101
|
Becker BK, Zhang D, Soliman R, Pollock DM. Autonomic nerves and circadian control of renal function. Auton Neurosci 2019; 217:58-65. [PMID: 30704976 PMCID: PMC6415626 DOI: 10.1016/j.autneu.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular and renal physiology follow strong circadian rhythms. For instance, renal excretion of solutes and water is higher during the active period compared to the inactive period, and blood pressure peaks early in the beginning of the active period of both diurnal and nocturnal animals. The control of these rhythms is largely dependent on the expression of clock genes both in the central nervous system and within peripheral organs themselves. Although it is understood that the central and peripheral clocks interact and communicate, few studies have explored the specific mechanism by which various organ systems within the body are coordinated to control physiological processes. The renal sympathetic nervous innervation has long been known to have profound effects on renal function, and because the sympathetic nervous system follows strong circadian rhythms, it is likely that autonomic control of the kidney plays an integral role in modulating renal circadian function. This review highlights studies that provide insight into this interaction, discusses areas lacking clarity, and suggests the potential for future work to explore the role of renal autonomics in areas such as blood pressure control and chronic kidney disease.
Collapse
Affiliation(s)
- Bryan K Becker
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, United States of America
| | - Dingguo Zhang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, United States of America
| | - Reham Soliman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, United States of America
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, United States of America.
| |
Collapse
|
102
|
Paula‐Ribeiro M, Ribeiro IC, Aranda LC, Silva TM, Costa CM, Ramos RP, Ota‐Arakaki JS, Cravo SL, Nery LE, Stickland MK, Silva BM. Carotid chemoreflex activity restrains post-exercise cardiac autonomic control in healthy humans and in patients with pulmonary arterial hypertension. J Physiol 2019; 597:1347-1360. [PMID: 30628073 PMCID: PMC6395424 DOI: 10.1113/jp277190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS Dysfunction of post-exercise cardiac autonomic control is associated with increased mortality risk in healthy adults and in patients with cardiorespiratory diseases. The afferent mechanisms that regulate the post-exercise cardiac autonomic control remain unclear. We found that afferent signals from carotid chemoreceptors restrain the post-exercise cardiac autonomic control in healthy adults and patients with pulmonary arterial hypertension (PAH). Patients with PAH had higher carotid chemoreflex sensitivity, and the magnitude of carotid chemoreceptor restraint of autonomic control was greater in patients with PAH as compared to healthy adults. The results demonstrate that the carotid chemoreceptors contribute to the regulation of post-exercise cardiac autonomic control, and suggest that the carotid chemoreceptors may be a potential target to treat post-exercise cardiac autonomic dysfunction in patients with PAH. ABSTRACT Dysfunction of post-exercise cardiac autonomic control predicts mortality, but its underlying mechanisms remain unclear. We tested whether carotid chemoreflex activity restrains post-exercise cardiac autonomic control in healthy adults (HA), and whether such restraint is greater in patients with pulmonary arterial hypertension (PAH) who may have both altered carotid chemoreflex and altered post-exercise cardiac autonomic control. Twenty non-hypoxaemic patients with PAH and 13 age- and sex-matched HA pedalled until 90% of peak work rate observed in a symptom-limited ramp-incremental exercise test. Recovery consisted of unloaded pedalling for 5 min followed by seated rest for 6 min. During recovery, subjects randomly inhaled either 100% O2 (hyperoxia) to inhibit the carotid chemoreceptor activity, or 21% O2 (normoxia) as control. Post-exercise cardiac autonomic control was examined via heart rate (HR) recovery (HRR; HR change after 30, 60, 120 and 300 s of recovery, using linear and non-linear regressions of HR decay) and HR variability (HRV; time and spectral domain analyses). As expected, the PAH group had higher carotid chemosensitivity and worse post-exercise HRR and HRV than HA. Hyperoxia increased HRR at 30, 60 and 120 s and absolute spectral power HRV in both groups. Additionally, hyperoxia resulted in an accelerated linear HR decay and increased time domain HRV during active recovery only in the PAH group. In conclusion, the carotid chemoreceptors restrained recovery of cardiac autonomic control from exercise in HA and in patients with PAH, with the restraint greater for some autonomic indexes in patients with PAH.
