101
|
Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:14787. [PMID: 23990836 PMCID: PMC3747764 DOI: 10.3402/mehd.v23i0.14787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/28/2022]
Abstract
There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and non-infectious inflammatory diseases such as asthma and rheumatoid arthritis.
Collapse
|
102
|
Ma ZA. The role of peroxidation of mitochondrial membrane phospholipids in pancreatic β -cell failure. Curr Diabetes Rev 2012; 8:69-75. [PMID: 22414059 PMCID: PMC4884441 DOI: 10.2174/157339912798829232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/15/2011] [Accepted: 09/13/2011] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes (T2D) is characterized by peripheral insulin resistance and pancreatic islet β-cell failure. Accumulating evidence indicates that mitochondrial dysfunction is a central contributor to β-cell failure in the pathogenesis of T2D. This review focuses on mechanisms whereby reactive oxygen species (ROS) produced by β-cell in response to metabolic stress affect mitochondrial structure and function and lead to β-cell failure. Specifically, ROS oxidize mitochondrial membrane phospholipids such as cardiolipin, which impairs membrane integrity and leads to cytochrome c release and apoptosis. In addition, ROS activate UCP2 via peroxidation of the mitochondrial membrane phospholipids, which results in proton leak leading to reduced ATP synthesis and content in β-cells - critical parameters in the regulation of glucose-stimulated insulin secretion. Group VIA Phospholipase A2 (iPLA2β) appears to be a component of a mechanism for repairing mitochondrial phospholipids that contain oxidized fatty acid substituents, and genetic or acquired iPLA2β-deficiency increases β-cell mitochondrial susceptibility to injury from ROS and predisposes to development of T2D. Interventions that attenuate the adverse effects of ROS on β-cell mitochondrial phospholipids may prevent or retard the development of T2D.
Collapse
Affiliation(s)
- Zhongmin A Ma
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
103
|
Zhou H, Chen J, Lu X, Shen C, Zeng J, Chen L, Pei Z. Melatonin protects against rotenone-induced cell injury via inhibition of Omi and Bax-mediated autophagy in Hela cells. J Pineal Res 2012; 52:120-7. [PMID: 21883444 DOI: 10.1111/j.1600-079x.2011.00926.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disease, and environmental toxins such as rotenone play an important role in causing degeneration of dopaminergic neurons. Melatonin, a major secretory product of pineal, is recently reported to protect against rotenone-induced cell death in animal models. Yet, the mechanism involved in this protection needs to be elucidated. Here, we report that rotenone treatment (0-100 μM) decreased cell survival of Hela cells in a dose-dependent manner. At concentrations ranging from 0.1 to 100 μM, rotenone induced a dose-dependent increase in the expression of microtubule-associated protein 1 light chain 3 (LC3)-II, a protein associated with the autophagosomal membrane. Knockdown of Bax or Omi using shRNA inhibited 1 μM rotenone-induced autophagy. To determine whether melatonin would protect cells against rotenone-induced cell death and autophagy, we pretreated Hela cells with 250 μM melatonin for 24 hr in the presence of rotenone. Melatonin inhibited Bax expression and the release of the omi/HtrA2 into the cytoplasm induced by 1 μM rotenone. Melatonin 250 μM treatment also suppressed cell death induced by 0.1-100 μM rotenone and protected against the formation of LC3-II in cells exposed to 1 μM rotenone. This work demonstrates a novel role for melatonin as a neuroprotective agent against rotenone.
Collapse
Affiliation(s)
- Hongyan Zhou
- Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
104
|
Ramond A, Godin-Ribuot D, Ribuot C, Totoson P, Koritchneva I, Cachot S, Levy P, Joyeux-Faure M. Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia. Fundam Clin Pharmacol 2011; 27:252-61. [PMID: 22145601 DOI: 10.1111/j.1472-8206.2011.01015.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that chronic intermittent hypoxia (IH), a component of the obstructive sleep apnea syndrome, increases heart sensitivity to infarction. We investigate here the deleterious mechanisms potentially involved in the IH-induced infarction aggravation, investigating the role of oxidative stress. Male Wistar rats were subjected to chronic IH or normoxia (N). IH consisted of repetitive 1-min cycles (30 s with inspired O2 fraction 5% followed by 30 s normoxia) and was applied for 8 h during daytime, for 14 days. After the 14-day exposure, mean arterial blood pressure (MABP) was higher in the hypoxic compared with the normoxic group. Infarct size, measured on isolated hearts after ischemia-reperfusion, was significantly increased in IH compared with normoxic group (36.0 ± 2.8% vs. 21.8 ± 3.1% for tempol corresponding control groups and 40.3 ± 3.5% vs. 29.4 ± 3.7% for melatonin corresponding control groups). Tempol or melatonin administration during the 14-day IH exposure prevented both IH-induced increase in MABP and infarction aggravation (24.8 ± 2.8% vs. 25.9 ± 4.0% for tempol-treated groups and 32.3 ± 3.2% vs. 34.5 ± 4.2% for melatonin-treated groups). Myocardial oxidative stress was induced by IH, as measured by dihydroethidium (DHE) level and p47-phox expression (the cytosolic protein required for the activation of the NADPH oxidase). This effect was abolished by tempol and melatonin treatments, which were able to normalize DHE level and NADPH expression. In conclusion, oxidative stress appears to mediate the deleterious cardiovascular effects of IH and, in particular, the increased myocardial susceptibility to infarction.
