101
|
Abstract
Chronic hypoxia increases resistance to myocardial ischemia in infants. Activation of the mitochondrial big conductance Ca(2+) -sensitive K channel (mitoBKCa) has been shown to be protective in adult hearts; however, its role in infant hearts is unknown. Hearts from normoxic or hypoxic infant rabbits were perfused with a mitoKCa opener, NS1619, or blocker Paxilline before ischemia and reperfusion. Hypoxic hearts were more resistant to ischemia than normoxic hearts as manifested by a reduction in infarct size (9 +/- 5% versus 14 +/- 5%) and an increase in recovery of left ventricular developed pressure (LVDP) (69 +/- 7% versus 51 +/- 2%). NS1619 decreased infarct size in normoxic hearts from 14 +/- 5% to 10 +/- 5% and increased recovery of LVDP from 51 +/- 2% to 65 +/- 4%, but it had no effect on hypoxic hearts. Paxilline did not affect normoxic or hypoxic hearts. Activation of mitoBKCa protects normoxic infant rabbit hearts; however, cardioprotection by chronic hypoxia in infant rabbits does not appear involve mitoBKCa.
Collapse
|
102
|
Redel A, Lange M, Jazbutyte V, Lotz C, Smul TM, Roewer N, Kehl F. Activation of mitochondrial large-conductance calcium-activated K+ channels via protein kinase A mediates desflurane-induced preconditioning. Anesth Analg 2008; 106:384-91, table of contents. [PMID: 18227289 DOI: 10.1213/ane.0b013e318160650f] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND ATP-regulated K+ channels are involved in anesthetic-induced preconditioning (APC). The role of other K+ channels in APC is unclear. We tested the hypothesis that APC is mediated by large-conductance calcium-activated K+ channels (K(Ca)). METHODS Pentobarbital-anesthetized male C57BL/6 mice were subjected to 45 min of coronary artery occlusion and 3 h reperfusion. Thirty minutes before coronary artery occlusion, 1.0 MAC desflurane was administered for 15 min alone or in combination with the large-conductance K(Ca) channel activator NS1619 (1 microg/g i.p.), its respective vehicle dimethylsulfoxide (10 microL/g i.p.), the large-conductance K(Ca) channel blocker iberiotoxin (0.05 microg/g i.p.), or the protein kinase A (PKA) inhibitor H-89 (0.5 microg/g intraventricular). Infarct size was determined with triphenyltetrazolium chloride and area at risk with Evans blue. Mitochondrial and sarcolemmal localization of large-conductance K(Ca) channels in cardiac myocytes was investigated with immunocytochemical staining of isolated cardiac myocytes. RESULTS Desflurane significantly reduced infarct size compared with control animals (7.4% +/- 0.8% vs 51.3% +/- 6.1%; P < 0.05). Activation of large-conductance K(Ca) channels by NS1619 (7.5% +/- 1.8%; P < 0.05) mimicked and blockade of large-conductance K(Ca) channels by iberiotoxin (49.1% +/- 7.5%) abrogated desflurane-induced preconditioning. PKA blockade by H-89 abolished desflurane-induced (45.1% +/- 4.0%) but not NS1619-induced (9.0% +/- 2.4%, P < 0.05) preconditioning. Immunocytochemical staining revealed that large-conductance K(Ca) channels were localized in the mitochondria but not in the sarcolemma of cardiac myocytes. CONCLUSION These data suggest that desflurane-induced APC is mediated in part by activation of mitochondrial large-conductance K(Ca) channels, and that activation of these channels by desflurane is mediated by PKA.
