101
|
Goncalves NR, Welchman AE. "What Not" Detectors Help the Brain See in Depth. Curr Biol 2017; 27:1403-1412.e8. [PMID: 28502662 PMCID: PMC5457481 DOI: 10.1016/j.cub.2017.03.074] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/13/2017] [Accepted: 03/29/2017] [Indexed: 11/23/2022]
Abstract
Binocular stereopsis is one of the primary cues for three-dimensional (3D) vision in species ranging from insects to primates. Understanding how the brain extracts depth from two different retinal images represents a tractable challenge in sensory neuroscience that has so far evaded full explanation. Central to current thinking is the idea that the brain needs to identify matching features in the two retinal images (i.e., solving the “stereoscopic correspondence problem”) so that the depth of objects in the world can be triangulated. Although intuitive, this approach fails to account for key physiological and perceptual observations. We show that formulating the problem to identify “correct matches” is suboptimal and propose an alternative, based on optimal information encoding, that mixes disparity detection with “proscription”: exploiting dissimilar features to provide evidence against unlikely interpretations. We demonstrate the role of these “what not” responses in a neural network optimized to extract depth in natural images. The network combines information for and against the likely depth structure of the viewed scene, naturally reproducing key characteristics of both neural responses and perceptual interpretations. We capture the encoding and readout computations of the network in simple analytical form and derive a binocular likelihood model that provides a unified account of long-standing puzzles in 3D vision at the physiological and perceptual levels. We suggest that marrying detection with proscription provides an effective coding strategy for sensory estimation that may be useful for diverse feature domains (e.g., motion) and multisensory integration. The brain uses “what not” detectors to facilitate 3D vision Binocular mismatches are used to drive suppression of incompatible depths Proscription accounts for depth perception without binocular correspondence A simple analytical model captures perceptual and neural responses
Collapse
Affiliation(s)
- Nuno R Goncalves
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - Andrew E Welchman
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| |
Collapse
|
102
|
Cai T, Zhu H, Xu J, Wu S, Li X, He S. Human cortical neural correlates of visual fatigue during binocular depth perception: An fNIRS study. PLoS One 2017; 12:e0172426. [PMID: 28207899 PMCID: PMC5312944 DOI: 10.1371/journal.pone.0172426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/03/2017] [Indexed: 11/29/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) was adopted to investigate the cortical neural correlates of visual fatigue during binocular depth perception for different disparities (from 0.1° to 1.5°). By using a slow event-related paradigm, the oxyhaemoglobin (HbO) responses to fused binocular stimuli presented by the random-dot stereogram (RDS) were recorded over the whole visual dorsal area. To extract from an HbO curve the characteristics that are correlated with subjective experiences of stereopsis and visual fatigue, we proposed a novel method to fit the time-course HbO curve with various response functions which could reflect various processes of binocular depth perception. Our results indicate that the parietal-occipital cortices are spatially correlated with binocular depth perception and that the process of depth perception includes two steps, associated with generating and sustaining stereovision. Visual fatigue is caused mainly by generating stereovision, while the amplitude of the haemodynamic response corresponding to sustaining stereovision is correlated with stereopsis. Combining statistical parameter analysis and the fitted time-course analysis, fNIRS could be a promising method to study visual fatigue and possibly other multi-process neural bases.
Collapse
Affiliation(s)
- Tingting Cai
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Huilin Zhu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Jie Xu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
| | - Shijing Wu
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
- School of Information and Optoelectronic Science and Engineering, South China Normal University (SCNU), Guangzhou, China
| | - Xinge Li
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
- South China Normal University (SCNU), Guangzhou, China
| | - Sailing He
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), Guangzhou, China
- Department of Electromagnetic Engineering, Royal Institute of Technology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
103
|
Kim T, Freeman RD. Binocular function during unequal monocular input. Eur J Neurosci 2016; 45:601-609. [PMID: 27991705 DOI: 10.1111/ejn.13500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/03/2016] [Accepted: 12/06/2016] [Indexed: 11/28/2022]
Abstract
The fine task of stereoscopic depth discrimination in human subjects requires a functional binocular system. Behavioral investigations show that relatively small binocular abnormalities can diminish stereoscopic acuity. Clinical evaluations are consistent with this observation. Neurons in visual cortex represent the first stage of processing of the binocular system. Cells at this level are generally acutely sensitive to differences in relative depth. However, an apparent paradox in previous work demonstrates that tuning for binocular disparities remains relatively constant even when large contrast differences are imposed between left and right eye stimuli. This implies a range of neural binocular function that is at odds with behavioral findings. To explore this inconsistency, we have conducted psychophysical tests by which human subjects view vertical sinusoidal gratings drifting in opposite directions to left and right eyes. If the opposite drifting gratings are integrated in visual cortex, as wave theory and neurophysiological data predict, the subjects should perceive a fused stationary grating that is counter-phasing in place. However, this behavioral combination may not occur if there are differences in contrast and therefore signal strength between left and right eye stimuli. As expected for the control condition, our results show fused counter-phase perception for equal inter-ocular grating contrasts. Our experimental tests show a striking retention of counter-phase perception even for relatively large differences in inter-ocular contrast. This finding demonstrates that binocular integration, although relatively coarse, can occur during substantial differences in left and right eye signal strength.
Collapse
Affiliation(s)
- Taekjun Kim
- Vision Science Graduate Group, School of Optometry, University of California, Berkeley, CA, USA
| | - Ralph D Freeman
- Vision Science Graduate Group, School of Optometry, University of California, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, School of Optometry, University of California, 360 Minor Hall, Berkeley, CA, 94720, USA
| |
Collapse
|
104
|
Georgeson MA, Schofield AJ. Binocular functional architecture for detection of contrast-modulated gratings. Vision Res 2016; 128:68-82. [PMID: 27664349 DOI: 10.1016/j.visres.2016.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022]
Abstract
Combination of signals from the two eyes is the gateway to stereo vision. To gain insight into binocular signal processing, we studied binocular summation for luminance-modulated gratings (L or LM) and contrast-modulated gratings (CM). We measured 2AFC detection thresholds for a signal grating (0.75c/deg, 216ms) shown to one eye, both eyes, or both eyes out-of-phase. For LM and CM, the carrier noise was in both eyes, even when the signal was monocular. Mean binocular thresholds for luminance gratings (L) were 5.4dB better than monocular thresholds - close to perfect linear summation (6dB). For LM and CM the binocular advantage was again 5-6dB, even when the carrier noise was uncorrelated, anti-correlated, or at orthogonal orientations in the two eyes. Binocular combination for CM probably arises from summation of envelope responses, and not from summation of these conflicting carrier patterns. Antiphase signals produced no binocular advantage, but thresholds were about 1-3dB higher than monocular ones. This is not consistent with simple linear summation, which should give complete cancellation and unmeasurably high thresholds. We propose a three-channel model in which noisy monocular responses to the envelope are binocularly combined in a contrast-weighted sum, but also remain separately available to perception via a max operator. Vision selects the largest of the three responses. With in-phase gratings the binocular channel dominates, but antiphase gratings cancel in the binocular channel and the monocular channels mediate detection. The small antiphase disadvantage might be explained by a subtle influence of background responses on binocular and monocular detection.
