101
|
Horny L, Adamek T, Gultova E, Zitny R, Vesely J, Chlup H, Konvickova S. Correlations between age, prestrain, diameter and atherosclerosis in the male abdominal aorta. J Mech Behav Biomed Mater 2011; 4:2128-32. [PMID: 22098912 DOI: 10.1016/j.jmbbm.2011.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/01/2011] [Accepted: 07/18/2011] [Indexed: 11/28/2022]
Abstract
The longitudinal prestrain of arteries facilitates their physiological function. Remodeling, adaptation and aging result in an age-dependent magnitude of the pretension. Although the phenomenon is known, detailed statistics, especially for human arteries, are lacking. This study was designed to propose the regression model capable of estimating the prestrain of the human abdominal aorta. The length of the abdominal aorta before, l, and after excision from the body, L, the diameter, heart weight, thickness of left ventricle and degree of atherosclerosis were collected in autopsies of 156 male cadavers of known age. Longitudinal prestrain was quantified by means of the stretch ratio λ=l/L. Statistical analysis revealed significant dependence between age, prestrain, diameter and atherosclerosis, which were best fitted to the power law equation. Longitudinal prestretch reduced with age significantly; λmean=1.30±0.07 for age<30 (n=29), whereas λmean=1.06±0.03 for age>59 (n=31) with p-value<0.0001. Raw data gave linear correlation coefficients as follows: λ-age (R=-0.842); l-age (R=0.023); L-age (R=0.476); (l-L)-age (R=-0.811). It was concluded that longitudinal prestrain decreases nonlinearly with age and both age and diameter are suitable predictors of the prestrain. Data suggests that unloaded length elongates with age in contrast to the elastic retraction.
Collapse
Affiliation(s)
- Lukas Horny
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
102
|
Sokolis DP, Sassani S, Kritharis EP, Tsangaris S. Differential histomechanical response of carotid artery in relation to species and region: mathematical description accounting for elastin and collagen anisotropy. Med Biol Eng Comput 2011; 49:867-79. [PMID: 21626234 DOI: 10.1007/s11517-011-0784-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 05/05/2011] [Indexed: 11/24/2022]
Abstract
The selection of a mathematical descriptor for the passive arterial mechanical behavior has been long debated in the literature and customarily constrained by lack of pertinent data on the underlying microstructure. Our objective was to analyze the response of carotid artery subjected to inflation/extension with phenomenological and microstructure-based candidate strain-energy functions (SEFs), according to species (rabbit vs. pig) and region (proximal vs. distal). Histological variations among segments were examined, aiming to explicitly relate them with the differential material response. The Fung-type model could not capture the biphasic response alone. Combining a neo-Hookean with a two-fiber family term alleviated this restraint, but force data were poorly captured, while consideration of low-stress anisotropy via a quadratic term allowed improved simulation of both pressure and force data. The best fitting was achieved with the quadratic and Fung-type or four-fiber family SEF. The latter simulated more closely than the two-fiber family the high-stress response, being structurally justified for all artery types, whereas the quadratic term was justified for transitional and muscular arteries exhibiting notable elastin anisotropy. Diagonally arranged fibers were associated with pericellular medial collagen, and circumferentially and longitudinally arranged fibers with medial and adventitial collagen bundles, evidenced by the significant correlations of SEF parameters with quantitative histology.
Collapse
Affiliation(s)
- Dimitrios P Sokolis
- Laboratory of Biomechanics, Center for Experimental Surgery, Foundation of Biomedical Research, Academy of Athens, Athens, Greece.
| | | | | | | |
Collapse
|
103
|
Callaghan FM, Luechinger R, Kurtcuoglu V, Sarikaya H, Poulikakos D, Baumgartner RW. Wall stress of the cervical carotid artery in patients with carotid dissection: a case-control study. Am J Physiol Heart Circ Physiol 2011; 300:H1451-8. [DOI: 10.1152/ajpheart.00871.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spontaneous internal carotid artery (ICA) dissection (sICAD) results from an intimal tear located around the distal carotid sinus. The mechanisms causing the tear are unknown. This case-control study tested the hypotheses that head movements increase the wall stress in the cervical ICA and that the stress increase is greater in patients with sICAD than in controls. Five patients with unilateral, recanalized, left sICAD and five matched controls were investigated before and after maximal head rotation to the left and neck hyperextension after 45° head rotation to the left. The anatomy of the extracranial carotid arteries was assessed by magnetic resonance imaging and used to create finite element models of the right ICA. Wall stress increased after head movements. Increases above the 80th and 90th percentile were located at the intimal side of the artery wall from 7.4 mm below to 10 mm above the cranial edge of the carotid sinus, i.e., at the same location as histologically confirmed tears in patients with sICAD. Wall stress increase did not differ between patients and controls. The present findings suggest that wall stress increases at the intimal side of the artery wall surrounding the distal edge of the carotid bulb after head movements may be important for the development of carotid dissection. The lack of wall stress difference between the two groups indicates that the carotid arteries of patients with carotid dissection have either distinct functional or anatomical properties or endured unusually heavy wall stresses to initiate dissection.