Collapse
Affiliation(s)
- Andreas Redel
- Department of Anesthesiology, University of Würzburg, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
103
|
Piwonska M, Wilczek E, Szewczyk A, Wilczynski GM. Differential distribution of Ca2+-activated potassium channel beta4 subunit in rat brain: immunolocalization in neuronal mitochondria. Neuroscience 2008; 153:446-60. [PMID: 18359571 DOI: 10.1016/j.neuroscience.2008.01.050] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/20/2007] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
Large conductance Ca(2+)-activated potassium channels (BK(Ca) channels) are expressed in the plasma membrane of various cell types. Interestingly, recent studies provided evidence for the existence of BK(Ca) channels also in mitochondria. However, the molecular composition of these channels as well as their cellular and tissue distribution is still unknown. The goal of the present study was to find a candidate for the regulatory component of the mitochondrial large conductance calcium activated potassium (mitoBK(Ca)) channel in neurons. A combined approach of Western blot analysis, high-resolution immunofluorescence and immunoelectron microscopy with the use of antibodies directed against four distinct beta subunits demonstrated the presence of the BK(Ca) channel beta4 subunit (KCNMB4) in the inner membrane of neuronal mitochondria in the rat brain and cultured neurons. Within the cell, the expression of beta4 subunit was restricted to a subpopulation of mitochondria. The analysis of beta4 subunit distribution throughout the brain revealed that the highest expression levels occur in the thalamus and the brainstem. Our results suggest that beta4 subunit is a regulatory component of mitochondrial BK(Ca) channels in neurons. These findings may support the perspectives for the neuroprotective role of mitochondrial BK(Ca) channel in specific brain structures.
Collapse
Affiliation(s)
- M Piwonska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur Street, Warsaw, Poland
| | | | | | | |
Collapse
|
104
|
Gáspár T, Katakam P, Snipes JA, Kis B, Domoki F, Bari F, Busija DW. Delayed neuronal preconditioning by NS1619 is independent of calcium activated potassium channels. J Neurochem 2007; 105:1115-28. [PMID: 18182041 DOI: 10.1111/j.1471-4159.2007.05210.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1,3-Dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS1619), a potent activator of the large conductance Ca2+ activated potassium (BK(Ca)) channel, has been demonstrated to induce preconditioning (PC) in the heart. The aim of our study was to test the delayed PC effect of NS1619 in rat cortical neuronal cultures against oxygen-glucose deprivation, H2O2, or glutamate excitotoxicity. We also investigated its actions on reactive oxygen species (ROS) generation, and on mitochondrial and plasma membrane potentials. Furthermore, we tested the activation of the phosphoinositide 3-kinase (PI3K) signaling pathway, and the effect of NS1619 on caspase-3/7. NS1619 dose-dependently protected the cells against the toxic insults, and the protection was completely blocked by a superoxide dismutase mimetic and a PI3K antagonist, but not by BK(Ca) channel inhibitors. Application of NS1619 increased ROS generation, depolarized isolated mitochondria, hyperpolarized the neuronal cell membrane, and activated the PI3K signaling cascade. However, only the effect on the cell membrane potential was antagonized by BK(Ca) channel blockers. NS1619 inhibited the activation of capase-3/7. In summary, NS1619 is a potent inducer of delayed neuronal PC. However, the neuroprotective effect seems to be independent of cell membrane and mitochondrial BK(Ca) channels. Rather it is the consequence of ROS generation, activation of the PI3K pathway, and inhibition of caspase activation.