Collapse
Affiliation(s)
- Mark A Georgeson
- School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | | |
Collapse
|
105
|
Affiliation(s)
- Andrew E. Welchman
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
| |
Collapse
|
106
|
Li RW, So K, Wu TH, Craven AP, Tran TT, Gustafson KM, Levi DM. Monocular blur alters the tuning characteristics of stereopsis for spatial frequency and size. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160273. [PMID: 27703690 PMCID: PMC5043309 DOI: 10.1098/rsos.160273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Our sense of depth perception is mediated by spatial filters at different scales in the visual brain; low spatial frequency channels provide the basis for coarse stereopsis, whereas high spatial frequency channels provide for fine stereopsis. It is well established that monocular blurring of vision results in decreased stereoacuity. However, previous studies have used tests that are broadband in their spatial frequency content. It is not yet entirely clear how the processing of stereopsis in different spatial frequency channels is altered in response to binocular input imbalance. Here, we applied a new stereoacuity test based on narrow-band Gabor stimuli. By manipulating the carrier spatial frequency, we were able to reveal the spatial frequency tuning of stereopsis, spanning from coarse to fine, under blurred conditions. Our findings show that increasing monocular blur elevates stereoacuity thresholds 'selectively' at high spatial frequencies, gradually shifting the optimum frequency to lower spatial frequencies. Surprisingly, stereopsis for low frequency targets was only mildly affected even with an acuity difference of eight lines on a standard letter chart. Furthermore, we examined the effect of monocular blur on the size tuning function of stereopsis. The clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Roger W. Li
- School of Optometry, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Kayee So
- School of Optometry, University of California, Berkeley, CA 94720, USA
| | - Thomas H. Wu
- School of Optometry, University of California, Berkeley, CA 94720, USA
| | - Ashley P. Craven
- School of Optometry, University of California, Berkeley, CA 94720, USA
| | - Truyet T. Tran
- School of Optometry, University of California, Berkeley, CA 94720, USA
| | | | - Dennis M. Levi
- School of Optometry, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
107
|
Kott O, Němec P, Fremlová A, Mazoch V, Šumbera R. Behavioural Tests Reveal Severe Visual Deficits in the Strictly Subterranean African Mole-Rats (Bathyergidae) but Efficient Vision in the Fossorial Rodent Coruro (Spalacopus cyanus, Octodontidae). Ethology 2016. [DOI: 10.1111/eth.12515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ondřej Kott
- Department of Zoology; Faculty of Science; University of South Bohemia; České Budějovice Czech Republic
| | - Pavel Němec
- Department of Zoology; Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - Aneta Fremlová
- Department of Zoology; Faculty of Science; University of South Bohemia; České Budějovice Czech Republic
| | - Vladimír Mazoch
- Department of Zoology; Faculty of Science; University of South Bohemia; České Budějovice Czech Republic
| | - Radim Šumbera
- Department of Zoology; Faculty of Science; University of South Bohemia; České Budějovice Czech Republic
| |
Collapse
|
108
|
May KA, Zhaoping L. Efficient Coding Theory Predicts a Tilt Aftereffect from Viewing Untilted Patterns. Curr Biol 2016; 26:1571-1576. [PMID: 27291055 DOI: 10.1016/j.cub.2016.04.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/24/2016] [Accepted: 04/12/2016] [Indexed: 11/19/2022]
Abstract
The brain is bombarded with a continuous stream of sensory information, but biological limitations on the data-transmission rate require this information to be encoded very efficiently [1]. Li and Atick [2] proposed that the two eyes' signals are coded efficiently in the brain using mutually decorrelated binocular summation and differencing channels; when a channel is strongly stimulated by the visual input, such that sensory noise is negligible, the channel should undergo temporary desensitization (known as adaptation). To date, the evidence for this theory has been limited [3, 4], and the binocular differencing channel is missing from many models of binocular integration [5-10]. Li and Atick's theory makes the remarkable prediction that perceived direction of tilt (clockwise or counterclockwise) of a test pattern can be controlled by pre-exposing observers to visual adaptation patterns that are untilted or even have no orientation signal. Here, we confirm this prediction. Each test pattern consisted of different images presented to the two eyes such that the binocular summation and difference signals were tilted in opposite directions, to give ambiguous information about tilt; by selectively desensitizing one or other of the binocular channels using untilted or non-oriented binocular adaptation patterns, we controlled the perceived tilt of the test pattern. Our results provide compelling evidence that the brain contains binocular summation and differencing channels that adapt to the prevailing binocular statistics.
Collapse
Affiliation(s)
- Keith A May
- UCL Department of Computer Science, University College London, London WC1E 6BT, UK.
| | - Li Zhaoping
- UCL Department of Computer Science, University College London, London WC1E 6BT, UK.
| |
Collapse
|
109
|
Royden CS, Parsons D, Travatello J. The effect of monocular depth cues on the detection of moving objects by moving observers. Vision Res 2016; 124:7-14. [PMID: 27264029 DOI: 10.1016/j.visres.2016.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 11/26/2022]
Abstract
An observer moving through the world must be able to identify and locate moving objects in the scene. In principle, one could accomplish this task by detecting object images moving at a different angle or speed than the images of other items in the optic flow field. While angle of motion provides an unambiguous cue that an object is moving relative to other items in the scene, a difference in speed could be due to a difference in the depth of the objects and thus is an ambiguous cue. We tested whether the addition of information about the distance of objects from the observer, in the form of monocular depth cues, aided detection of moving objects. We found that thresholds for detection of object motion decreased as we increased the number of depth cues available to the observer.
Collapse
Affiliation(s)
- Constance S Royden
- Department of Mathematics and Computer Science, College of the Holy Cross, United States.
| | - Daniel Parsons
- Department of Mathematics and Computer Science, College of the Holy Cross, United States
| | - Joshua Travatello
- Department of Mathematics and Computer Science, College of the Holy Cross, United States
| |
Collapse
|
110
|
Cicmil N, Krug K. Playing the electric light orchestra--how electrical stimulation of visual cortex elucidates the neural basis of perception. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140206. [PMID: 26240421 PMCID: PMC4528818 DOI: 10.1098/rstb.2014.0206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making.
Collapse
Affiliation(s)
- Nela Cicmil
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Kristine Krug
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
111
|
A Single Mechanism Can Account for Human Perception of Depth in Mixed Correlation Random Dot Stereograms. PLoS Comput Biol 2016; 12:e1004906. [PMID: 27196696 PMCID: PMC4873186 DOI: 10.1371/journal.pcbi.1004906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/08/2016] [Indexed: 11/19/2022] Open
Abstract
In order to extract retinal disparity from a visual scene, the brain must match corresponding points in the left and right retinae. This computationally demanding task is known as the stereo correspondence problem. The initial stage of the solution to the correspondence problem is generally thought to consist of a correlation-based computation. However, recent work by Doi et al suggests that human observers can see depth in a class of stimuli where the mean binocular correlation is 0 (half-matched random dot stereograms). Half-matched random dot stereograms are made up of an equal number of correlated and anticorrelated dots, and the binocular energy model-a well-known model of V1 binocular complex cells-fails to signal disparity here. This has led to the proposition that a second, match-based computation must be extracting disparity in these stimuli. Here we show that a straightforward modification to the binocular energy model-adding a point output nonlinearity-is by itself sufficient to produce cells that are disparity-tuned to half-matched random dot stereograms. We then show that a simple decision model using this single mechanism can reproduce psychometric functions generated by human observers, including reduced performance to large disparities and rapidly updating dot patterns. The model makes predictions about how performance should change with dot size in half-matched stereograms and temporal alternation in correlation, which we test in human observers. We conclude that a single correlation-based computation, based directly on already-known properties of V1 neurons, can account for the literature on mixed correlation random dot stereograms.