Collapse
Affiliation(s)
- Marcelle Paula‐Ribeiro
- Post‐graduate Program in Translational MedicineDepartment of MedicineFederal University of São Paulo (UNIFESP)São PauloSPBrazil
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
- Department of PhysiologyUNIFESPSão PauloSPBrazil
| | - Indyanara C. Ribeiro
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
- Department of PhysiologyUNIFESPSão PauloSPBrazil
| | - Liliane C. Aranda
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
- Department of PhysiologyUNIFESPSão PauloSPBrazil
| | - Talita M. Silva
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
- Department of PhysiologyUNIFESPSão PauloSPBrazil
| | - Camila M. Costa
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
| | - Roberta P. Ramos
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
| | - Jaquelina S. Ota‐Arakaki
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
| | | | - Luiz E. Nery
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
| | | | - Bruno M. Silva
- Post‐graduate Program in Translational MedicineDepartment of MedicineFederal University of São Paulo (UNIFESP)São PauloSPBrazil
- Pulmonary Vascular Group and Pulmonary Function and Clinical Exercise Physiology UnitDivision of Respiratory DiseasesDepartment of MedicineUNIFESPSão PauloSPBrazil
- Department of PhysiologyUNIFESPSão PauloSPBrazil
| |
Collapse
|
103
|
Robinson AT, Babcock MC, Watso JC, Brian MS, Migdal KU, Wenner MM, Farquhar WB. Relation between resting sympathetic outflow and vasoconstrictor responses to sympathetic nerve bursts: sex differences in healthy young adults. Am J Physiol Regul Integr Comp Physiol 2019; 316:R463-R471. [PMID: 30794437 DOI: 10.1152/ajpregu.00305.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have demonstrated an inverse relation between resting muscle sympathetic nerve activity (MSNA) and vasoconstrictor responsiveness (i.e., sympathetic transduction), such that those with high resting MSNA have low vascular responsiveness, and vice versa. The purpose of this investigation was to determine whether biological sex influences the balance between resting MSNA and beat-to-beat sympathetic transduction. We measured blood pressure (BP) and MSNA during supine rest in 54 healthy young adults (27 females: 23 ± 4 yr, 107 ± 8/63 ± 8 mmHg; 27 males: 25 ± 3 yr, 115 ± 11/64 ± 7 mmHg; means ± SD). We quantified beat-to-beat fluctuations in mean arterial pressure (MAP, mmHg) and limb vascular conductance (LVC, %) for 10 cardiac cycles after each MSNA burst using signal averaging, an index of sympathetic vascular transduction. In females, there was no correlation between resting MSNA (burst incidence; burst/100 heartbeats) and peak ΔMAP (r = -0.10, P = 0.62) or peak ΔLVC (r = -0.12, P = 0.63). In males, MSNA was related to peak ΔMAP (r = -0.50, P = 0.01) and peak ΔLVC (r = 0.49, P = 0.03); those with higher resting MSNA had blunted increases in MAP and reductions in LVC in response to a burst of MSNA. In a sub-analysis, we performed a median split between high- versus low-MSNA status on ΔMAP and ΔLVC within each sex and found that only males demonstrated a significant difference in ΔMAP and ΔLVC between high- versus low-MSNA groups. These findings support an inverse relation between resting MSNA and sympathetic vascular transduction in males only and advance our understanding on the influence of biological sex on sympathetic nervous system-mediated alterations in beat-to-beat BP regulation.
Collapse
Affiliation(s)
- Austin T Robinson
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Matthew C Babcock
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Joseph C Watso
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Michael S Brian
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware.,Department of Health and Human Performance, Plymouth State University , Plymouth, New Hampshire
| | - Kamila U Migdal
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| |
Collapse
|
104
|
Kusayama T, Wan J, Doytchinova A, Wong J, Kabir RA, Mitscher G, Straka S, Shen C, Everett TH, Chen PS. Skin sympathetic nerve activity and the temporal clustering of cardiac arrhythmias. JCI Insight 2019; 4:125853. [PMID: 30811928 DOI: 10.1172/jci.insight.125853] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/14/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Simultaneous noninvasively recorded skin sympathetic nerve activity (SKNA) and electrocardiogram (neuECG) can be used to estimate cardiac sympathetic tone. We tested the hypothesis that large and prolonged SKNA bursts are associated with temporal clustering arrhythmias. METHODS We recorded neuECG in 10 patients (69 ± 10 years old) with atrial fibrillation (AF) episodes and in 6 patients (50 ± 13 years old) with ventricular tachycardia (VT) or fibrillation (VF) episodes. Clustering was defined by an arrhythmic episode followed within 1 minute by spontaneous recurrences of the same arrhythmia. The neuECG signals were bandpass filtered between 500-1000 Hz to display SKNA. RESULTS There were 22 AF clusters, including 231 AF episodes from 6 patients, and 9 VT/VF clusters, including 99 VT/VF episodes from 3 patients. A total duration of SKNA bursts associated with AF was longer than that during sinus rhythm (78.9 min/hour [interquartile range (IQR) 17.5-201.3] vs. 16.3 min/hour [IQR 14.5-18.5], P = 0.022). The burst amplitude associated with AF in clustering patients was significantly higher than that in nonclustering patients (1.54 μV [IQR 1.35-1.89], n = 114, vs. 1.20 μV [IQR 1.05-1.42], n = 21, P < 0.001). The SKNA bursts associated with VT/VF clusters lasted 9.3 ± 3.1 minutes, with peaks that averaged 1.13 ± 0.38 μV as compared with 0.79 ± 0.11 μV at baseline (P = 0.041). CONCLUSION Large and sustained sympathetic nerve activities are associated with the temporal clustering of AF and VT/VF. FUNDING This study was supported in part by NIH grants R42DA043391 (THE), R56 HL71140, TR002208-01, R01 HL139829 (PSC), a Charles Fisch Cardiovascular Research Award endowed by Suzanne B. Knoebel of the Krannert Institute of Cardiology (TK and THE), a Medtronic-Zipes Endowment, and the Indiana University Health-Indiana University School of Medicine Strategic Research Initiative (PSC).