Collapse
Affiliation(s)
- Tamás Gáspár
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
105
|
Heinen A, Winning A, Schlack W, Hollmann MW, Preckel B, Frässdorf J, Weber NC. The regulation of mitochondrial respiration by opening of mKCa channels is age-dependent. Eur J Pharmacol 2007; 578:108-13. [PMID: 17936270 DOI: 10.1016/j.ejphar.2007.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/29/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
The protective potency of ischemic preconditioning decreases with increasing age. A key step in ischemic preconditioning is the opening of mitochondrial Ca(2+) sensitive K(+) (mK(Ca)) channels, which causes mild uncoupling of mitochondrial respiration. We hypothesized that aging reduces the effects of mK(Ca) channel opening on mitochondrial respiration. We measured the effects of mK(Ca) channel opener NS1619 (30 microM) on mitochondrial respiration in isolated heart mitochondria from young (2-3 months) and old (22-26 months) Wistar rats. Oxygen consumption was monitored online after addition of 250 microM ADP (state 3 respiration), and after complete phosphorylation of ADP to ATP (state 4 respiration) in the presence or absence of the mK(Ca) channel blocker paxilline (5 microM). The respiratory control index (RCI) was calculated as state 3/state 4. In mitochondria from young rats, NS1619 increased state 4 respiration by 11.9+/-4.1% (mean+/-S.E.M.), decreased state 3 respiration by 7.6+/-2.5%, and reduced the RCI from 2.6+/-0.03 (control) to 2.1+/-0.06 (all P<0.05, n=12 for all groups). Paxilline blocked the effect of NS1619 on state 4 respiration (0.7+/-2.8%), but did not affect the decrease in state 3 respiration; paxilline blunted the decrease of RCI. In mitochondria from old rats, NS1619 had neither effect on state 4 (0.4+/-1.6%), and state 3 respiration (-7.4+/-1.5%), nor on RCI (3.0+/-0.13 vs. 3.2+/-0.11, n=12). Increasing age reduced the effects of mK(Ca) opening on mitochondrial respiration. This might be one underlying reason of the decreased protective potency of ischemic preconditioning in the aged myocardium.
Collapse
Affiliation(s)
- André Heinen
- Department of Anesthesiology, University of Düsseldorf, 40215 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
106
|
Kang SH, Park WS, Kim N, Youm JB, Warda M, Ko JH, Ko EA, Han J. Mitochondrial Ca2+-activated K+channels more efficiently reduce mitochondrial Ca2+overload in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2007; 293:H307-13. [PMID: 17351070 DOI: 10.1152/ajpheart.00789.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We investigated the role of the mitochondrial ATP-sensitive K+(KATP) channel, the mitochondrial big-conductance Ca2+-activated K+(BKCa) channel, and the mitochondrial permeability transition pore (MPTP) in the ouabain-induced increase of mitochondrial Ca2+in native rat ventricular myocytes by loading cells with rhod 2-AM. To overload mitochondrial Ca2+, we pretreated cells with ouabain before applying mitochondrial KATPor BKCachannel and/or MPTP opener. Ouabain (1 mM) increased the rhod 2-sensitive fluorescence intensity (160 ± 5.0% of control), which was dramatically decreased to the control level on application of diazoxide and NS-1619 in a dose-dependent manner (half-inhibition concentrations of 78.3 and 7.78 μM for diazoxide and NS-1619, respectively). This effect was reversed by selective inhibition of the mitochondrial KATPchannel by 5-hydroxydecanoate, the mitochondrial BKCachannel by paxilline, and the MPTP by cyclosporin A. Although diazoxide did not efficiently reduce mitochondrial Ca2+during prolonged exposure to ouabain, NS-1619 reduced mitochondrial Ca2+. These results suggest that although mitochondrial BKCaand KATPchannels contribute to reduction of ouabain-induced mitochondrial Ca2+overload, activation of the mitochondrial BKCachannel more efficiently reduces ouabain-induced mitochondrial Ca2+overload in our experimental model.