Collapse
|
112
|
Muryy AA, Fleming RW, Welchman AE. 'Proto-rivalry': how the binocular brain identifies gloss. Proc Biol Sci 2016; 283:rspb.2016.0383. [PMID: 27170713 PMCID: PMC4874713 DOI: 10.1098/rspb.2016.0383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/13/2016] [Indexed: 11/25/2022] Open
Abstract
Visually identifying glossy surfaces can be crucial for survival (e.g. ice patches on a road), yet estimating gloss is computationally challenging for both human and machine vision. Here, we demonstrate that human gloss perception exploits some surprisingly simple binocular fusion signals, which are likely available early in the visual cortex. In particular, we show that the unusual disparity gradients and vertical offsets produced by reflections create distinctive ‘proto-rivalrous’ (barely fusible) image regions that are a critical indicator of gloss. We find that manipulating the gradients and vertical components of binocular disparities yields predictable changes in material appearance. Removing or occluding proto-rivalrous signals makes surfaces look matte, while artificially adding such signals to images makes them appear glossy. This suggests that the human visual system has internalized the idiosyncratic binocular fusion characteristics of glossy surfaces, providing a straightforward means of estimating surface attributes using low-level image signals.
Collapse
Affiliation(s)
- Alexander A Muryy
- School of Psychology, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
| | - Roland W Fleming
- Department of Psychology, University of Gießen, Otto-Behaghel-Strasse 10/F, Gießen 35394, Germany
| | - Andrew E Welchman
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| |
Collapse
|
113
|
Grossberg S. Cortical Dynamics of Figure-Ground Separation in Response to 2D Pictures and 3D Scenes: How V2 Combines Border Ownership, Stereoscopic Cues, and Gestalt Grouping Rules. Front Psychol 2016; 6:2054. [PMID: 26858665 PMCID: PMC4726768 DOI: 10.3389/fpsyg.2015.02054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/24/2015] [Indexed: 11/20/2022] Open
Abstract
The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob—V2 interstripe—V4 cortical stream and the V1 blob—V2 thin stripe—V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that compute absolute disparity in cortical area V1 are transformed into cells that compute relative disparity in cortical area V2. Relative disparity is a more invariant measure of an object's depth and 3D shape, and is sensitive to figure-ground properties.
Collapse
Affiliation(s)
- Stephen Grossberg
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, Center for Computational Neuroscience and Neural Technology, Boston UniversityBoston, MA, USA; Department of Mathematics, Boston UniversityBoston, MA, USA
| |
Collapse
|
114
|
Insect stereopsis demonstrated using a 3D insect cinema. Sci Rep 2016; 6:18718. [PMID: 26740144 PMCID: PMC4703989 DOI: 10.1038/srep18718] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/13/2015] [Indexed: 11/28/2022] Open
Abstract
Stereopsis - 3D vision – has become widely used as a model of perception. However, all our knowledge of possible underlying mechanisms comes almost exclusively from vertebrates. While stereopsis has been demonstrated for one invertebrate, the praying mantis, a lack of techniques to probe invertebrate stereopsis has prevented any further progress for three decades. We therefore developed a stereoscopic display system for insects, using miniature 3D glasses to present separate images to each eye, and tested our ability to deliver stereoscopic illusions to praying mantises. We find that while filtering by circular polarization failed due to excessive crosstalk, “anaglyph” filtering by spectral content clearly succeeded in giving the mantis the illusion of 3D depth. We thus definitively demonstrate stereopsis in mantises and also demonstrate that the anaglyph technique can be effectively used to deliver virtual 3D stimuli to insects. This method opens up broad avenues of research into the parallel evolution of stereoscopic computations and possible new algorithms for depth perception.
Collapse
|
115
|
Scholl B, Andoni S, Priebe NJ. Functional characterization of spikelet activity in the primary visual cortex. J Physiol 2015; 593:4979-94. [PMID: 26332436 DOI: 10.1113/jp270876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/20/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In vivo whole-cell patch-clamp recordings in cat visual cortex revealed small deflections in the membrane potential of neurons, termed spikelets. Spikelet statistics and functional properties suggest these deflections originate from a single, nearby cell. Spikelets shared a number sensory selectivities with the principal neuron including orientation selectivity, receptive field location and eye preference. Principal neurons and spikelets did not, however, generally share preferences for depth (binocular disparity). Cross-correlation of spikelet activity and membrane potential revealed direct effects on the membrane potential of some principal neurons, suggesting that these cells were synaptically coupled or received common input from the cortical network. Other spikelet-neuron pairs revealed indirect effects, likely to be the result of correlated network events. ABSTRACT Intracellular recordings in the neocortex reveal not only the membrane potential of neurons, but small unipolar or bipolar deflections that are termed spikelets. Spikelets have been proposed to originate from various sources, including active dendritic mechanisms, gap junctions and extracellular signals. Here we examined the functional characteristics of spikelets measured in neurons from cat primary visual cortex in vivo. Spiking statistics and our functional characterization of spikelet activity indicate that spikelets originate from a separate, nearby cell. Spikelet kinetics and lack of a direct effect on spikelet activity from hyperpolarizing current injection suggest they do not arise from electrical coupling to the principal neuron being recorded. Spikelets exhibited matched orientation tuning preference and ocular dominance to the principal neuron. In contrast, binocular disparity preferences of spikelets and the principal neuron were unrelated. Finally, we examined the impact of spikelets on the principal neuron's membrane potential; we did observe some records for which spikelets were correlated with the membrane potential of the principal neuron, suggesting that these neurons were synaptically coupled or received common input from the cortical network.
Collapse
Affiliation(s)
- Benjamin Scholl
- Center for Perceptual Systems, Department of Neuroscience, University of Texas at Austin, 2415 Speedway, Austin, TX, 78705, USA
| | - Sari Andoni
- Center for Perceptual Systems, Department of Neuroscience, University of Texas at Austin, 2415 Speedway, Austin, TX, 78705, USA
| | - Nicholas J Priebe
- Center for Perceptual Systems, Department of Neuroscience, University of Texas at Austin, 2415 Speedway, Austin, TX, 78705, USA
| |
Collapse
|
116
|
Integration of Multiple Spatial Frequency Channels in Disparity-Sensitive Neurons in the Primary Visual Cortex. J Neurosci 2015; 35:10025-38. [PMID: 26157002 DOI: 10.1523/jneurosci.0790-15.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED For our vivid perception of a 3-D world, the stereoscopic function begins in our brain by detecting slight shifts of image features between the two eyes, called binocular disparity. The primary visual cortex is the first stage of this processing, and neurons there are tuned to a limited range of spatial frequencies (SFs). However, our visual world is generally highly complex, composed of numerous features at a variety of scales, thereby having broadband SF spectra. This means that binocular information signaled by individual neurons is highly incomplete, and combining information across multiple SF bands must be essential for the visual system to function in a robust and reliable manner. In this study, we investigated whether the integration of information from multiple SF channels begins in the cat primary visual cortex. We measured disparity-selective responses in the joint left-right SF domain using sequences of dichoptically flashed grating stimuli consisting of various combinations of SFs and phases. The obtained interaction map in the joint SF domain reflects the degree of integration across different SF channels. Our data are consistent with the idea that disparity information is combined from multiple SF channels in a substantial fraction of complex cells. Furthermore, for the majority of these neurons, the optimal disparity is matched across the SF bands. These results suggest that a highly specific SF integration process for disparity detection starts in the primary visual cortex. SIGNIFICANCE STATEMENT Our visual world is broadband, containing features with a wide range of object scales. On the other hand, single neurons in the primary visual cortex are narrow-band, being tuned narrowly for a specific scale. For robust visual perception, narrow-band information of single neurons must be integrated eventually at some stage. We have examined whether such an integration process begins in the primary visual cortex with respect to binocular processing. The results suggest that a subset of cells appear to combine binocular information across multiple scales. Furthermore, for the majority of these neurons, an optimal parameter of binocular tuning is matched across multiple scales, suggesting the presence of a highly specific neural integration mechanism.