Collapse
Affiliation(s)
- Takashi Kusayama
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of System Biology, Kanazawa University Graduate School of Advanced Preventive Medical Sciences, Ishikawa, Japan
| | - Juyi Wan
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Cardiothoracic Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Anisiia Doytchinova
- The Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Johnson Wong
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ryan A Kabir
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gloria Mitscher
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Susan Straka
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Changyu Shen
- The Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas H Everett
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
105
|
Carter JR. Microneurography and sympathetic nerve activity: a decade-by-decade journey across 50 years. J Neurophysiol 2019; 121:1183-1194. [PMID: 30673363 DOI: 10.1152/jn.00570.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The technique of microneurography has advanced the field of neuroscience for the past 50 years. While there have been a number of reviews on microneurography, this paper takes an objective approach to exploring the impact of microneurography studies. Briefly, Web of Science (Thomson Reuters) was used to identify the highest citation articles over the past 50 years, and key findings are presented in a decade-by-decade highlight. This includes the establishment of microneurography in the 1960s, the acceleration of the technique by Gunnar Wallin in the 1970s, the international collaborations of the 1980s and 1990s, and finally the highest impact studies from 2000 to present. This journey through 50 years of microneurographic research related to peripheral sympathetic nerve activity includes a historical context for several of the laboratory interventions commonly used today (e.g., cold pressor test, mental stress, lower body negative pressure, isometric handgrip, etc.) and how these interventions and experimental approaches have advanced our knowledge of cardiovascular, cardiometabolic, and other human diseases and conditions.
Collapse
Affiliation(s)
- Jason R Carter
- Department of Kinesiology and Integrative Physiology, Michigan Technological University , Houghton, Michigan
| |
Collapse
|
106
|
Matthews EL, Sebzda KN, Wenner MM. Altered baroreflex sensitivity in young women with a family history of hypertension. J Neurophysiol 2019; 121:1011-1017. [PMID: 30673356 DOI: 10.1152/jn.00471.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A positive family history of hypertension (+FH) is a risk factor for the future development of hypertension. Hypertension is associated with reductions in baroreflex sensitivity (BRS). Therefore, we hypothesized that young women with a +FH [ n = 12, 22 ± 1 yr, body mass index (BMI) 21 ± 1 kg/m2, mean arterial pressure (MAP) 79 ± 1 mmHg] would have lower BRS compared with young women without a family history of hypertension (-FH) ( n = 13, 22 ± 1 yr, BMI 21 ± 1 kg/m2, MAP 77 ± 2 mmHg, all P > 0.05 between groups). Continuous measurements of muscle sympathetic nerve activity, blood pressure, and electrocardiogram derived R-R interval were recorded at rest and during a Valsalva maneuver. Both cardiovagal BRS and vascular sympathetic BRS were assessed. Resting cardiovagal BRS was reduced in the +FH women (all sequences: -FH 32.3 ± 3.7 vs. +FH 20.2 ± 2.9 ms/mmHg, P = 0.02). Cardiovagal BRS during phase IV (-FH 16.5 ± 2.7 vs. +FH 7.6 ± 1.3 ms/mmHg, P < 0.01) but not phase II (-FH 5.5 ± 0.9 vs. +FH 5.0 ± 0.8 ms/mmHg, P = 0.67) of the Valsalva maneuver was also lower in the +FH women. Vascular sympathetic BRS at rest (-FH -2.38 ± 0.7 vs. +FH -2.33 ± 0.3 bursts· min-1·mmHg-1, P = 0.58) and during the Valsalva (-FH -0.74 ± 0.23 vs. +FH -0.66 ± 0.18 bursts·15 s-1·mmHg-1, P = 0.79) were not different between groups. These data suggest that healthy young women with a positive family history of hypertension have reduced cardiovagal BRS. This may be one mechanism contributing to the increased incidence of hypertension in this population later in life. NEW & NOTEWORTHY Having a family history of hypertension increases the risk of developing future hypertension. Reductions in baroreflex function have been demonstrated in hypertension and are an important marker for future cardiovascular disease. We show that young women with a family history of hypertension have lower cardiovagal baroreflex sensitivity. This alteration in autonomic function may be one mechanism contributing to the future incidence of hypertension in this patient population.