Collapse
|
105
|
Rudd DM, Dobson GP. Eight hours of cold static storage with adenosine and lidocaine (Adenocaine) heart preservation solutions: Toward therapeutic suspended animation. J Thorac Cardiovasc Surg 2011; 142:1552-61. [DOI: 10.1016/j.jtcvs.2011.05.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 04/19/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
106
|
Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:703538. [PMID: 22110477 PMCID: PMC3216264 DOI: 10.1155/2012/703538] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/03/2011] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common human endocrine disease and is characterized by peripheral insulin resistance and pancreatic islet β-cell failure. Accumulating evidence indicates that mitochondrial dysfunction is a central contributor to β-cell failure in the evolution of T2DM. As reviewed elsewhere, reactive oxygen species (ROS) produced by β-cell mitochondria as a result of metabolic stress activate several stress-response pathways. This paper focuses on mechanisms whereby ROS affect mitochondrial structure and function and lead to β-cell failure. ROS activate UCP2, which results in proton leak across the mitochondrial inner membrane, and this leads to reduced β-cell ATP synthesis and content, which is a critical parameter in regulating glucose-stimulated insulin secretion. In addition, ROS oxidize polyunsaturated fatty acids in mitochondrial cardiolipin and other phospholipids, and this impairs membrane integrity and leads to cytochrome c release into cytosol and apoptosis. Group VIA phospholipase A2 (iPLA2β) appears to be a component of a mechanism for repairing mitochondrial phospholipids that contain oxidized fatty acid substituents, and genetic or acquired iPLA2β-deficiency increases β-cell mitochondrial susceptibility to injury from ROS and predisposes to developing T2DM. Interventions that attenuate ROS effects on β-cell mitochondrial phospholipids might prevent or retard development of T2DM.
Collapse
|
107
|
Nair SM, Rahman RMA, Clarkson AN, Sutherland BA, Taurin S, Sammut IA, Appleton I. Melatonin treatment following stroke induction modulates L-arginine metabolism. J Pineal Res 2011; 51:313-23. [PMID: 21605165 DOI: 10.1111/j.1600-079x.2011.00891.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The efficacy of melatonin treatment in experimental stroke has been established. Some of the neuroprotective properties have been attributed to its anti-oxidant and anti-inflammatory effects. Nitric oxide synthases (NOS) and cyclooxygenases (COX) are considered to have a significant role in the inflammatory milieu occurring in acute stroke. While previous reports have shown that pretreatment with melatonin in a stroke model can modulate NOS isoforms, the effect of post-treatment with melatonin on l-arginine metabolism has not been investigated. This study initially examined the effect of melatonin (1 nm-1 mm) on l-arginine metabolism pathways in human fibrosarcoma fibroblasts (HT-1080) fibroblasts. Evidence of neuroprotection with melatonin was evaluated in rats subjected to middle cerebral artery occlusion (MCAO). Animals were treated with three daily doses of 5 mg/kg i.p., starting 1 hr after the onset of ischemia. Constitutive NOS activity but not expression was significantly increased by in vitro exposure (72 hr) to melatonin. In addition, melatonin treatment increased arginase activity by increasing arginase II expression. In vivo studies showed that melatonin treatment after MCAO significantly inhibited inducible NOS activity and attenuated expression of the inducible isoform, resulting in decreased total NOS activity and tissue nitrite levels. COX activity was significantly reduced with melatonin treatment. The neuroprotective anti-inflammatory effects of melatonin were consistent with the substantial reduction in infarct volume throughout the cortex and striatum and recovery of mitochondrial enzyme activities. The evidence presented here suggests that modulation of l-arginine metabolism by melatonin make it a valuable neuroprotective therapy for stroke.