Collapse
|
117
|
Smolyanskaya A, Haefner RM, Lomber SG, Born RT. A Modality-Specific Feedforward Component of Choice-Related Activity in MT. Neuron 2015; 87:208-19. [PMID: 26139374 DOI: 10.1016/j.neuron.2015.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 01/10/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
The activity of individual sensory neurons can be predictive of an animal's choices. These decision signals arise from network properties dependent on feedforward and feedback inputs; however, the relative contributions of these inputs are poorly understood. We determined the role of feedforward pathways to decision signals in MT by recording neuronal activity while monkeys performed motion and depth tasks. During each session, we reversibly inactivated V2 and V3, which provide feedforward input to MT that conveys more information about depth than motion. We thus monitored the choice-related activity of the same neuron both before and during V2/V3 inactivation. During inactivation, MT neurons became less predictive of decisions for the depth task but not the motion task, indicating that a feedforward pathway that gives rise to tuning preferences also contributes to decision signals. We show that our data are consistent with V2/V3 input conferring structured noise correlations onto the MT population.
Collapse
Affiliation(s)
- Alexandra Smolyanskaya
- Harvard PhD Program in Neuroscience, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - Ralf M Haefner
- Brain and Cognitive Sciences, University of Rochester, 358 Meliora Hall, Rochester, NY 14627, USA
| | - Stephen G Lomber
- Brain and Mind Institute, Department of Physiology and Pharmacology, Department of Psychology, University of Western Ontario, London, Ontario N6A 5C2, Canada
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
118
|
Larsson ML. Binocular vision, the optic chiasm, and their associations with vertebrate motor behavior. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
119
|
Qian J, Yazdanbakhsh A. A Neural Model of Distance-Dependent Percept of Object Size Constancy. PLoS One 2015; 10:e0129377. [PMID: 26132106 PMCID: PMC4489391 DOI: 10.1371/journal.pone.0129377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/05/2015] [Indexed: 11/19/2022] Open
Abstract
Size constancy is one of the well-known visual phenomena that demonstrates perceptual stability to account for the effect of viewing distance on retinal image size. Although theories involving distance scaling to achieve size constancy have flourished based on psychophysical studies, its underlying neural mechanisms remain unknown. Single cell recordings show that distance-dependent size tuned cells are common along the ventral stream, originating from V1, V2, and V4 leading to IT. In addition, recent research employing fMRI demonstrates that an object's perceived size, associated with its perceived egocentric distance, modulates its retinotopic representation in V1. These results suggest that V1 contributes to size constancy, and its activity is possibly regulated by feedback of distance information from other brain areas. Here, we propose a neural model based on these findings. First, we construct an egocentric distance map in LIP by integrating horizontal disparity and vergence through gain-modulated MT neurons. Second, LIP neurons send modulatory feedback of distance information to size tuned cells in V1, resulting in a spread of V1 cortical activity. This process provides V1 with distance-dependent size representations. The model supports that size constancy is preserved by scaling retinal image size to compensate for changes in perceived distance, and suggests a possible neural circuit capable of implementing this process.
Collapse
Affiliation(s)
- Jiehui Qian
- Department of Psychology, Sun Yat-Sen University, Guangzhou, China
| | - Arash Yazdanbakhsh
- Department of Psychological & Brain Sciences, Center for Computational Neuroscience and Neural Technology, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
120
|
Kazama H. Systems neuroscience in Drosophila: Conceptual and technical advantages. Neuroscience 2015; 296:3-14. [DOI: 10.1016/j.neuroscience.2014.06.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022]
|
121
|
Park J, Oh H, Lee S, Bovik AC. 3D visual discomfort predictor: analysis of horizontal disparity and neural activity statistics. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2015; 24:1101-1114. [PMID: 25532185 DOI: 10.1109/tip.2014.2383327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Being able to predict the degree of visual discomfort that is felt when viewing stereoscopic 3D (S3D) images is an important goal toward ameliorating causative factors, such as excessive horizontal disparity, misalignments or mismatches between the left and right views of stereo pairs, or conflicts between different depth cues. Ideally, such a model should account for such factors as capture and viewing geometries, the distribution of disparities, and the responses of visual neurons. When viewing modern 3D displays, visual discomfort is caused primarily by changes in binocular vergence while accommodation in held fixed at the viewing distance to a flat 3D screen. This results in unnatural mismatches between ocular fixations and ocular focus that does not occur in normal direct 3D viewing. This accommodation vergence conflict can cause adverse effects, such as headaches, fatigue, eye strain, and reduced visual ability. Binocular vision is ultimately realized by means of neural mechanisms that subserve the sensorimotor control of eye movements. Realizing that the neuronal responses are directly implicated in both the control and experience of 3D perception, we have developed a model-based neuronal and statistical framework called the 3D visual discomfort predictor (3D-VDP)that automatically predicts the level of visual discomfort that is experienced when viewing S3D images. 3D-VDP extracts two types of features: 1) coarse features derived from the statistics of binocular disparities and 2) fine features derived by estimating the neural activity associated with the processing of horizontal disparities. In particular, we deploy a model of horizontal disparity processing in the extrastriate middle temporal region of occipital lobe. We compare the performance of 3D-VDP with other recent discomfort prediction algorithms with respect to correlation against recorded subjective visual discomfort scores,and show that 3D-VDP is statistically superior to the other methods.
Collapse
|
122
|
Arnoldussen DM, Goossens J, van Den Berg AV. Dissociation of retinal and headcentric disparity signals in dorsal human cortex. Front Syst Neurosci 2015; 9:16. [PMID: 25759642 PMCID: PMC4338660 DOI: 10.3389/fnsys.2015.00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/02/2015] [Indexed: 11/20/2022] Open
Abstract
Recent fMRI studies have shown fusion of visual motion and disparity signals for shape perception (Ban et al., 2012), and unmasking camouflaged surfaces (Rokers et al., 2009), but no such interaction is known for typical dorsal motion pathway tasks, like grasping and navigation. Here, we investigate human speed perception of forward motion and its representation in the human motion network. We observe strong interaction in medial (V3ab, V6) and lateral motion areas (MT+), which differ significantly. Whereas the retinal disparity dominates the binocular contribution to the BOLD activity in the anterior part of area MT+, headcentric disparity modulation of the BOLD response dominates in area V3ab and V6. This suggests that medial motion areas not only represent rotational speed of the head (Arnoldussen et al., 2011), but also translational speed of the head relative to the scene. Interestingly, a strong response to vergence eye movements was found in area V1, which showed a dependency on visual direction, just like vertical-size disparity. This is the first report of a vertical-size disparity correlate in human striate cortex.
Collapse
Affiliation(s)
- David M Arnoldussen
- Section Biophysics, Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behavior Nijmegen, Netherlands ; School of Psychology, University of Nottingham Nottingham, UK
| | - Jeroen Goossens
- Section Biophysics, Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behavior Nijmegen, Netherlands
| | - Albert V van Den Berg
- Section Biophysics, Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behavior Nijmegen, Netherlands
| |
Collapse
|
123
|
Abstract
We use visual information to determine our dynamic relationship with other objects in a three-dimensional (3D) world. Despite decades of work on visual motion processing, it remains unclear how 3D directions-trajectories that include motion toward or away from the observer-are represented and processed in visual cortex. Area MT is heavily implicated in processing visual motion and depth, yet previous work has found little evidence for 3D direction sensitivity per se. Here we use a rich ensemble of binocular motion stimuli to reveal that most neurons in area MT of the anesthetized macaque encode 3D motion information. This tuning for 3D motion arises from multiple mechanisms, including different motion preferences in the two eyes and a nonlinear interaction of these signals when both eyes are stimulated. Using a novel method for functional binocular alignment, we were able to rule out contributions of static disparity tuning to the 3D motion tuning we observed. We propose that a primary function of MT is to encode 3D motion, critical for judging the movement of objects in dynamic real-world environments.