Collapse
Affiliation(s)
- Evan L Matthews
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware.,Exercise Science and Physical Education Department, Montclair State University , Montclair, New Jersey
| | - Kelly N Sebzda
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| |
Collapse
|
107
|
Budidha K, Kyriacou PA. Photoplethysmography for Quantitative Assessment of Sympathetic Nerve Activity (SNA) During Cold Stress. Front Physiol 2019; 9:1863. [PMID: 30687108 PMCID: PMC6338034 DOI: 10.3389/fphys.2018.01863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
The differences in the degree of sympathetic nerve activity (SNA) over cutaneous blood vessels, although known to be more prominent in the periphery than the core vasculature, has not been thoroughly investigated quantitatively. Hence, two studies were carried out to investigate the differences in SNA between the periphery and the core during the cold pressor test (CPT) (right-hand immersion in ice water) and cold exposure (whole body exposed to cold air) using photoplethysmography (PPG). Two methods utilizing PPG, namely differential multi-site PTT measurements and low-frequency spectral analysis were explored for quantitative determination of SNA. Each study involved 12 healthy volunteers, and PPG signals were acquired from the right index finger (RIF), left index finger (LIF) (periphery) and the ear canal (core). During CPT, Pulse Transit Time (PTT) was measured to the respective locations and the mean percentage change in PTT during ice immersion at each location was used as an indicator for the extent of SNA. During cold exposure, the low-frequency spectral analysis was performed on the acquired raw PPGs to extract the power of the sympathetic [low-frequency (LF): 0.04–0.15 Hz] and parasympathetic components [high-frequency (HF): 0.15–0.4 Hz]. The ratio of LF/HF components was then used to quantify the differences in the influence of SNA on the peripheral and core circulation. PTT measured from the EC, and the LIF has dropped by 5 and 7%, respectively during ice immersion. The RIF PTT, on the other hand, has dropped significantly (P < 0.05) by 12%. During the cold exposure, the LF/HF power ratio at the finger has increased to 86.4 during the cold exposure from 19.2 at the baseline (statistically significant P = 0.002). While the ear canal LF/HF ratio has decreased to 1.38 during the cold exposure from 1.62 at baseline (P = 0.781). From these observations, it is evident that differential PTT measurements or low-frequency analysis can be used to quantify SNA. The results also demonstrate the effectiveness of the central auto-regulation during both short and long-term stress stimulus as compared to the periphery.
Collapse
Affiliation(s)
- Karthik Budidha
- Research Centre for Biomedical Engineering (RCBE), School of Mathematics, Computer Science & Engineering, City, University of London, London, United Kingdom
| | - Panayiotis A Kyriacou
- Research Centre for Biomedical Engineering (RCBE), School of Mathematics, Computer Science & Engineering, City, University of London, London, United Kingdom
| |
Collapse
|
108
|
El Sayed K, Macefield VG, Hissen SL, Joyner MJ, Taylor CE. Blood pressure reactivity at onset of mental stress determines sympathetic vascular response in young adults. Physiol Rep 2018; 6:e13944. [PMID: 30552755 PMCID: PMC6294720 DOI: 10.14814/phy2.13944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 11/24/2022] Open
Abstract
We have previously shown in young males that the rate of rise in blood pressure (BP) at the onset of mental stress determines whether or not muscle sympathetic nerve activity (MSNA) has a role in driving the pressor response. The aim of this study was to investigate these interactions in young females. BP and MSNA were recorded continuously in 19 females and 21 males during 2-min mental stressors (mental arithmetic and Stroop test). Physical stressor tasks (cold pressor, handgrip exercise, postexercise ischemia) were also performed. During the first minute of mental arithmetic, the rate of rise in mean arterial pressure (MAP) was significantly greater in negative responders (mean decrease in MSNA) compared with positive responders (mean increase in MSNA) in both males (1.9 ± 0.7 vs. 0.7 ± 0.3 mmHg/sec) and females (1.0 ± 0.3 vs. 0.5 ± 0.2 mmHg/sec). For the Stroop test, there was no significant difference in the rate of the rise in BP between positive and negative responders (P > 0.05). However, peak changes in MAP were significantly greater in negative responders compared with positive responders in both males (22 ± 6 vs. 13 ± 3 mmHg) and females (12 ± 2 vs. 6 ± 1 mmHg). Sympathetic baroreflex sensitivity was greater in negative responders and may contribute to the fall in MSNA experienced by these individuals during mental stress. During physical stressors there were consistent increases in BP and MSNA in males and females. The findings suggest that, in both males and females, BP reactivity at the onset of mental stress dictates whether or not there is an increase or decrease in MSNA.
Collapse
Affiliation(s)
- Khadigeh El Sayed
- School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Vaughan G. Macefield
- School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - Sarah L Hissen
- School of Science and HealthWestern Sydney UniversitySydneyNew South WalesAustralia
| | | | - Chloe E. Taylor
- School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
- School of Science and HealthWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
109
|
Charles CJ, Jardine DL, Rademaker MT, Richards AM. Systemic angiotensin II does not increase cardiac sympathetic nerve activity in normal conscious sheep. Biosci Rep 2018; 38:BSR20180513. [PMID: 30206134 PMCID: PMC6435558 DOI: 10.1042/bsr20180513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 02/02/2023] Open
Abstract
While it is well established that centrally injected angiotensin II (Ang II) has potent actions on sympathetic nervous activity (SNA), it is less clear whether peripheral Ang II can immediately stimulate SNA. In particular, the contribution of cardiac sympathetic nerve activity (CSNA) to the acute pressor response is unknown. We therefore examined the effect of incremental doses of intravenous Ang II (3, 6, 12, 24, and 48 ng/kg/min each for 30 min) on CSNA in eight conscious sheep. Ang II infusions progressively increased plasma Ang II up to 50 pmol/l above control levels in dose-dependent fashion (P<0.001). This was associated with the expected increases in mean arterial pressure (MAP) above control levels from <10 mmHg at lower doses up to 23 mmHg at the highest dose (P<0.001). Heart rate and cardiac output fell progressively with each incremental Ang II infusion achieving significance at higher doses (P<0.001). There was no significant change in plasma catecholamines. At no dose did Ang II increase any of the CSNA parameters measured. Rather, CSNA burst frequency (P<0.001), burst incidence, (P=0.002), and burst area (P=0.004) progressively decreased achieving significance during the three highest doses. In conclusion, Ang II infused at physiologically relevant doses increased MAP in association with a reciprocal decrease in CSNA presumably via baroreceptor-mediated pathways. The present study provides no evidence that even low-dose systemic Ang II stimulates sympathetic traffic directed to the heart, in normal conscious sheep.