Collapse
Affiliation(s)
- Shiva M Nair
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
108
|
Hibaoui Y, Reutenauer-Patte J, Patthey-Vuadens O, Ruegg UT, Dorchies OM. Melatonin improves muscle function of the dystrophic mdx5Cv mouse, a model for Duchenne muscular dystrophy. J Pineal Res 2011; 51:163-71. [PMID: 21486366 DOI: 10.1111/j.1600-079x.2011.00871.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked muscle-wasting disease caused by the absence of the cytoskeletal protein dystrophin. In addition to abnormal calcium handling, numerous studies point to a crucial role of oxidative stress in the pathogenesis of the disease. Considering the impressive results provided by antioxidants on dystrophic muscle structure and function, we investigated whether melatonin can protect the mdx(5Cv) mouse, an animal model for DMD. Male mdx(5Cv) mouse pups were treated with melatonin by daily intraperitoneal (i.p.) injection (30 mg/kg body weight) or by subcutaneous (s.c.) implant(s) (18 or 54 mg melatonin as Melovine® implants) from 17/18 to 28/29 days of age. Isometric force of the triceps surae was recorded at the end of the treatment. The i.p. treatment increased the phasic twitch tension of mdx(5Cv) mice. The maximal tetanic tension was ameliorated by 18 mg s.c. and 30 mg/kg i.p. treatments. Melatonin caused the dystrophic muscle to contract and relax faster. The force-frequency relationship of melatonin-treated dystrophic mice was shifted to the right. In accordance with improved muscle function, melatonin decreased plasma creatine kinase activity, a marker for muscle injury. Melatonin treatment increased total glutathione content and lowered the oxidized/reduced glutathione ratio, indicating a better redox status of the muscle. In light of the present investigation, the therapeutic potential of melatonin should be further considered for patients with DMD.
Collapse
Affiliation(s)
- Youssef Hibaoui
- Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
109
|
|
110
|
Dominguez-Rodriguez A, Abreu-Gonzalez P. Melatonin: Still a forgotten antioxidant. Int J Cardiol 2011; 149:382. [DOI: 10.1016/j.ijcard.2011.02.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 02/25/2011] [Indexed: 11/25/2022]
|
111
|
Abstract
Melatonin is a substance chiefly produced by the pineal gland and has a key role in the sleep-wake cycle. It also has an important antioxidant role. Exogenous melatonin has a short half-life and is available in a range of preparations. Newer analogues targeted for the recently discovered melatonin MT1 and MT2 receptors have also been developed. Exogenous melatonin is used as a resynchronisation agent in jet lag and for other sleep disturbances. Perioperatively, melatonin has been used as a premedicant, sedative and analgesic. It decreases paediatric emergence delirium. The antioxidant properties of melatonin are being investigated for use in sepsis and reperfusion injuries. It would appear that patients on melatonin supplements should continue taking them perioperatively because there may be benefits. Melatonin and its analogues will be increasingly encountered in the perioperative setting.
Collapse
Affiliation(s)
- J Jarratt
- Department of Anaesthesia, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
112
|
Rodella LF, Rossini C, Favero G, Foglio E, Loreto C, Rezzani R. Nicotine-induced morphological changes in rat aorta: the protective role of melatonin. Cells Tissues Organs 2011; 195:252-9. [PMID: 21494021 DOI: 10.1159/000324919] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2011] [Indexed: 11/19/2022] Open
Abstract
We analyzed the morphological changes in rat aortas during nicotine administration in order to investigate the involvement of vascular smooth muscle cells (VSMCs) in the regulation of vascular wall homeostasis. We also considered the possibility of restoring VSMC changes using melatonin as an antioxidant. We studied 4 groups of animals over 56 days. Three groups of rats were used as controls (the first without treatment, the second with melatonin alone and the third with nicotine alone). The last group of rats was orally treated with nicotine for the first 28 days and with melatonin for the last 28 days. Morphological changes in vessels were evaluated by histological procedures and immunohistochemical analysis using thrombospondin-1 (TSP-1), transforming growth factor-β1 (TGF-β1), plasminogen activator inhibitor-1 (PAI-1) and CD31 antibodies. We demonstrated that TSP-1, TGF-β1 and PAI-1 increased after nicotine administration. We believe that TSP-1 is responsible for neointima formation and that it is able to influence TGF-β1 and PAI-1 expression. Histological and immunohistochemical analysis by CD31 antibody showed that only a few endothelial cells were present in the aorta after nicotine administration compared to controls and rats treated with melatonin after nicotine administration. Moreover, histological analysis showed that neointima formation was present after nicotine treatment. Furthermore, melatonin inhibited neointima formation increasing TSP-1 expression. The ability of melatonin to inhibit neointima formation suggests that it could be a useful treatment for homeostasis of vascular walls.