Collapse
|
124
|
Muryy AA, Fleming RW, Welchman AE. Key characteristics of specular stereo. J Vis 2014; 14:14. [PMID: 25540263 PMCID: PMC4278431 DOI: 10.1167/14.14.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022] Open
Abstract
Because specular reflection is view-dependent, shiny surfaces behave radically differently from matte, textured surfaces when viewed with two eyes. As a result, specular reflections pose substantial problems for binocular stereopsis. Here we use a combination of computer graphics and geometrical analysis to characterize the key respects in which specular stereo differs from standard stereo, to identify how and why the human visual system fails to reconstruct depths correctly from specular reflections. We describe rendering of stereoscopic images of specular surfaces in which the disparity information can be varied parametrically and independently of monocular appearance. Using the generated surfaces and images, we explain how stereo correspondence can be established with known and unknown surface geometry. We show that even with known geometry, stereo matching for specular surfaces is nontrivial because points in one eye may have zero, one, or multiple matches in the other eye. Matching features typically yield skew (nonintersecting) rays, leading to substantial ortho-epipolar components to the disparities, which makes deriving depth values from matches nontrivial. We suggest that the human visual system may base its depth estimates solely on the epipolar components of disparities while treating the ortho-epipolar components as a measure of the underlying reliability of the disparity signals. Reconstructing virtual surfaces according to these principles reveals that they are piece-wise smooth with very large discontinuities close to inflection points on the physical surface. Together, these distinctive characteristics lead to cues that the visual system could use to diagnose specular reflections from binocular information.
Collapse
Affiliation(s)
- Alexander A. Muryy
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Psychology, University of Southampton, Highfield Campus, Southampton, UK
| | | | - Andrew E. Welchman
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
125
|
Stereo vision and strabismus. Eye (Lond) 2014; 29:214-24. [PMID: 25475234 DOI: 10.1038/eye.2014.279] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/14/2014] [Indexed: 11/08/2022] Open
Abstract
Binocular stereopsis, or stereo vision, is the ability to derive information about how far away objects are, based solely on the relative positions of the object in the two eyes. It depends on both sensory and motor abilities. In this review, I briefly outline some of the neuronal mechanisms supporting stereo vision, and discuss how these are disrupted in strabismus. I explain, in some detail, current methods of assessing stereo vision and their pros and cons. Finally, I review the evidence supporting the clinical importance of such measurements.
Collapse
|
126
|
Learning to navigate in a virtual world using optic flow and stereo disparity signals. ARTIFICIAL LIFE AND ROBOTICS 2014. [DOI: 10.1007/s10015-014-0153-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
127
|
Peng Q, Shi BE. Neural population models for perception of motion in depth. Vision Res 2014; 101:11-31. [DOI: 10.1016/j.visres.2014.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/27/2022]
|
128
|
Romo PA, Zeater N, Wang C, Dreher B. Binocular neurons in parastriate cortex: interocular 'matching' of receptive field properties, eye dominance and strength of silent suppression. PLoS One 2014; 9:e99600. [PMID: 24927276 PMCID: PMC4057260 DOI: 10.1371/journal.pone.0099600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/16/2014] [Indexed: 11/18/2022] Open
Abstract
Spike-responses of single binocular neurons were recorded from a distinct part of primary visual cortex, the parastriate cortex (cytoarchitectonic area 18) of anaesthetized and immobilized domestic cats. Functional identification of neurons was based on the ratios of phase-variant (F1) component to the mean firing rate (F0) of their spike-responses to optimized (orientation, direction, spatial and temporal frequencies and size) sine-wave-luminance-modulated drifting grating patches presented separately via each eye. In over 95% of neurons, the interocular differences in the phase-sensitivities (differences in F1/F0 spike-response ratios) were small (≤0.3) and in over 80% of neurons, the interocular differences in preferred orientations were ≤10°. The interocular correlations of the direction selectivity indices and optimal spatial frequencies, like those of the phase sensitivies and optimal orientations, were also strong (coefficients of correlation r ≥0.7005). By contrast, the interocular correlations of the optimal temporal frequencies, the diameters of summation areas of the excitatory responses and suppression indices were weak (coefficients of correlation r ≤0.4585). In cells with high eye dominance indices (HEDI cells), the mean magnitudes of suppressions evoked by stimulation of silent, extra-classical receptive fields via the non-dominant eyes, were significantly greater than those when the stimuli were presented via the dominant eyes. We argue that the well documented ‘eye-origin specific’ segregation of the lateral geniculate inputs underpinning distinct eye dominance columns in primary visual cortices of mammals with frontally positioned eyes (distinct eye dominance columns), combined with significant interocular differences in the strength of silent suppressive fields, putatively contribute to binocular stereoscopic vision.
Collapse
Affiliation(s)
- Phillip A. Romo
- Discipline of Anatomy and Histology, School of Medical Sciences & Bosch Institute, University of Sydney, New South Wales, Australia
| | - Natalie Zeater
- Discipline of Anatomy and Histology, School of Medical Sciences & Bosch Institute, University of Sydney, New South Wales, Australia
| | - Chun Wang
- Discipline of Anatomy and Histology, School of Medical Sciences & Bosch Institute, University of Sydney, New South Wales, Australia
| | - Bogdan Dreher
- Discipline of Anatomy and Histology, School of Medical Sciences & Bosch Institute, University of Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
129
|
Wang Y, Jiang Y. Integration of 3D structure from disparity into biological motion perception independent of depth awareness. PLoS One 2014; 9:e89238. [PMID: 24586622 PMCID: PMC3931706 DOI: 10.1371/journal.pone.0089238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
Images projected onto the retinas of our two eyes come from slightly different directions in the real world, constituting binocular disparity that serves as an important source for depth perception - the ability to see the world in three dimensions. It remains unclear whether the integration of disparity cues into visual perception depends on the conscious representation of stereoscopic depth. Here we report evidence that, even without inducing discernible perceptual representations, the disparity-defined depth information could still modulate the visual processing of 3D objects in depth-irrelevant aspects. Specifically, observers who could not discriminate disparity-defined in-depth facing orientations of biological motions (i.e., approaching vs. receding) due to an excessive perceptual bias nevertheless exhibited a robust perceptual asymmetry in response to the indistinguishable facing orientations, similar to those who could consciously discriminate such 3D information. These results clearly demonstrate that the visual processing of biological motion engages the disparity cues independent of observers' depth awareness. The extraction and utilization of binocular depth signals thus can be dissociable from the conscious representation of 3D structure in high-level visual perception.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
130
|
La vision du tout jeune enfant. ENFANCE 2014. [DOI: 10.4074/s0013754514001037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
131
|
|
132
|
The evolution of a disparity decision in human visual cortex. Neuroimage 2014; 92:193-206. [PMID: 24513152 DOI: 10.1016/j.neuroimage.2014.01.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/20/2014] [Accepted: 01/29/2014] [Indexed: 11/23/2022] Open
Abstract
We used fMRI-informed EEG source-imaging in humans to characterize the dynamics of cortical responses during a disparity-discrimination task. After the onset of a disparity-defined target, decision-related activity was found within an extended cortical network that included several occipital regions of interest (ROIs): V4, V3A, hMT+ and the Lateral Occipital Complex (LOC). By using a response-locked analysis, we were able to determine the timing relationships in this network of ROIs relative to the subject's behavioral response. Choice-related activity appeared first in the V4 ROI almost 200 ms before the button press and then subsequently in the V3A ROI. Modeling of the responses in the V4 ROI suggests that this area provides an early contribution to disparity discrimination. Choice-related responses were also found after the button-press in ROIs V4, V3A, LOC and hMT+. Outside the visual cortex, choice-related activity was found in the frontal and temporal poles before the button-press. By combining the spatial resolution of fMRI-informed EEG source imaging with the ability to sort out neural activity occurring before, during and after the behavioral manifestation of the decision, our study is the first to assign distinct functional roles to the extra-striate ROIs involved in perceptual decisions based on disparity, the primary cue for depth.