Collapse
Affiliation(s)
- Sung Hyun Kang
- Mitochondrial Signaling Laboratory, Department of Physiology and Biophysics, College of Medicine, Biohealth Products Research Center, Inje University, 633-165 Gaegeum-Dong, Busanjin-Gu, Busan 613-735, Korea
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Heinen A, Aldakkak M, Stowe DF, Rhodes SS, Riess ML, Varadarajan SG, Camara AKS. Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels. Am J Physiol Heart Circ Physiol 2007; 293:H1400-7. [PMID: 17513497 DOI: 10.1152/ajpheart.00198.2007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondria generate reactive oxygen species (ROS) dependent on substrate conditions, O(2) concentration, redox state, and activity of the mitochondrial complexes. It is well known that the FADH(2)-linked substrate succinate induces reverse electron flow to complex I of the electron transport chain and that this process generates superoxide (O(2)(*-)); these effects are blocked by the complex I blocker rotenone. We demonstrated recently that succinate + rotenone-dependent H(2)O(2) production in isolated mitochondria increased mildly on activation of the putative big mitochondrial Ca(2+)-sensitive K(+) channel (mtBK(Ca)) by low concentrations of 1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS-1619). In the present study we examined effects of NS-1619 on mitochondrial O(2) consumption, membrane potential (DeltaPsi(m)), H(2)O(2) release rates, and redox state in isolated guinea pig heart mitochondria respiring on succinate but without rotenone. NS-1619 (30 microM) increased state 2 and state 4 respiration by 26 +/- 4% and 14 +/- 4%, respectively; this increase was abolished by the BK(Ca) channel blocker paxilline (5 microM). Paxilline alone had no effect on respiration. NS-1619 did not alter DeltaPsi(m) or redox state but decreased H(2)O(2) production by 73% vs. control; this effect was incompletely inhibited by paxilline. We conclude that under substrate conditions that allow reverse electron flow, matrix K(+) influx through mtBK(Ca) channels reduces mitochondrial H(2)O(2) production by accelerating forward electron flow. Our prior study showed that NS-1619 induced an increase in H(2)O(2) production with blocked reverse electron flow. The present results suggest that NS-1619-induced matrix K(+) influx increases forward electron flow despite the high reverse electron flow, and emphasize the importance of substrate conditions on interpretation of effects on mitochondrial bioenergetics.
Collapse
Affiliation(s)
- André Heinen
- Anesthesiology Research Laboratories, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area.
Collapse
Affiliation(s)
- Brian O'Rourke
- Institute of Molecular Cardiobiology, Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| |
Collapse
|
109
|
Pi Y, Goldenthal MJ, Marín-García J. Mitochondrial channelopathies in aging. J Mol Med (Berl) 2007; 85:937-51. [PMID: 17426949 DOI: 10.1007/s00109-007-0190-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/20/2007] [Accepted: 02/16/2007] [Indexed: 12/15/2022]
Abstract
Defects in ion channels (channelopathies) are increasingly found in a large spectrum of human pathologies including aging. Mutations in genes encoding ion channel proteins, which disrupt channel function, are the most commonly identified cause of channelopathies. Mutations in associated proteins, alterations in the expression of ion channels, or changes in the activity of non-mutated channel genes or associated proteins can also produce acquired channelopathies. Mitochondria, the powerhouse of the cells, are considered to be the most important cellular organelles to contribute to aging mainly because of their role in the production of reactive oxygen species in the initiation of apoptotic cell remodeling and in efficient ATP synthesis. During the past 50 years, multiple ion channels or transporters have been found in mitochondria, and the relationship between the activity of these channels and cellular aging, as well as the overall cellular biological function, has been intensively studied in a number of cell types and animal models. In this review, we discuss the better characterized mitochondrial ion channels whose dysfunction (mitochondrial channelopathies) may affect or accelerate the aging processes. These channels include the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)), Ca(2+) transporters, voltage-dependent anion channel, and the mitochondrial permeability transition pore (mitoPTP).