Collapse
Affiliation(s)
- Luigi Fabrizio Rodella
- Department of Biomedical Sciences and Biotechnologies, Section of Human Anatomy, University of Brescia, Brescia, Italy
| | | | | | | | | | | |
Collapse
|
113
|
Camara AKS, Bienengraeber M, Stowe DF. Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. Front Physiol 2011; 2:13. [PMID: 21559063 PMCID: PMC3082167 DOI: 10.3389/fphys.2011.00013] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 03/24/2011] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury.
Collapse
Affiliation(s)
- Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin Milwaukee, WI, USA
| | | | | |
Collapse
|
114
|
Nduhirabandi F, Du Toit EF, Blackhurst D, Marais D, Lochner A. Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J Pineal Res 2011; 50:171-82. [PMID: 21073520 DOI: 10.1111/j.1600-079x.2010.00826.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Obesity, a major risk factor for ischemic heart disease, is associated with increased oxidative stress and reduced antioxidant status. Melatonin, a potent free radical scavenger and antioxidant, has powerful cardioprotective effects in lean animals but its efficacy in obesity is unknown. We investigated the effects of chronic melatonin administration on the development of the metabolic syndrome as well as ischemia-reperfusion injury in a rat model of diet-induced obesity (DIO). Male Wistar rats received a control diet, a control diet with melatonin, a high-calorie diet, or a high-calorie diet with melatonin (DM). Melatonin (4 mg/kg/day) was administered in the drinking water. After 16 wk, biometric and blood metabolic parameters were measured. Hearts were perfused ex vivo for the evaluation of myocardial function, infarct size (IFS) and biochemical changes [activation of PKB/Akt, ERK, p38 MAPK, AMPK, and glucose transporter (GLUT)-4 expression). The high-calorie diet caused increases in body weight (BW), visceral adiposity, serum insulin and triglycerides (TRIG), with no change in glucose levels. Melatonin treatment reduced the BW gain, visceral adiposity, blood TRIG, serum insulin, homeostatic model assessment index and thiobarbituric acid reactive substances in the DIO group. Melatonin reduced IFS in DIO and control groups and increased percentage recovery of functional performance of DIO hearts. During reperfusion, hearts from melatonin-treated rats had increased activation of PKB/Akt, ERK42/44 and reduced p38 MAPK activation. Chronic melatonin treatment prevented the metabolic abnormalities induced by DIO and protected the heart against ischemia-reperfusion injury. These beneficial effects were associated with activation of the reperfusion injury salvage kinases pathway.
Collapse
Affiliation(s)
- Frederic Nduhirabandi
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | | | |
Collapse
|
115
|
The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 2011; 11:369-81. [PMID: 21296189 DOI: 10.1016/j.mito.2011.01.010] [Citation(s) in RCA: 400] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 02/06/2023]
Abstract
Cytochrome c (Cytc) is essential in mitochondrial electron transport and intrinsic type II apoptosis. Mammalian Cytc also scavenges reactive oxygen species (ROS) under healthy conditions, produces ROS with the co-factor p66(Shc), and oxidizes cardiolipin during apoptosis. The recent finding that Cytc is phosphorylated in vivo underpins a model for the pivotal role of Cytc regulation in making life and death decisions. An apoptotic sequence of events is proposed involving changes in Cytc phosphorylation, increased ROS via increased mitochondrial membrane potentials or the p66(Shc) pathway, and oxidation of cardiolipin by Cytc followed by its release from the mitochondria. Cytc regulation in respiration and cell death is discussed in a human disease context including neurodegenerative and cardiovascular diseases, cancer, and sepsis.
