cells. Open Life Sci 2009. [DOI: 10.2478/s11535-009-0021-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe aim of this study was to show the influence of Trisenox (arsenic trioxide, ATO) on cytoplasmic and nuclear F-actin organization in HL-60 human leukemia cell line. Changes in localization were determined with the use of fluorescence microscopy and flow cytometry. Alterations, in both cytoplasmic and nuclear actin, were observed in cells exposed to ATO. F-actin network underwent accumulation and formed aggregates, that were very often placed under the cell membrane in whole cells and at the periphery of isolated nuclei. Addition of ATO also induced apoptosis and a decrease in G2 phase cells. These results suggest the influence of actin on the formation of apoptotic bodies and also participation of this protein in apoptotic alterations within nuclei, i.e. chromatin reorganization.
Collapse
|
148
|
Li Q, Sarna SK. Nuclear myosin II regulates the assembly of preinitiation complex for ICAM-1 gene transcription. Gastroenterology 2009; 137:1051-60, 1060.e1-3. [PMID: 19328794 PMCID: PMC2736361 DOI: 10.1053/j.gastro.2009.03.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 03/11/2009] [Accepted: 03/10/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Actin-myosin II motor converts chemical energy into force/motion in muscle and nonmuscle cells. The phosphorylation of 20-kilodalton regulatory myosin light chain (MLC(20)) is critical to the cytoplasmic functions of these motors. We do not know whether myosin II and actins in the nucleus function as motors to generate relative motion, such as that between RNA polymerase II holoenzyme and DNA, for assembly of the preinitiation complex. METHODS The experiments were performed on primary cultures of human colonic circular smooth muscle cells and rat colonic circular muscle strips. RESULTS We show that myosin II and alpha- and beta-actins are present in the nuclei of colonic smooth muscle cells. The nuclear myosin II is tethered to recognition sequence AGCTCC (-39/-34) in the intercellular adhesion molecule 1 (ICAM-1) core promoter region. The actins are known to complex with RNA polymerase II, and they are tethered to the nucleoskeleton. The dephosphorylation of MLC(20) increases the transcription of ICAM-1, whereas its phosphorylation decreases it. Colonic inflammation suppresses nuclear myosin light chain kinase, which increases the unphosphorylated form of nuclear MLC(20), resulting in enhanced transcription of ICAM-1. CONCLUSIONS Myosin II is a core transcription factor. The phosphorylation/dephosphorylation of nuclear MLC(20) results in the sliding of myosin and actin molecules past each other, producing relative motion between DNA bound to the myosin II and RNA polymerase II holoenzyme bound to actins and nucleoskeleton.
Collapse
Affiliation(s)
- Qingjie Li
- Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1064, USA
| | - Sushil K. Sarna
- Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1064, USA, Department of Neuroscience and Cell Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1064, USA
| |
Collapse
|
149
|
Jeong KW, Lee YH, Stallcup MR. Recruitment of the SWI/SNF chromatin remodeling complex to steroid hormone-regulated promoters by nuclear receptor coactivator flightless-I. J Biol Chem 2009; 284:29298-309. [PMID: 19720835 DOI: 10.1074/jbc.m109.037010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes, such as SWI/SNF, are required for transcriptional activation of specific genes and are believed to be recruited to gene promoters by direct interaction with DNA binding transcription factors. However, we report here that recruitment of SWI/SNF to target genes of estrogen receptor alpha (ERalpha) requires the previously described nuclear receptor coactivator protein Flightless-I (Fli-I). Fli-I can bind directly to both ER and BAF53, an actin-related component of the SWI/SNF complex, suggesting that Fli-I may recruit SWI/SNF to ER target genes via interaction with BAF53. Point mutations in Fli-I that disrupt binding to ER or BAF53 compromised the ability of Fli-I to enhance ER-mediated activation of a transiently transfected reporter gene. Depletion of endogenous Fli-I or BAF53 inhibited estrogen-responsive expression of endogenous target genes of ER, indicating a critical role for Fli-I and BAF53. Moreover, depletion of endogenous Fli-I or BAF53 specifically eliminated part of the complex cyclical pattern of recruitment of SWI/SNF to estrogen-responsive promoters in a way that indicates multiple roles and multiple mechanisms of recruitment for SWI/SNF in estrogen-dependent target gene expression. These results begin to establish the functional relationships and interdependencies that coordinate the actions of the many coactivators participating in the transcriptional activation process.
Collapse
Affiliation(s)
- Kwang Won Jeong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
150
|
Kim J, Kim Y, Kim HT, Kim DW, Ha Y, Kim J, Kim CH, Lee I, Song K. TC1(C8orf4) Is a Novel Endothelial Inflammatory Regulator Enhancing NF-κB Activity. THE JOURNAL OF IMMUNOLOGY 2009; 183:3996-4002. [DOI: 10.4049/jimmunol.0900956] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|