Collapse
Affiliation(s)
- YeQing Pi
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ 08904, USA
| | | | | |
Collapse
|
110
|
Cancherini DV, Queliconi BB, Kowaltowski AJ. Pharmacological and physiological stimuli do not promote Ca(2+)-sensitive K+ channel activity in isolated heart mitochondria. Cardiovasc Res 2006; 73:720-8. [PMID: 17208207 DOI: 10.1016/j.cardiores.2006.11.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/23/2006] [Accepted: 11/27/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Mitochondrial calcium-activated K(+) (mitoK(Ca)) channels have been described as channels that are activated by Ca(2+), inner mitochondrial membrane depolarization and drugs such as NS-1619. NS-1619 is cardioprotective, leading to the assumption that this effect is related to the opening of mitoK(Ca) channels. Here, we show several weaknesses in this hypothesis. METHODS Isolated mitochondria from rat hearts were tested for evidence of mitoK(Ca) activity by analyzing functional parameters in K(+)-rich and K(+)-free media. RESULTS NS-1619 promoted mitochondrial depolarization both in K(+)-rich and K(+)-free media. Respiratory rate increments were also seen in the presence of NS-1619 for both media. In parallel, NS-1619 promoted respiratory inhibition, as evidenced by respiratory measurements in state 3. Mitochondrial volume measurements conducted using light scattering showed that NS-1619 led to swelling, in a manner unaltered by inhibitors of mitoK(Ca) channels, antagonists of adenosine triphosphate-sensitive potassium channels or inhibitors of the permeability transition. Swelling was also maintained when K(+) in the media was substituted with tetraethylammonium (TEA(+)), which is not transported by any known K(+) carrier. Electron microscopy experiments gave support to the idea that NS-1619-induced mitochondrial swelling took place in the absence of K(+). In addition to testing the pharmacological effects of NS-1619, we attempted, unsuccessfully, to promote mitoK(Ca) activity by altering Ca(2+) concentrations in the medium and inducing mitochondrial uncoupling. CONCLUSION Our data indicate that NS-1619 promotes non-selective permeabilization of the inner mitochondrial membrane to ions, in addition to partial respiratory inhibition. Furthermore, we found no specific K(+) transport in isolated heart mitochondria compatible with mitoK(Ca) opening, whether by pharmacological or physiological stimuli. Our results indicate that NS-1619 has extensive mitochondrial effects unrelated to mitoK(Ca) and suggest that tissue protection mediated by NS-1619 may occur through mechanisms other than activation of these channels.
Collapse
Affiliation(s)
- Douglas V Cancherini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
111
|
Ohya S. [Molecular pharmacological studies on potassium channels and their regulatory molecules]. YAKUGAKU ZASSHI 2006; 126:945-53. [PMID: 17016023 DOI: 10.1248/yakushi.126.945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K+ channels play important roles in the control of a large variety of physiological functions such as muscle contraction, neurotransmitter release, hormone secretion, and cell proliferation. Over 100 cloned K+ channel pore-forming alpha and accessory beta subunits have been identified so far. Here, we introduce a series of molecular pharmacological and physiological studies on some types of voltage-dependent K+ channels and Ca2+-activated K+ channels. We examined molecular cloning and functional characterization of novel, fast-inactivating, A-type K+ channel alpha (Kv4.3L) and beta (KChIP2S) subunits predominantly expressed in mammalian heart and found the sites in Kv4 channels for 1) the regulation of voltage dependency and 2) the CaMKII phosphorylation in the C-terminal cytoplasmic domain. Moreover, we found that delayed rectifier-type K+ channels (ERG1 and KCNQ) contribute to the resting membrane conductance in vascular and gastrointestinal smooth muscles. The large-conductance Ca2+-activated K+ (BK) channel is ubiquitously expressed and contributes to diverse physiological processes. Recent reports have shown that a BK-like channel (mitoKCa) is expressed in cardiac mitochondria, suggesting that BK channel openers protect mammalian hearts against ischemic injury. Our studies revealed that BKbeta1 interacts with cytochrome c oxidase I (Cco1) in cardiac mitochondria, and that the activation of BK channels by 17beta-estradiol results in a significant increase in the survival rate of ventricular myocytes. These findings suggest that BKbeta1 may play an important role in the regulation of cell respiration in cardiac myocytes and be a target for the modulation by female gonadal hormones.