Collapse
Affiliation(s)
- Fraser M. Callaghan
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich,
| | - Roger Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, and
| | - Vartan Kurtcuoglu
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich,
| | - Hakan Sarikaya
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich,
| | | |
Collapse
|
104
|
García A, Peña E, Laborda A, Lostalé F, De Gregorio MA, Doblaré M, Martínez MA. Experimental study and constitutive modelling of the passive mechanical properties of the porcine carotid artery and its relation to histological analysis: Implications in animal cardiovascular device trials. Med Eng Phys 2011; 33:665-76. [PMID: 21371929 DOI: 10.1016/j.medengphy.2011.01.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 12/30/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
The present study focusses on the determination, comparison and constitutive modelling of the passive mechanical properties of the swine carotid artery over very long stretches in both proximal and distal regions. Special attention is paid to the histological and mechanical variations of these properties depending on the proximity to the heart. The results can have clinical relevance, especially in the research field of intravascular device design. Before the final clinical trials on humans, research in the vascular area is conducted on animal models, swine being the most common due to the similarities between the human and swine cardiovascular systems as well as the fact that the swine size is suitable for testing devices, in this case endovascular carotid systems. The design of devices usually involves numerical techniques, and an important feature is the appropriate modelling of the mechanical properties of the vessel. Fourteen carotid swine arteries were harvested just after sacrifice and cyclic uniaxial tension tests in longitudinal and circumferential directions were performed for distal and proximal samples. The stress-stretch curves obtained were fitted with a hyperelastic anisotropic model. Stress-free configuration states were also analyzed. Finally, human and swine samples were processed in a histological laboratory and images were used to quantify their microconstituents. The statistical analysis revealed significant differences between the mechanical behavior of proximal and distal locations in the circumferential but not in the longitudinal direction. Circumferential direction samples show clear differences both in residual stretches and tensile curves between the two locations, while the features of longitudinal specimens are independent of the axial position. The statistical analysis provides significant evidence of changes depending on the position of the sample, mainly in elastin and SMC quantification.
Collapse
Affiliation(s)
- A García
- Group of Structural Mechanics and Materials Modelling, Aragón Institute of Engineering Research, University of Zaragoza, Campus Río Ebro, María de Luna 3, Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
105
|
Fleenor BS, Marshall KD, Durrant JR, Lesniewski LA, Seals DR. Arterial stiffening with ageing is associated with transforming growth factor-β1-related changes in adventitial collagen: reversal by aerobic exercise. J Physiol 2011; 588:3971-82. [PMID: 20807791 DOI: 10.1113/jphysiol.2010.194753] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We tested the hypothesis that carotid artery stiffening with ageing is associated with transforming growth factor-β1 (TGF-β1)-related increases in adventitial collagen and reductions in medial elastin, which would be reversed by voluntary aerobic exercise. Ex vivo carotid artery incremental stiffness was greater in old (29–32 months, n = 11) vs. young (4–7 months, n = 8) cage control B6D2F1 mice (8.84 ± 1.80 vs. 4.54 ± 1.18 AU, P < 0.05), and was associated with selective increases in collagen I and III and TGF-β1 protein expression in the adventitia (P < 0.05), related to an increase in smooth muscle α-actin (SMαA) (myofibroblast phenotype) (P < 0.05). In cultured adventitial fibroblasts, TGF-β1 induced increases in superoxide and collagen I protein (P < 0.05), which were inhibited by Tempol, a superoxide dismutase. Medial elastin was reduced with ageing, accompanied by decreases in the pro-synthetic elastin enzyme, lysyl oxidase, and increases in the elastin-degrading enzyme, matrix metalloproteinase 2. Fibronectin was unchanged with ageing, but there was a small increase in calcification (P < 0.05). Increased incremental stiffness in old mice was completely reversed (3.98 ± 0.34 AU, n = 5) by 10–14 weeks of modest voluntary wheel running (1.13 ± 0.29 km day−1), whereas greater voluntary wheel running (10.62 ± 0.49 km day−1) had no effect on young mice. The amelioration of carotid artery stiffness by wheel running in old mice was associated with reductions in collagen I and III and TGF-β1, partial reversal of the myofibroblast phenotype (reduced SMαA) and reduced calcification (all P < 0.05 vs. old controls), whereas elastin and its modulating enzymes were unaffected. Adventitial TGF-β1-related oxidative stress may play a key role in collagen deposition and large elastic artery stiffening with ageing and the efficacious effects of voluntary aerobic exercise.