Collapse
|
116
|
Petrosillo G, Di Venosa N, Moro N, Colantuono G, Paradies V, Tiravanti E, Federici A, Ruggiero FM, Paradies G. In vivo hyperoxic preconditioning protects against rat-heart ischemia/reperfusion injury by inhibiting mitochondrial permeability transition pore opening and cytochrome c release. Free Radic Biol Med 2011; 50:477-83. [PMID: 21130864 DOI: 10.1016/j.freeradbiomed.2010.11.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/22/2010] [Accepted: 11/24/2010] [Indexed: 12/24/2022]
Abstract
In vivo hyperoxic preconditioning (PC) has been shown to protect against ischemia/reperfusion (I/R) myocardial damage. Mitochondrial permeability transition pore (MPTP) opening is an important event in cardiomyocyte cell death occurring during I/R and therefore a possible target for cardioprotection. We tested the hypothesis that in vivo hyperoxic PC, obtained by mechanical ventilation of animals, could protect heart against I/R injury by inhibiting MPTP opening and cytochrome c release from mitochondria. Mechanically ventilated rats were first exposed to a short period of hyperoxia and isolated hearts were subsequently subjected to I/R in a Langendorff apparatus. Hyperoxic PC significantly improved the functional recovery of hearts on reperfusion, reduced the infarct size, and decreased necrotic damage as shown by the reduced release of lactate dehydrogenase. Mitochondria from hyperoxic PC hearts were less sensitive than mitochondria from reperfused heart to MPTP opening. In addition, hyperoxic PC prevented mitochondrial NAD(+) depletion, an indicator of MPTP opening, and cytochrome c release as well as cardiolipin oxidation/depletion associated with I/R. Together, these results demonstrate that hyperoxic PC protects against heart I/R injury by inhibiting MPTP opening and cytochrome c release. Thus, in vivo hyperoxic PC may represent a useful strategy for the treatment of cardiac I/R injury and could have potential applications in clinical practice.
Collapse
Affiliation(s)
- G Petrosillo
- Department of Biochemistry and Molecular Biology and CNR Institute of Biomembranes and Bioenergetics, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Matrix metalloproteinases (MMPs) are part of a superfamily of metal-requiring proteases that play important roles in tissue remodeling by breaking down proteins in the extracellular matrix that provides structural support for cells. The intricate balance in protease/anti-protease stoichiometry is a contributing factor in a number of diseases. Melatonin possesses multifunctional bioactivities including antioxidative, anti-inflammatory, endocrinologic and behavioral effects. As melatonin affects the redox status of tissues, the association of reactive oxygen species (ROS) with tissue injury under different circumstances may be mitigated by melatonin. Redox signaling is expanding into all areas of basic and clinical sciences, and this timely review focuses on the topic of regulation of MMP activities by melatonin. This is a rapidly growing field. Accumulating evidence indicates that oxidative stress plays an important role in regulating the activities of MMPs that are involved in various cellular processes such as cellular proliferation, angiogenesis, apoptosis, invasion and metastasis. This review offers sections on MMPs, melatonin, major physiological and pathophysiological conditions in the context to MMPs, followed by redox signaling mechanisms that are known to influence the cellular processes. Finally, we discuss the emerging molecular mechanisms relevant to regulatory actions of melatonin on the activities of MMPs. The possibility that melatonin might have therapeutic significance via regulation of MMPs may be a novel approach in the treatment of some diseases.
Collapse
Affiliation(s)
- Snehasikta Swarnakar
- Department of Physiology, Drug Development Diagnostic and Biotechnology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.
| | | | | | | |
Collapse
|
118
|
Dominguez-Rodriguez A, Arroyo-Ucar E, Abreu-Gonzalez P. Role of melatonin in preventing mitochondrial dysfunction in myocardial ischemia-reperfusion injury. Am J Cardiol 2010; 106:1521-2. [PMID: 21059448 DOI: 10.1016/j.amjcard.2010.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/13/2010] [Indexed: 12/17/2022]
|
119
|
Cho EH, Koh PO. Proteomic identification of proteins differentially expressed by melatonin in hepatic ischemia-reperfusion injury. J Pineal Res 2010; 49:349-55. [PMID: 20666976 DOI: 10.1111/j.1600-079x.2010.00799.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hepatic ischemia-reperfusion (I-R) injury induces hepatic dysfunction or failure. Melatonin is a potent free radical scavenger and a strong antioxidant. Although many studies have demonstrated the protective effect of melatonin in hepatic injury, the molecular mechanisms of this protection are unclear. We identified specific proteins that are differentially expressed by melatonin treatment in hepatic I-R injury. Adult mice were subjected to 1 hr of ischemia and 3 hr of reperfusion. Animals were treated with vehicle or melatonin (10 mg/kg, i.p.) 15 min prior to ischemia and just before reperfusion. Serum aspartate aminotransferase and alanine aminotransferase levels were higher in I-R group than in sham-operated group, and these increases were reduced by melatonin treatment. Proteins that were differentially expressed following melatonin treatment during hepatic I-R injury were detected using two-dimensional gel electrophoresis. Hepatic I-R injury induced down-regulation of glyoxalase I, glutaredoxin-3, spermidine synthase, proteasome subunit beta type-4, and dynamin like protein-1 (DLP-1). However, melatonin prevented the reductions in these proteins induced by I-R injury. Among the identified proteins, we focused on DLP-1, which is essential for the maintenance of mitochondrial and endoplasmic reticulum morphology. Western blot analysis confirmed that melatonin prevents the hepatic I-R injury-induced decrease in DLP-1. These results suggest that melatonin protects hepatic cells against hepatic I-R injury and that its protective effects involve the regulation of specific proteins.