Collapse
Affiliation(s)
- Christopher J Charles
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - David L Jardine
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - Miriam T Rademaker
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - A Mark Richards
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| |
Collapse
|
110
|
Miki K, Yoshimoto M. Exercise-Induced Modulation of Baroreflex Control of Sympathetic Nerve Activity. Front Neurosci 2018; 12:493. [PMID: 30083091 PMCID: PMC6064938 DOI: 10.3389/fnins.2018.00493] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022] Open
Abstract
Exercise modulates arterial pressure (AP) regulation over various time spans. AP increases at the onset of exercise and this increase is then sustained during exercise. Once exercise is stopped, AP is suppressed for up to an hour afterwards. Prolonged endurance training is associated with dysfunction of the sympathetic regulation of AP in response to posture changes (orthostatic intolerance). Baroreflex control of sympathetic nerve activity (SNA) has been extensively studied to understand the mechanisms underlying exercise-induced changes in AP. We have previously presented entire baroreflex AP-SNA curves during and after exercise, and during central volume expansion, obtained using direct measurements of renal sympathetic nerve activity (RSNA) in conscious animals. In this review, we describe the modulatory effects of exercise on baroreflex control of AP based on these entire AP-RSNA baroreflex curves. We suggest that both acute and chronic exercise can have modulatory effects on the entire baroreflex curve for SNA, and that these effects differ among time periods.
Collapse
Affiliation(s)
- Kenju Miki
- Department of Environmental Health, Life Science and Human Technology, Nara Women's University, Nara, Japan
| | - Misa Yoshimoto
- Department of Environmental Health, Life Science and Human Technology, Nara Women's University, Nara, Japan
| |
Collapse
|
111
|
Lindsey ML, Gray GA, Wood SK, Curran-Everett D. Statistical considerations in reporting cardiovascular research. Am J Physiol Heart Circ Physiol 2018; 315:H303-H313. [PMID: 30028200 PMCID: PMC6139626 DOI: 10.1152/ajpheart.00309.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The problem of inadequate statistical reporting is long standing and widespread in the biomedical literature, including in cardiovascular physiology. Although guidelines for reporting statistics have been available in clinical medicine for some time, there are currently no guidelines specific to cardiovascular physiology. To assess the need for guidelines, we determined the type and frequency of statistical tests and procedures currently used in the American Journal of Physiology-Heart and Circulatory Physiology. A PubMed search for articles published in the American Journal of Physiology-Heart and Circulatory Physiology between January 1, 2017, and October 6, 2017, provided a final sample of 146 articles evaluated for methods used and 38 articles for indepth analysis. The t-test and ANOVA accounted for 71% (212 of 300 articles) of the statistical tests performed. Of six categories of post hoc tests, Bonferroni and Tukey tests were used in 63% (62 of 98 articles). There was an overall lack in details provided by authors publishing in the American Journal of Physiology-Heart and Circulatory Physiology, and we compiled a list of recommended minimum reporting guidelines to aid authors in preparing manuscripts. Following these guidelines could substantially improve the quality of statistical reports and enhance data rigor and reproducibility.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Gillian A Gray
- British Heart Foundation/University Centre for Cardiovascular Science, Edinburgh Medical School, University of Edinburgh , Edinburgh , United Kingdom
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine , Columbia, South Carolina
| | - Douglas Curran-Everett
- Division of Biostatistics and Bioinformatics, National Jewish Health , Denver, Colorado.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver , Denver, Colorado
| |
Collapse
|
112
|
Estimating Cardiac Sympathetic Activity From Subcutaneous Nerve Recordings: More Than Skin Deep? JACC Clin Electrophysiol 2018; 4:696-698. [PMID: 29798800 DOI: 10.1016/j.jacep.2018.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 11/21/2022]
|
113
|
Coates AM, INCOGNITO ANTHONYV, SEED JEREMYD, DOHERTY CONNORJ, MILLAR PHILIPJ, BURR JAMIEF. Three Weeks of Overload Training Increases Resting Muscle Sympathetic Activity. Med Sci Sports Exerc 2018; 50:928-937. [DOI: 10.1249/mss.0000000000001514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
114
|