Collapse
Affiliation(s)
- Susumu Ohya
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan.
| |
Collapse
|
112
|
Chen Q, Camara AKS, Stowe DF, Hoppel CL, Lesnefsky EJ. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 2006; 292:C137-47. [PMID: 16971498 DOI: 10.1152/ajpcell.00270.2006] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria are increasingly recognized as lynchpins in the evolution of cardiac injury during ischemia and reperfusion. This review addresses the emerging concept that modulation of mitochondrial respiration during and immediately following an episode of ischemia can attenuate the extent of myocardial injury. The blockade of electron transport and the partial uncoupling of respiration are two mechanisms whereby manipulation of mitochondrial metabolism during ischemia decreases cardiac injury. Although protection by inhibition of electron transport or uncoupling of respiration initially appears to be counterintuitive, the continuation of mitochondrial oxidative phosphorylation in the pathological milieu of ischemia generates reactive oxygen species, mitochondrial calcium overload, and the release of cytochrome c. The initial target of these deleterious mitochondrial-driven processes is the mitochondria themselves. Consequences to the cardiomyocyte, in turn, include oxidative damage, the onset of mitochondrial permeability transition, and activation of apoptotic cascades, all favoring cardiomyocyte death. Ischemia-induced mitochondrial damage carried forward into reperfusion further amplifies these mechanisms of mitochondrial-driven myocyte injury. Interruption of mitochondrial respiration during early reperfusion by pharmacologic blockade of electron transport or even recurrent hypoxia or brief ischemia paradoxically decreases cardiac injury. It increasingly appears that the cardioprotective paradigms of ischemic preconditioning and postconditioning utilize modulation of mitochondrial oxidative metabolism as a key effector mechanism. The initially counterintuitive approach to inhibit mitochondrial respiration provides a new cardioprotective paradigm to decrease cellular injury during both ischemia and reperfusion.
Collapse
Affiliation(s)
- Qun Chen
- Cardiology Section, Medical Service 111(W), Louis Stokes VA Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
113
|
Heinen A, Camara AKS, Aldakkak M, Rhodes SS, Riess ML, Stowe DF. Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. Am J Physiol Cell Physiol 2006; 292:C148-56. [PMID: 16870831 DOI: 10.1152/ajpcell.00215.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated a role for altered mitochondrial bioenergetics and reactive oxygen species (ROS) production in mitochondrial Ca(2+)-sensitive K(+) (mtK(Ca)) channel opening-induced preconditioning in isolated hearts. However, the underlying mitochondrial mechanism by which mtK(Ca) channel opening causes ROS production to trigger preconditioning is unknown. We hypothesized that submaximal mitochondrial K(+) influx causes ROS production as a result of enhanced electron flow at a fully charged membrane potential (DeltaPsi(m)). To test this hypothesis, we measured effects of NS-1619, a putative mtK(Ca) channel opener, and valinomycin, a K(+) ionophore, on mitochondrial respiration, DeltaPsi(m), and ROS generation in guinea pig heart mitochondria. NS-1619 (30 microM) increased state 2 and 4 respiration by 5.2 +/- 0.9 and 7.3 +/- 0.9 nmol O(2).min(-1).mg protein(-1), respectively, with the NADH-linked substrate pyruvate and by 7.5 +/- 1.4 and 11.6 +/- 2.9 nmol O(2).min(-1).mg protein(-1), respectively, with the FADH(2)-linked substrate succinate (+ rotenone); these effects were abolished by the mtK(Ca) channel blocker paxilline. DeltaPsi(m) was not decreased by 10-30 microM NS-1619 with either substrate, but H(2)O(2) release was increased by 44.8% (65.9 +/- 2.7% by 30 muM NS-1619 vs. 21.1 +/- 3.8% for time controls) with succinate + rotenone. In contrast, NS-1619 did not increase H(2)O(2) release with pyruvate. Similar results were found for lower concentrations of valinomycin. The increase in ROS production in succinate + rotenone-supported mitochondria resulted from a fully maintained DeltaPsi(m), despite increased respiration, a condition that is capable of allowing increased electron leak. We propose that mild matrix K(+) influx during states 2 and 4 increases mitochondrial respiration while maintaining DeltaPsi(m); this allows singlet electron uptake by O(2) and ROS generation.
Collapse
Affiliation(s)
- André Heinen
- Anesthesiology Research Laboratories, Department of Anesthesiology, Medical College of Wisconsin, M4280, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|