Collapse
|
133
|
Tanabe S, Cumming BG. Delayed suppression shapes disparity selective responses in monkey V1. J Neurophysiol 2014; 111:1759-69. [PMID: 24501264 DOI: 10.1152/jn.00426.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The stereo correspondence problem poses a challenge to visual neurons because localized receptive fields potentially cause false responses. Neurons in the primary visual cortex (V1) partially resolve this problem by combining excitatory and suppressive responses to encode binocular disparity. We explored the time course of this combination in awake, monkey V1 neurons using subspace mapping of receptive fields. The stimulus was a binocular noise pattern constructed from discrete spatial frequency components. We forward correlated the firing of the V1 neuron with the occurrence of binocular presentations of each spatial frequency component. The forward correlation yielded a complete set of response time courses to every combination of spatial frequency and interocular phase difference. Some combinations produced suppressive responses. Typically, if an interocular phase difference for a given spatial frequency produced strong excitation, we saw suppression in response to the opposite interocular phase difference at lower spatial frequencies. The suppression was delayed relative to the excitation, with a median difference in latency of 7 ms. We found that the suppressive mechanism explains a well-known mismatch of monocular and binocular signals. The suppressive components increased power at low spatial frequencies in disparity tuning, whereas they reduced the monocular response to low spatial frequencies. This long-recognized mismatch of binocular and monocular signals reflects a suppressive mechanism that helps reduce the response to false matches.
Collapse
Affiliation(s)
- Seiji Tanabe
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
134
|
Abstract
A great challenge of systems neuroscience is to understand the computations that underlie perceptual constancies, the ability to represent behaviorally relevant stimulus properties as constant even when irrelevant stimulus properties vary. As signals proceed through the visual system, neural states become more selective for properties of the environment, and more invariant to irrelevant features of the retinal images. Here, we describe a method for determining the computations that perform these transformations optimally, and apply it to the specific computational task of estimating a powerful depth cue: binocular disparity. We simultaneously determine the optimal receptive field population for encoding natural stereo images of locally planar surfaces and the optimal nonlinear units for decoding the population responses into estimates of disparity. The optimal processing predicts well-established properties of neurons in cortex. Estimation performance parallels important aspects of human performance. Thus, by analyzing the photoreceptor responses to natural images, we provide a normative account of the neurophysiology and psychophysics of absolute disparity processing. Critically, the optimal processing rules are not arbitrarily chosen to match the properties of neurophysiological processing, nor are they fit to match behavioral performance. Rather, they are dictated by the task-relevant statistical properties of complex natural stimuli. Our approach reveals how selective invariant tuning-especially for properties not trivially available in the retinal images-could be implemented in neural systems to maximize performance in particular tasks.
Collapse
Affiliation(s)
- Johannes Burge
- Center for Perceptual Systems and Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
135
|
Abstract
Binocular vision requires us to match up the different views of the world seen by each eye. Computational models of primary visual cortex describe how the brain begins this process. Recurrent connections help suppress the response to false matches.
Collapse
Affiliation(s)
- Jenny Read
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
136
|
Abstract
Visual disruption early in development dramatically changes how primary visual cortex neurons integrate binocular inputs. The disruption is paradigmatic for investigating the synaptic basis of long-term changes in cortical function, because the primary visual cortex is the site of binocular convergence. The underlying alterations in circuitry by visual disruption remain poorly understood. Here we compare membrane potential responses, observed via whole-cell recordings in vivo, of primary visual cortex neurons in normal adult cats with those of cats in which strabismus was induced before the developmental critical period. In strabismic cats, we observed a dramatic shift in the ocular dominance distribution of simple cells, the first stage of visual cortical processing, toward responding to one eye instead of both, but not in complex cells, which receive inputs from simple cells. Both simple and complex cells no longer conveyed the binocular information needed for depth perception based on binocular cues. There was concomitant binocular suppression such that responses were weaker with binocular than with monocular stimulation. Our estimates of the excitatory and inhibitory input to single neurons indicate binocular suppression that was not evident in synaptic excitation, but arose de novo because of synaptic inhibition. Further constraints on circuit models of plasticity result from indications that the ratio of excitation to inhibition evoked by monocular stimulation decreased mainly for nonpreferred eye stimulation. Although we documented changes in synaptic input throughout primary visual cortex, a circuit model with plasticity at only thalamocortical synapses is sufficient to account for our observations.
Collapse
|
137
|
Faria FDCEC, Batista J, Araújo H. Stereoscopic depth perception using a model based on the primary visual cortex. PLoS One 2013; 8:e80745. [PMID: 24339881 PMCID: PMC3855160 DOI: 10.1371/journal.pone.0080745] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
This work describes an approach inspired by the primary visual cortex using the stimulus response of the receptive field profiles of binocular cells for disparity computation. Using the energy model based on the mechanism of log-Gabor filters for disparity encodings, we propose a suitable model to consistently represent the complex cells by computing the wide bandwidths of the cortical cells. This way, the model ensures the general neurophysiological findings in the visual cortex (V1), emphasizing the physical disparities and providing a simple selection method for the complex cell response. The results suggest that our proposed approach can achieve better results than a hybrid model with phase-shift and position-shift using position disparity alone.
Collapse
Affiliation(s)
- Fernanda da C. e C. Faria
- Institute of Systems and Robotics, University of Coimbra, Coimbra, Portugal
- * E-mail: (FCCF); (JB); (HA)
| | - Jorge Batista
- Institute of Systems and Robotics, University of Coimbra, Coimbra, Portugal
- * E-mail: (FCCF); (JB); (HA)
| | - Helder Araújo
- Institute of Systems and Robotics, University of Coimbra, Coimbra, Portugal
- * E-mail: (FCCF); (JB); (HA)
| |
Collapse
|
138
|
Abstract
The rapid advances in brain imaging technology over the past 20 years are affording new insights into cortical processing hierarchies in the human brain. These new data provide a complementary front in seeking to understand the links between perceptual and physiological states. Here we review some of the challenges associated with incorporating brain imaging data into such "linking hypotheses," highlighting some of the considerations needed in brain imaging data acquisition and analysis. We discuss work that has sought to link human brain imaging signals to existing electrophysiological data and opened up new opportunities in studying the neural basis of complex perceptual judgments. We consider a range of approaches when using human functional magnetic resonance imaging to identify brain circuits whose activity changes in a similar manner to perceptual judgments and illustrate these approaches by discussing work that has studied the neural basis of 3D perception and perceptual learning. Finally, we describe approaches that have sought to understand the information content of brain imaging data using machine learning and work that has integrated multimodal data to overcome the limitations associated with individual brain imaging approaches. Together these approaches provide an important route in seeking to understand the links between physiological and psychological states.