Collapse
Affiliation(s)
- Bradley S Fleenor
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
106
|
Masson I, Beaussier H, Boutouyrie P, Laurent S, Humphrey JD, Zidi M. Carotid artery mechanical properties and stresses quantified using in vivo data from normotensive and hypertensive humans. Biomech Model Mechanobiol 2011; 10:867-82. [DOI: 10.1007/s10237-010-0279-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 12/03/2010] [Indexed: 11/28/2022]
|
107
|
Kiousis DE, Rubinigg SF, Auer M, Holzapfel GA. A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example. J Biomech Eng 2010; 131:121002. [PMID: 20524725 DOI: 10.1115/1.4000078] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A lipid core that occupies a high proportion of the plaque volume in addition to a thin fibrous cap is a predominant indicator of plaque vulnerability. Nowadays, noninvasive imaging modalities can identify such structural components, however, morphological criteria alone cannot reliably identify high-risk plaques. Information, such as stresses in the lesion's components, seems to be essential. This work presents a methodology able to analyze the effect of changes in the lipid core and calcification on the wall stresses, in particular, on the fibrous cap vulnerability. Using high-resolution magnetic resonance imaging and histology of an ex vivo human atherosclerotic carotid bifurcation, a patient-specific three-dimensional geometric model, consisting of four tissue components, is generated. The adopted constitutive model accounts for the nonlinear and anisotropic tissue behavior incorporating the collagen fiber orientation by means of a novel and robust algorithm. The material parameters are identified from experimental data. A novel stress-based computational cap vulnerability index is proposed to assess quantitatively the rupture-risk of fibrous caps. Nonlinear finite element analyses identify that the highest stress regions are located at the vicinity of the shoulders of the fibrous cap and in the stiff calcified tissue. A parametric analysis reveals a positive correlation between the increase in lipid core portion and the mechanical stress in the fibrous cap and, hence, the risk for cap rupture. The highest values of the vulnerability index, which correlate to more vulnerable caps, are obtained for morphologies for which the lipid cores were severe; heavily loaded fibrous caps were thus detected. The proposed multidisciplinary methodology is able to investigate quantitatively the mechanical behavior of atherosclerotic plaques in patient-specific stenoses. The introduced vulnerability index may serve as a more quantitative tool for diagnosis, treatment and prevention.
Collapse
Affiliation(s)
- Dimitrios E Kiousis
- Institute of Biomechanics, Center of Biomedical Engineering, Graz University of Technology, Kronesgasse 5-I, 8010 Graz, Austria
| | | | | | | |
Collapse
|
108
|
Abstract
This review article is concerned with the mathematical modelling of the mechanical properties of the soft biological tissues that constitute the walls of arteries. Many important aspects of the mechanical behaviour of arterial tissue can be treated on the basis of elasticity theory, and the focus of the article is therefore on the constitutive modelling of the anisotropic and highly nonlinear elastic properties of the artery wall. The discussion focuses primarily on developments over the last decade based on the theory of deformation invariants, in particular invariants that in part capture structural aspects of the tissue, specifically the orientation of collagen fibres, the dispersion in the orientation, and the associated anisotropy of the material properties. The main features of the relevant theory are summarized briefly and particular forms of the elastic strain-energy function are discussed and then applied to an artery considered as a thick-walled circular cylindrical tube in order to illustrate its extension–inflation behaviour. The wide range of applications of the constitutive modelling framework to artery walls in both health and disease and to the other fibrous soft tissues is discussed in detail. Since the main modelling effort in the literature has been on the passive response of arteries, this is also the concern of the major part of this article. A section is nevertheless devoted to reviewing the limited literature within the continuum mechanics framework on the active response of artery walls, i.e. the mechanical behaviour associated with the activation of smooth muscle, a very important but also very challenging topic that requires substantial further development. A final section provides a brief summary of the current state of arterial wall mechanical modelling and points to key areas that need further modelling effort in order to improve understanding of the biomechanics and mechanobiology of arteries and other soft tissues, from the molecular, to the cellular, tissue and organ levels.
Collapse
Affiliation(s)
- Gerhard A. Holzapfel
- Institute of Biomechanics, Center of Biomedical Engineering, Graz University of Technology, Graz, Austria
- Department of Solid Mechanics, School of Engineering Sciences, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Ray W. Ogden
- Department of Mathematics, University of Glasgow, Glasgow, UK
| |
Collapse
|