Shelton RS, Ogawa M, Lin H, Shen C, Wong J, Lin SF, Chen PS, Everett TH. Effects of Stellate Ganglion Cryoablation on Subcutaneous Nerve Activity and Atrial Tachyarrhythmias in a Canine Model of Pacing-Induced Heart Failure. JACC Clin Electrophysiol 2018; 4:686-695. [PMID: 29798799 DOI: 10.1016/j.jacep.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study aimed to test the hypothesis that subcutaneous nerve activity (SCNA) can adequately estimate the cardiac sympathetic tone and the effects of cryoablation of the stellate ganglion in dogs with pacing-induced heart failure (HF). BACKGROUND Recording of SCNA is a new method to estimate sympathetic tone in dogs. HF is known to increase sympathetic tone and atrial arrhythmias. METHODS Twelve dogs with pacing-induced HF were studied using implanted radiotransmitters to record the stellate ganglia nerve activity (SGNA), vagal nerve activity, and SCNA. Of these, 6 dogs (ablation group) underwent bilateral stellate ganglia cryoablation before the rapid ventricular pacing; the remaining 6 dogs (control group) had rapid ventricular pacing only. In both groups, SCNA was compared with SGNA and the occurrence of arrhythmias. RESULTS SCNA invariably increased before the 360 identified atrial tachyarrhythmia episodes in the 6 control dogs before and after HF induction. SCNA and SGNA correlated in all dogs with an average correlation coefficient of 0.64 (95% confidence interval: 0.58 to 0.70). Cryoablation of bilateral stellate ganglia significantly reduced SCNA from 0.34 ± 0.033 μV to 0.25 ± 0.028 μV (p = 0.03) and eliminated all atrial tachyarrhythmias. CONCLUSIONS SCNA can be used to estimate cardiac sympathetic tone in dogs with pacing-induced HF. Cryoablation of the stellate ganglia reduced SCNA and arrhythmia vulnerability.
Collapse
Affiliation(s)
- Richard S Shelton
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Masahiro Ogawa
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hongbo Lin
- Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Changyu Shen
- Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Johnson Wong
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas H Everett
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
115
|
Klassen SA, De Abreu S, Greaves DK, Kimmerly DS, Arbeille P, Denise P, Hughson RL, Normand H, Shoemaker JK. Long-duration bed rest modifies sympathetic neural recruitment strategies in male and female participants. J Appl Physiol (1985) 2018; 124:769-779. [PMID: 29212669 PMCID: PMC5899270 DOI: 10.1152/japplphysiol.00640.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/09/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023] Open
Abstract
To understand the impact of physical deconditioning with head-down tilt bed rest (HDBR) on the malleability of sympathetic discharge patterns, we studied 1) baseline integrated muscle sympathetic nerve activity (MSNA; microneurography) from 13 female participants in the WISE-2005 60-day HDBR study (retrospective analysis), 2) integrated MSNA and multiunit action potential (AP) analysis in 13 male participants performed on data collected at baseline and during physiological stress imposed by end-inspiratory apnea in a new 60-day HDBR study, and 3) a repeatability study (control; n = 6, retrospective analysis, 4 wk between tests). Neither baseline integrated burst frequency nor incidence were altered with HDBR (both P > 0.35). However, baseline integrated burst latency increased in both HDBR studies (male: 1.35 ± 0.02 to 1.39 ± 0.02 s, P < 0.01; female: 1.23 ± 0.02 to 1.29 ± 0.02 s, P < 0.01), whereas controls exhibited no change across two visits (1.25 ± 0.02 to 1.25 ± 0.02 s, group-by-time interaction, P = 0.02). With the exception of increased AP latency ( P = 0.03), male baseline AP data did not change with HDBR (all P > 0.19). The change in AP frequency on going from baseline to apnea (∆94 ± 25 to ∆317 ± 55 AP/min, P < 0.01) and the number of active sympathetic clusters per burst (∆0 ± 0.2 to ∆1 ± 0.2 clusters/burst, P = 0.02) were greater post- compared with pre-HDBR. The change in total clusters with apnea was ∆0 ± 0.5 clusters pre- and ∆2 ± 0.7 clusters post-HDBR ( P = 0.07). These data indicate that 60-day HDBR modified discharge characteristics in baseline burst latency and sympathetic neural recruitment during apneic stress. NEW & NOTEWORTHY Long-duration bed rest did not modify baseline sympathetic burst frequency in male and female participants, but examination of additional features of the multiunit signal provided novel evidence to suggest augmented synaptic delays or processing times at baseline for all sympathetic action potentials. Furthermore, long-duration bed rest increased reflex-sympathetic arousal to apneic stress in male participants primarily by mechanisms involving an augmented firing rate of action potential clusters active at baseline.