Collapse
|
139
|
Joint representation of depth from motion parallax and binocular disparity cues in macaque area MT. J Neurosci 2013; 33:14061-74, 14074a. [PMID: 23986242 DOI: 10.1523/jneurosci.0251-13.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Perception of depth is based on a variety of cues, with binocular disparity and motion parallax generally providing more precise depth information than pictorial cues. Much is known about how neurons in visual cortex represent depth from binocular disparity or motion parallax, but little is known about the joint neural representation of these depth cues. We recently described neurons in the middle temporal (MT) area that signal depth sign (near vs far) from motion parallax; here, we examine whether and how these neurons also signal depth from binocular disparity. We find that most MT neurons in rhesus monkeys (Macaca Mulatta) are selective for depth sign based on both disparity and motion parallax cues. However, the depth-sign preferences (near or far) are not always aligned: 56% of MT neurons have matched depth-sign preferences ("congruent" cells) whereas the remaining 44% of neurons prefer near depth from motion parallax and far depth from disparity, or vice versa ("opposite" cells). For congruent cells, depth-sign selectivity increases when disparity cues are added to motion parallax, but this enhancement does not occur for opposite cells. This suggests that congruent cells might contribute to perceptual integration of depth cues. We also found that neurons are clustered in MT according to their depth tuning based on motion parallax, similar to the known clustering of MT neurons for binocular disparity. Together, these findings suggest that area MT is involved in constructing a representation of 3D scene structure that takes advantage of multiple depth cues available to mobile observers.
Collapse
|
140
|
Structural and functional changes across the visual cortex of a patient with visual form agnosia. J Neurosci 2013; 33:12779-91. [PMID: 23904613 DOI: 10.1523/jneurosci.4853-12.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss of shape recognition in visual-form agnosia occurs without equivalent losses in the use of vision to guide actions, providing support for the hypothesis of two visual systems (for "perception" and "action"). The human individual DF received a toxic exposure to carbon monoxide some years ago, which resulted in a persisting visual-form agnosia that has been extensively characterized at the behavioral level. We conducted a detailed high-resolution MRI study of DF's cortex, combining structural and functional measurements. We present the first accurate quantification of the changes in thickness across DF's occipital cortex, finding the most substantial loss in the lateral occipital cortex (LOC). There are reduced white matter connections between LOC and other areas. Functional measures show pockets of activity that survive within structurally damaged areas. The topographic mapping of visual areas showed that ordered retinotopic maps were evident for DF in the ventral portions of visual cortical areas V1, V2, V3, and hV4. Although V1 shows evidence of topographic order in its dorsal portion, such maps could not be found in the dorsal parts of V2 and V3. We conclude that it is not possible to understand fully the deficits in object perception in visual-form agnosia without the exploitation of both structural and functional measurements. Our results also highlight for DF the cortical routes through which visual information is able to pass to support her well-documented abilities to use visual information to guide actions.
Collapse
|
141
|
Hubel DH, Wiesel TN, Yeagle EM, Lafer-Sousa R, Conway BR. Binocular stereoscopy in visual areas V-2, V-3, and V-3A of the macaque monkey. ACTA ACUST UNITED AC 2013; 25:959-71. [PMID: 24122139 DOI: 10.1093/cercor/bht288] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Over 40 years ago, Hubel and Wiesel gave a preliminary report of the first account of cells in monkey cerebral cortex selective for binocular disparity. The cells were located outside of V-1 within a region referred to then as "area 18." A full-length manuscript never followed, because the demarcation of the visual areas within this region had not been fully worked out. Here, we provide a full description of the physiological experiments and identify the locations of the recorded neurons using a contemporary atlas generated by functional magnetic resonance imaging; we also perform an independent analysis of the location of the neurons relative to an anatomical landmark (the base of the lunate sulcus) that is often coincident with the border between V-2 and V-3. Disparity-tuned cells resided not only in V-2, the area now synonymous with area 18, but also in V-3 and probably within V-3A. The recordings showed that the disparity-tuned cells were biased for near disparities, tended to prefer vertical orientations, clustered by disparity preference, and often required stimulation of both eyes to elicit responses, features strongly suggesting a role in stereoscopic depth perception.
Collapse
Affiliation(s)
- David H Hubel
- Department of Neurobiology, Harvard Medical School, The Rockefeller University, Boston, MA 02115, USA and
| | - Torsten N Wiesel
- Department of Neurobiology, Harvard Medical School, The Rockefeller University, Boston, MA 02115, USA and
| | - Erin M Yeagle
- Program in Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| | - Rosa Lafer-Sousa
- Program in Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| | - Bevil R Conway
- Department of Neurobiology, Harvard Medical School, The Rockefeller University, Boston, MA 02115, USA and Program in Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| |
Collapse
|
142
|
Smolyanskaya A, Ruff DA, Born RT. Joint tuning for direction of motion and binocular disparity in macaque MT is largely separable. J Neurophysiol 2013; 110:2806-16. [PMID: 24089395 DOI: 10.1152/jn.00573.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons in sensory cortical areas are tuned to multiple dimensions, or features, of their sensory space. Understanding how single neurons represent multiple features is of great interest for determining the informative dimensions of the neurons' response, the decoding algorithms appropriate for extracting this information from the neuronal population, and for determining where specific transformations occur along the visual hierarchy. Despite the established role of cortical area MT in judgments of motion and depth, it is not known how individual neurons jointly encode the two dimensions. We investigated the joint tuning of individual MT neurons for two visual features: direction of motion and binocular disparity, an important depth cue. We found that a separable, multiplicative combination of tuning for the two features can account for more than 90% of the variance in the joint tuning function for over 91% of MT neurons. These results suggest 1) that each feature can be read out independently from MT by simply averaging across the population without regard to the other feature and 2) that the inseparable representations seen in subsequent areas, such as MST, must be computed beyond MT. Intriguingly, we found that the remaining nonseparable component of the joint tuning function often manifested as small but systematic changes in the neurons' preferences for one feature as the other one was varied. We believe this reflects the local columnar organization of tuning for direction and binocular disparity in MT, indicating that joint tuning may provide a new tool with which to probe functional architecture.
Collapse
|
143
|
Pickup LC, Fitzgibbon AW, Glennerster A. Modelling human visual navigation using multi-view scene reconstruction. BIOLOGICAL CYBERNETICS 2013; 107:449-464. [PMID: 23778937 PMCID: PMC3755223 DOI: 10.1007/s00422-013-0558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
It is often assumed that humans generate a 3D reconstruction of the environment, either in egocentric or world-based coordinates, but the steps involved are unknown. Here, we propose two reconstruction-based models, evaluated using data from two tasks in immersive virtual reality. We model the observer's prediction of landmark location based on standard photogrammetric methods and then combine location predictions to compute likelihood maps of navigation behaviour. In one model, each scene point is treated independently in the reconstruction; in the other, the pertinent variable is the spatial relationship between pairs of points. Participants viewed a simple environment from one location, were transported (virtually) to another part of the scene and were asked to navigate back. Error distributions varied substantially with changes in scene layout; we compared these directly with the likelihood maps to quantify the success of the models. We also measured error distributions when participants manipulated the location of a landmark to match the preceding interval, providing a direct test of the landmark-location stage of the navigation models. Models such as this, which start with scenes and end with a probabilistic prediction of behaviour, are likely to be increasingly useful for understanding 3D vision.