Collapse
Affiliation(s)
- Eun-Hae Cho
- Department of Anatomy, College of Veterinary Medicine and Research Instituite of Life Science, Gyeongsang National University, Jinju, South Korea
| | | |
Collapse
|
120
|
Dominguez-Rodriguez A, Abreu-Gonzalez P. Myocardial ischemia-reperfusion injury: Possible role of melatonin. World J Cardiol 2010; 2:233-6. [PMID: 21160589 PMCID: PMC2999058 DOI: 10.4330/wjc.v2.i8.233] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/15/2010] [Accepted: 07/22/2010] [Indexed: 02/06/2023] Open
Abstract
Our knowledge and understanding of the pathophysiology of coronary atherosclerosis has increased enormously over the last 20 years. Reperfusion through thrombolysis or percutaneous coronary angioplasty is the standard treatment for preventing acute myocardial infarction. Early reperfusion is an absolute prerequisite for survival of the ischemic myocardium, but reperfusion itself may lead to accelerated and additional myocardial injury beyond that generated by ischemia alone. These outcomes, in a range of reperfusion-associated pathologies, are collectively termed "reperfusion injuries". Reactive oxygen species are known to be produced in large quantities in the first few minutes of the post-ischemia reperfusion process. Similarly, scientific evidence from the last 15 years has suggested that melatonin has beneficial effects on the cardiovascular system. The presence of vascular melatoninergic receptor binding sites has been demonstrated; these receptors are functionally linked to vasoconstrictor or vasodilatory effects of melatonin. It has been shown that patients with coronary heart disease have a low melatonin production rate, especially those with higher risk of cardiac infarction and/or sudden death. Melatonin attenuates molecular and cellular damage resulting from cardiac ischemia-reperfusion in which destructive free radicals are involved.
Collapse
Affiliation(s)
- Alberto Dominguez-Rodriguez
- Alberto Dominguez-Rodriguez, Department of Cardiology, Hospital Universitario de Canarias, Tenerife E-38320, Spain
| | | |
Collapse
|
121
|
Abstract
Melatonin is a natural occurring compound with well-known antioxidant properties. Melatonin is ubiquitously distributed and because of its small size and amphiphilic nature, it is able to reach easily all cellular and subcellular compartments. The highest intracellular melatonin concentrations are found in mitochondria, raising the possibility of functional significance for this targeting with involvement in situ in mitochondrial activities. Mitochondria, the powerhouse of the cell, are considered to be the most important cellular organelles to contribute to degenerative processes mainly through respiratory chain dysfunction and formation of reactive oxygen species, leading to damage to mitochondrial proteins, lipids and DNA. Therefore, protecting mitochondria from oxidative damage could be an effective therapeutic strategy against cellular degenerative processes. Many of the beneficial effects of melatonin administration may depend on its effect on mitochondrial physiology. Cardiolipin, a phospholipid located at the level of inner mitochondrial membrane is known to be intimately involved in several mitochondrial bioenergetic processes as well as in mitochondrial-dependent steps of apoptosis. Alterations to cardiolipin structure, content and acyl chain composition have been associated with mitochondrial dysfunction in multiple tissues in several physiopathological situations and aging. Recently, melatonin was reported to protect the mitochondria from oxidative damage by preventing cardiolipin oxidation and this may explain, at least in part, the beneficial effect of this molecule in mitochondrial physiopathology. In this review, we discuss the role of melatonin in preventing mitochondrial dysfunction and disease.