Collapse
Affiliation(s)
- Stephen A Klassen
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | | | - Danielle K Greaves
- Schlegel-University of Waterloo Research Institute for Aging , Waterloo, Ontario , Canada
| | - Derek S Kimmerly
- Division of Kinesiology, School of Health and Human Performance, Dalhousie University , Halifax, Nova Scotia , Canada
| | - Philippe Arbeille
- UMPS-CERCOM, School of Medicine, University of Tours , Tours , France
| | - Pierre Denise
- Normandie Université, Unicaen, INSERM, Caen , France
| | - Richard L Hughson
- Schlegel-University of Waterloo Research Institute for Aging , Waterloo, Ontario , Canada
| | - Hervé Normand
- Normandie Université, Unicaen, INSERM, Caen , France
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario , London, Ontario , Canada
- Department of Physiology and Pharmacology, University of Western Ontario , London, Ontario , Canada
| |
Collapse
|
116
|
Shoemaker JK, Klassen SA, Badrov MB, Fadel PJ. Fifty years of microneurography: learning the language of the peripheral sympathetic nervous system in humans. J Neurophysiol 2018; 119:1731-1744. [PMID: 29412776 DOI: 10.1152/jn.00841.2017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As a primary component of homeostasis, the sympathetic nervous system enables rapid adjustments to stress through its ability to communicate messages among organs and cause targeted and graded end organ responses. Key in this communication model is the pattern of neural signals emanating from the central to peripheral components of the sympathetic nervous system. But what is the communication strategy employed in peripheral sympathetic nerve activity (SNA)? Can we develop and interpret the system of coding in SNA that improves our understanding of the neural control of the circulation? In 1968, Hagbarth and Vallbo (Hagbarth KE, Vallbo AB. Acta Physiol Scand 74: 96-108, 1968) reported the first use of microneurographic methods to record sympathetic discharges in peripheral nerves of conscious humans, allowing quantification of SNA at rest and sympathetic responsiveness to physiological stressors in health and disease. This technique also has enabled a growing investigation into the coding patterns within, and cardiovascular outcomes associated with, postganglionic SNA. This review outlines how results obtained by microneurographic means have improved our understanding of SNA outflow patterns at the action potential level, focusing on SNA directed toward skeletal muscle in conscious humans.
Collapse
Affiliation(s)
- J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Stephen A Klassen
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Mark B Badrov
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington , Arlington, Texas
| |
Collapse
|
117
|
Brooks HL, Lindsey ML. Guidelines for authors and reviewers on antibody use in physiology studies. Am J Physiol Heart Circ Physiol 2018; 314:H724-H732. [PMID: 29351459 PMCID: PMC6048465 DOI: 10.1152/ajpheart.00512.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Antibody use is a critical component of cardiovascular physiology research, and antibodies are used to monitor protein abundance (immunoblot analysis) and protein expression and localization (in tissue by immunohistochemistry and in cells by immunocytochemistry). With ongoing discussions on how to improve reproducibility and rigor, the goal of this review is to provide best practice guidelines regarding how to optimize antibody use for increased rigor and reproducibility in both immunoblot analysis and immunohistochemistry approaches. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-on-antibody-use-in-physiology-studies/.
Collapse
Affiliation(s)
- Heddwen L Brooks
- Department of Physiology, Pharmacology and Medicine, Sarver Heart Center, College of Medicine, University of Arizona , Tucson, Arizona
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| |
Collapse
|
118
|
Osborn JW, Banek CT. Catheter-Based Renal Nerve Ablation as a Novel Hypertension Therapy: Lost, and Then Found, in Translation. Hypertension 2018; 71:383-388. [PMID: 29295850 DOI: 10.1161/hypertensionaha.117.08928] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- John W Osborn
- From the Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis.
| | - Christopher T Banek
- From the Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis
| |
Collapse
|
119
|
Barman SM, Yates BJ. Deciphering the Neural Control of Sympathetic Nerve Activity: Status Report and Directions for Future Research. Front Neurosci 2017; 11:730. [PMID: 29311801 PMCID: PMC5743742 DOI: 10.3389/fnins.2017.00730] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022] Open
Abstract
Sympathetic nerve activity (SNA) contributes appreciably to the control of physiological function, such that pathological alterations in SNA can lead to a variety of diseases. The goal of this review is to discuss the characteristics of SNA, briefly review the methodology that has been used to assess SNA and its control, and to describe the essential role of neurophysiological studies in conscious animals to provide additional insights into the regulation of SNA. Studies in both humans and animals have shown that SNA is rhythmic or organized into bursts whose frequency varies depending on experimental conditions and the species. These rhythms are generated by brainstem neurons, and conveyed to sympathetic preganglionic neurons through several pathways, including those emanating from the rostral ventrolateral medulla. Although rhythmic SNA is present in decerebrate animals (indicating that neurons in the brainstem and spinal cord are adequate to generate this activity), there is considerable evidence that a variety of supratentorial structures including the insular and prefrontal cortices, amygdala, and hypothalamic subnuclei provide inputs to the brainstem regions that regulate SNA. It is also known that the characteristics of SNA are altered during stress and particular behaviors such as the defense response and exercise. While it is a certainty that supratentorial structures contribute to changes in SNA during these behaviors, the neural underpinnings of the responses are yet to be established. Understanding how SNA is modified during affective responses and particular behaviors will require neurophysiological studies in awake, behaving animals, including those that entail recording activity from neurons that generate SNA. Recent studies have shown that responses of neurons in the central nervous system to most sensory inputs are context-specific. Future neurophysiological studies in conscious animals should also ascertain whether this general rule also applies to sensory signals that modify SNA.