Collapse
Affiliation(s)
- Lyndsey C. Pickup
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, RG6 6AL UK
| | | | - Andrew Glennerster
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, RG6 6AL UK
| |
Collapse
|
144
|
Larsson M. The optic chiasm: a turning point in the evolution of eye/hand coordination. Front Zool 2013; 10:41. [PMID: 23866932 PMCID: PMC3729728 DOI: 10.1186/1742-9994-10-41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/09/2013] [Indexed: 01/23/2023] Open
Abstract
The primate visual system has a uniquely high proportion of ipsilateral retinal projections, retinal ganglial cells that do not cross the midline in the optic chiasm. The general assumption is that this developed due to the selective advantage of accurate depth perception through stereopsis. Here, the hypothesis that the need for accurate eye-forelimb coordination substantially influenced the evolution of the primate visual system is presented. Evolutionary processes may change the direction of retinal ganglial cells. Crossing, or non-crossing, in the optic chiasm determines which hemisphere receives visual feedback in reaching tasks. Each hemisphere receives little tactile and proprioceptive information about the ipsilateral hand. The eye-forelimb hypothesis proposes that abundant ipsilateral retinal projections developed in the primate brain to synthesize, in a single hemisphere, visual, tactile, proprioceptive, and motor information about a given hand, and that this improved eye-hand coordination and optimized the size of the brain. If accurate eye-hand coordination was a major factor in the evolution of stereopsis, stereopsis is likely to be highly developed for activity in the area where the hands most often operate.The primate visual system is ideally suited for tasks within arm's length and in the inferior visual field, where most manual activity takes place. Altering of ocular dominance in reaching tasks, reduced cross-modal cuing effects when arms are crossed, response of neurons in the primary motor cortex to viewed actions of a hand, multimodal neuron response to tactile as well as visual events, and extensive use of multimodal sensory information in reaching maneuvers support the premise that benefits of accurate limb control influenced the evolution of the primate visual system. The eye-forelimb hypothesis implies that evolutionary change toward hemidecussation in the optic chiasm provided parsimonious neural pathways in animals developing frontal vision and visually guided forelimbs, and also suggests a new perspective on vision convergence in prey and predatory animals.
Collapse
Affiliation(s)
- Matz Larsson
- The Cardiology Clinic, Örebro University Hospital, SE - 701 85, Örebro, Sweden.
| |
Collapse
|
145
|
Murphy AP, Ban H, Welchman AE. Integration of texture and disparity cues to surface slant in dorsal visual cortex. J Neurophysiol 2013; 110:190-203. [PMID: 23576705 DOI: 10.1152/jn.01055.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reliable estimation of three-dimensional (3D) surface orientation is critical for recognizing and interacting with complex 3D objects in our environment. Human observers maximize the reliability of their estimates of surface slant by integrating multiple depth cues. Texture and binocular disparity are two such cues, but they are qualitatively very different. Existing evidence suggests that representations of surface tilt from each of these cues coincide at the single-neuron level in higher cortical areas. However, the cortical circuits responsible for 1) integration of such qualitatively distinct cues and 2) encoding the slant component of surface orientation have not been assessed. We tested for cortical responses related to slanted plane stimuli that were defined independently by texture, disparity, and combinations of these two cues. We analyzed the discriminability of functional MRI responses to two slant angles using multivariate pattern classification. Responses in visual area V3B/KO to stimuli containing congruent cues were more discriminable than those elicited by single cues, in line with predictions based on the fusion of slant estimates from component cues. This improvement was specific to congruent combinations of cues: incongruent cues yielded lower decoding accuracies, which suggests the robust use of individual cues in cases of large cue conflicts. These data suggest that area V3B/KO is intricately involved in the integration of qualitatively dissimilar depth cues.
Collapse
Affiliation(s)
- Aidan P Murphy
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | |
Collapse
|
146
|
Baroncelli L, Braschi C, Maffei L. Visual depth perception in normal and deprived rats: Effects of environmental enrichment. Neuroscience 2013; 236:313-9. [DOI: 10.1016/j.neuroscience.2013.01.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/04/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|
147
|
Abstract
Stereo matching, i.e., the matching by the visual system of corresponding parts of the images seen by the two eyes, is inherently a 2D problem. To gain insights into how this operation is carried out by the visual system, we measured, in human subjects, the reflexive vergence eye movements elicited by the sudden presentation of stereo plaids. We found compelling evidence that the 2D pattern disparity is computed by combining disparities first extracted within orientation selective channels. This neural computation takes 10-15 ms, and is carried out even when subjects perceive not a single plaid but rather two gratings in different depth planes (transparency). However, we found that 1D disparities are not always effectively combined: when spatial frequency and contrast of the gratings are sufficiently different pattern disparity is not computed, a result that cannot be simply attributed to the transparency of such stimuli. Based on our results, we propose that a narrow-band implementation of the IOC (Intersection of Constraints) rule (Fennema and Thompson, 1979; Adelson and Movshon, 1982), preceded by cross-orientation suppression, underlies the extraction of pattern disparity.
Collapse
|
148
|
Abstract
Most living things and many nonliving things deform as they move, requiring observers to separate object motions from object deformations. When the object is partially occluded, the task becomes more difficult because it is not possible to use two-dimensional (2-D) contour correlations (Cohen, Jain, & Zaidi, 2010). That leaves dynamic depth matching across the unoccluded views as the main possibility. We examined the role of stereo cues in extracting motion of partially occluded and deforming three-dimensional (3-D) objects, simulated by disk-shaped random-dot stereograms set at randomly assigned depths and placed uniformly around a circle. The stereo-disparities of the disks were temporally oscillated to simulate clockwise or counterclockwise rotation of the global shape. To dynamically deform the global shape, random disparity perturbation was added to each disk's depth on each stimulus frame. At low perturbation, observers reported rotation directions consistent with the global shape, even against local motion cues, but performance deteriorated at high perturbation. Using 3-D global shape correlations, we formulated an optimal Bayesian discriminator for rotation direction. Based on rotation discrimination thresholds, human observers were 75% as efficient as the optimal model, demonstrating that global shapes derived from stereo cues facilitate inferences of object motions. To complement reports of stereo and motion integration in extrastriate cortex, our results suggest the possibilities that disparity selectivity and feature tracking are linked, or that global motion selective neurons can be driven purely from disparity cues.
Collapse
Affiliation(s)
- Anshul Jain
- Graduate Center for Vision Research, SUNY College of Optometry, New York, NY, USA.
| | | |
Collapse
|
149
|
A neural model of visual figure-ground segregation from kinetic occlusion. Neural Netw 2013; 37:141-64. [DOI: 10.1016/j.neunet.2012.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 11/19/2022]
|
150
|
Hou F, Huang CB, Liang J, Zhou Y, Lu ZL. Contrast gain-control in stereo depth and cyclopean contrast perception. J Vis 2013; 13:13.8.3. [PMID: 23820024 DOI: 10.1167/13.8.3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although human observers can perceive depth from stereograms with considerable contrast difference between the images presented to the two eyes (Legge & Gu, 1989), how contrast gain control functions in stereo depth perception has not been systematically investigated. Recently, we developed a multipathway contrast gain-control model (MCM) for binocular phase and contrast perception (Huang, Zhou, Lu, & Zhou, 2011; Huang, Zhou, Zhou, & Lu, 2010) based on a contrast gain-control model of binocular phase combination (Ding & Sperling, 2006). To extend the MCM to simultaneously account for stereo depth and cyclopean contrast perception, we manipulated the contrasts (ranging from 0.08 to 0.4) of the dynamic random dot stereograms (RDS) presented to the left and right eyes independently and measured both disparity thresholds for depth perception and perceived contrasts of the cyclopean images. We found that both disparity threshold and perceived contrast depended strongly on the signal contrasts in the two eyes, exhibiting characteristic binocular contrast gain-control properties. The results were well accounted for by an extended MCM model, in which each eye exerts gain control on the other eye's signal in proportion to its own signal contrast energy and also gain control over the other eye's gain control; stereo strength is proportional to the product of the signal strengths in the two eyes after contrast gain control, and perceived contrast is computed by combining contrast energy from the two eyes. The new model provided an excellent account of our data (r(2) = 0.945), as well as some challenging results in the literature.
Collapse
Affiliation(s)
- Fang Hou
- Laboratory of Brain Processes, Department of Psychology, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|