Collapse
|
122
|
Chang JC, Kou SJ, Lin WT, Liu CS. Regulatory role of mitochondria in oxidative stress and atherosclerosis. World J Cardiol 2010; 2:150-9. [PMID: 21160733 PMCID: PMC2999054 DOI: 10.4330/wjc.v2.i6.150] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/07/2010] [Accepted: 06/14/2010] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial physiology and biogenesis play a crucial role in the initiation and progression of cardiovascular disease following oxidative stress-induced damage such as atherosclerosis (AST). Dysfunctional mitochondria caused by an increase in mitochondrial reactive oxygen species (ROS) production, accumulation of mitochondrial DNA damage, and respiratory chain deficiency induces death of endothelial/smooth muscle cells and favors plaque formation/rupture via the regulation of mitochondrial biogenesis-related genes such as peroxisome proliferator-activated receptor γ coactivator (PGC-1), although more detailed mechanisms still need further study. Based on the effect of healthy mitochondria produced by mitochondrial biogenesis on decreasing ROS-mediated cell death and the recent finding that the regulation of PGC-1 involves mitochondrial fusion-related protein (mitofusin), we thus infer the regulatory role of mitochondrial fusion/fission balance in AST pathophysiology. In this review, the first section discusses the possible association between AST-inducing factors and the molecular regulatory mechanisms of mitochondrial biogenesis and dynamics, and explains the role of mitochondria-dependent regulation in cell apoptosis during AST development. Furthermore, nitric oxide has the Janus-faced effect by protecting vascular damage caused by AST while being a reactive nitrogen species (RNS) which act together with ROS to damage cells. Therefore, in the second section we discuss mitochondrial ATP-sensitive K(+) channels, which regulate mitochondrial ion transport to maintain mitochondrial physiology, involved in the regulation of ROS/RNS production and their influence on AST/cardiovascular diseases (CVD). Through this review, we can further appreciate the multi-regulatory functions of the mitochondria involved in AST development. The understanding of these related mechanisms will benefit drug development in treating AST/CVD through targeted biofunctions of mitochondria.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Jui-Chih Chang, Wei-Ting Lin, Chin-San Liu, Department of Neurology, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan, China
| | | | | | | |
Collapse
|
123
|
Luchetti F, Canonico B, Betti M, Arcangeletti M, Pilolli F, Piroddi M, Canesi L, Papa S, Galli F. Melatonin signaling and cell protection function. FASEB J 2010; 24:3603-24. [PMID: 20534884 DOI: 10.1096/fj.10-154450] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Besides its well-known regulatory role on circadian rhythm, the pineal gland hormone melatonin has other biological functions and a distinct metabolism in various cell types and peripheral tissues. In different tissues and organs, melatonin has been described to act as a paracrine and also as an intracrine and autocrine agent with overall homeostatic functions and pleiotropic effects that include cell protection and prosurvival factor. These latter effects, documented in a number of in vitro and in vivo studies, are sustained through both receptor-dependent and -independent mechanisms that control detoxification and stress response genes, thus conferring protection against a number of xenobiotics and endobiotics produced by acute and chronic noxious stimuli. Redox-sensitive components are included in the cell protection signaling of melatonin and in the resulting transcriptional response that involves the control of NF-κB, AP-1, and Nrf2. By these pathways, melatonin stimulates the expression of antioxidant and detoxification genes, acting in turn as a glutathione system enhancer. A further and converging mechanism of cell protection by this indoleamine described in different models seems to lie in the control of damage and signaling function of mitochondria that involves decreased production of reactive oxygen species and activation of the antiapoptotic and redox-sensitive element Bcl2. Recent evidence suggests that upstream components in this mitochondrial route include the calmodulin pathway with its central role in melatonin signaling and the survival-promoting component of MAPKs, ERK1/2. In this review article, we will discuss these and other molecular aspects of melatonin signaling relevant to cell protection and survival mechanisms.