Collapse
Affiliation(s)
- Susan M Barman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
120
|
Posch AM, Luippold AJ, Mitchell KM, Bradbury KE, Kenefick RW, Cheuvront SN, Charkoudian N. Sympathetic neural and hemodynamic responses to head-up tilt during isoosmotic and hyperosmotic hypovolemia. J Neurophysiol 2017; 118:2232-2237. [PMID: 28747468 DOI: 10.1152/jn.00403.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that muscle sympathetic nerve activity (MSNA) during head-up tilt (HUT) would be augmented during exercise-induced (hyperosmotic) dehydration but not isoosmotic dehydration via an oral diuretic. We studied 26 young healthy subjects (7 female, 19 male) divided into three groups: euhydrated (EUH, n = 7), previously exercised in 40°C while maintaining hydration; dehydrated (DEH, n = 10), previously exercised in 40°C during which ~3% of body weight was lost via sweat loss; and diuretic (DIUR, n = 9), a group that did not exercise but lost ~3% of body weight via diuresis (furosemide, 80 mg by mouth). We measured MSNA, heart rate (HR), and blood pressure (BP) during supine rest and 30° and 45° HUT. Plasma volume (PV) decreased similarly in DEH (-8.5 ± 3.3%) and DIUR (-11.4 ± 5.7%) (P > 0.05). Plasma osmolality was similar between DIUR and EUH (288 ± 4 vs. 284 ± 5 mmol/kg, respectively) but was significantly higher in DEH (299 ± 5 mmol/kg) (P < 0.05). Mixed-model ANOVA was used with repeated measures on position (HUT) and between-group analysis on condition. HR and MSNA increased in all subjects during HUT (main effect of position; P < 0.05). There was also a significant main effect of group, such that MSNA and HR were higher in DEH compared with DIUR (P < 0.05). Changes in HR with HUT were larger in both hypovolemic groups compared with EUH (P < 0.05). The differential HUT response "strategies" in each group suggest a greater role for hypovolemia per se in controlling HR responses during dehydration, and a stronger role for osmolality in control of SNA.NEW & NOTEWORTHY Interactions of volume regulation with control of vascular sympathetic nerve activity (SNA) have important implications for blood pressure regulation. Here, we demonstrate that SNA and heart rate (HR) during hyperosmotic hypovolemia (exercise-induced) were augmented during supine and tilt compared with isoosmotic hypovolemia (diuretic), which primarily augmented the HR response. Our data suggest that hypovolemia per se had a larger role in controlling HR responses, whereas osmolality had a stronger role in control of SNA.
Collapse
Affiliation(s)
- Alexander M Posch
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Adam J Luippold
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Katherine M Mitchell
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Karleigh E Bradbury
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Robert W Kenefick
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Samuel N Cheuvront
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
121
|
Shoemaker JK. Recruitment strategies in efferent sympathetic nerve activity. Clin Auton Res 2017; 27:369-378. [DOI: 10.1007/s10286-017-0459-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022]
|
122
|
Stavrakis S, Scherlag BJ. A look into the deep from the surface: Recording cardiac neural activity from the skin. Heart Rhythm 2017; 14:1594-1595. [PMID: 28827096 DOI: 10.1016/j.hrthm.2017.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | | |
Collapse
|
123
|
Greaney JL, Kenney WL. Measuring and quantifying skin sympathetic nervous system activity in humans. J Neurophysiol 2017; 118:2181-2193. [PMID: 28701539 DOI: 10.1152/jn.00283.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 01/23/2023] Open
Abstract
Development of the technique of microneurography has substantially increased our understanding of the function of the sympathetic nervous system (SNS) in health and in disease. The ability to directly record signals from peripheral autonomic nerves in conscious humans allows for qualitative and quantitative characterization of SNS responses to specific stimuli and over time. Furthermore, distinct neural outflow to muscle (MSNA) and skin (SSNA) can be delineated. However, there are limitations and caveats to the use of microneurography, measurement criteria, and signal analysis and interpretation. MSNA recordings have a longer history and are considered relatively more straightforward from a measurement and analysis perspective. This brief review provides an overview of the development of the technique as used to measure SSNA. The focus is on the utility of measuring sympathetic activity directed to the skin, the unique issues related to analyzing and quantifying multiunit SSNA, and the challenges related to its interpretation.
Collapse
Affiliation(s)
- Jody L Greaney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
124
|
Ardell JL, Shivkumar K. Sympathetic neural recording-It is all in the details. Heart Rhythm 2017; 14:972-973. [PMID: 28438720 DOI: 10.1016/j.hrthm.2017.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Jeffrey L Ardell
- University of California-Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, California; UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA.
| | - Kalyanam Shivkumar
- University of California-Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, California; UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|
125
|
Zucker IH. Guidelines in cardiovascular research, a first for the American Journal of Physiology-Heart and Circulatory Physiology. Am J Physiol Heart Circ Physiol 2017; 312:H1030. [PMID: 28314759 DOI: 10.1152/ajpheart.00151.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 11/22/2022]
|