Collapse
Affiliation(s)
- Francesca Luchetti
- Dipartimento di Scienze Dell’Uomo dell’Ambiente e della Natura, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Kong HL, Li ZQ, Zhao YJ, Zhao SM, Zhu L, Li T, Fu Y, Li HJ. Ginsenoside Rb1 protects cardiomyocytes against CoCl2-induced apoptosis in neonatal rats by inhibiting mitochondria permeability transition pore opening. Acta Pharmacol Sin 2010; 31:687-95. [PMID: 20523339 DOI: 10.1038/aps.2010.52] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM To investigate whether mitochondria permeability transition pore (mPTP) opening was involved in ginsenoside Rb1 (Gs-Rb1) induced anti-hypoxia effects in neonatal rat cardiomyocytes ex vivo. METHODS Cardiomyocytes were randomly divided into 7 groups: control group, hypoxia group (500 micromol/L CoCl(2)), Gs-Rb1 200 micromol/L group (CoCl(2) intervention+Gs-Rb1), wortmannin (PI3K inhibitor) 0.5 micromol/L group, wortmannin+Gs-Rb1 group, adenine 9-beta-D-arabinofuranoside (Ara A, AMPK inhibitor) 500 micromol/L group, and Ara A and Gs-Rb1 group. Apoptosis rate was determined by using flow cytometry. The opening of the transient mPTP was assessed by using co-loading with calcein AM and CoCl(2) in high conductance mode. Expression of GSK-3beta, cytochrome c, caspase-3 and poly (ADP-ribose) polymerase (PARP) was measured by using Western blotting. DeltaGSK-3beta was defined as the ratio of p-Ser9-GSK-3beta to total GSK-3beta. RESULTS CoCl(2) significantly stimulated mPTP opening and up-regulated the level of DeltaGSK-3beta. There was a statistically significant positive correlation between apoptosis rate and mPTP opening, between apoptosis rate and DeltaGSK-3beta, and between mPTP opening and DeltaGSK-3beta. Gs-Rb1 significantly inhibited mPTP opening induced by hypoxia (41.3%+/-2.0%, P<0.001) . Gs-Rb1 caused a 77.3%+/-3.2% reduction in the expression of GSK-3beta protein (P<0.001) and a significant increase of 1.182+/-0.007-fold (P=0.0001) in p-Ser9-GSK-3beta compared with control group. Wortmannin and Ara A significantly inhibited the effect of Gs-Rb1 on mPTP opening and DeltaGSK-3beta. Gs-Rb1 significantly decreased expression of cytochrome c (66.1%+/-1.7%, P=0.001), caspase-3 (56.5%+/-2.7%, P=0.001) and cleaved poly ADP-ribose polymerase (PARP) (57.9%+/-1.4%, P=0.001). CONCLUSION Gs-Rb1 exerted anti-hypoxia effect on neonatal rat cardiomyocytes by inhibiting GSK-3beta-mediated mPTP opening.
Collapse
|
125
|
Reiter RJ, Tan DX, Paredes SD, Fuentes-Broto L. Beneficial effects of melatonin in cardiovascular disease. Ann Med 2010; 42:276-85. [PMID: 20455793 DOI: 10.3109/07853890903485748] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The experimental data obtained from both human and rodent studies suggest that melatonin may have utility in the treatment of several cardiovascular conditions. In particular, melatonin's use in reducing the severity of essential hypertension should be more widely considered. In rodent studies melatonin has been shown to be highly effective in limiting abnormal cardiac physiology and the loss of critical heart tissue resulting from ischemia/reperfusion injury. Melatonin may also be useful in reducing cardiac hypertrophy in some situations and thereby limiting the frequency of heart failure. Finally, some conventional drugs currently in use have cardiotoxicity as a side-effect. Based on studies in rodents, melatonin, due to its multiple anti-oxidative actions, is highly effective in abrogating drug-mediated damage to the heart. Taken together, the findings from human and animal studies support the consideration of melatonin as a cardioprotective agent.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | | | |
Collapse
|
126
|
Espino J, Bejarano I, Redondo PC, Rosado JA, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB. Melatonin reduces apoptosis induced by calcium signaling in human leukocytes: Evidence for the involvement of mitochondria and Bax activation. J Membr Biol 2010; 233:105-18. [PMID: 20130848 DOI: 10.1007/s00232-010-9230-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 01/11/2010] [Indexed: 01/24/2023]
Abstract
We have evaluated the effect of melatonin on apoptosis evoked by increases in [Ca(2+)]( c ) in human leukocytes. Our results show that treatment of neutrophils with the calcium mobilizing agonist FMLP or the specific inhibitor of calcium reuptake thapsigargin induced a transient increase in [Ca(2+)]( c ). Our results also show that FMLP and thapsigargin increased caspase-9 and -3 activities and the active forms of both caspases. The effect of FMLP and thapsigargin on caspase activation was time-dependent. Similar results were obtained when lymphocytes were stimulated with thapsigargin. This stimulatory effect was accompanied by induction of mPTP, activation of the proapoptotic protein Bax and release of cytochrome c. However, when leukocytes were pretreated with melatonin, all of the apoptotic features indicated above were significantly reversed. Our results suggest that melatonin reduces caspase-9 and -3 activities induced by increases in [Ca(2+)]( c ) in human leukocytes, which are produced through the inhibition of both mPTP and Bax activation.
Collapse
Affiliation(s)
- Javier Espino
- Department of Physiology, University of Extremadura, Badajoz, Spain
| | | | | | | | | | | | | | | |
Collapse
|