101
|
Raleigh JMV, Toldo S, Das A, Abbate A, Salloum FN. Relaxin' the Heart: A Novel Therapeutic Modality. J Cardiovasc Pharmacol Ther 2015; 21:353-62. [PMID: 26589290 DOI: 10.1177/1074248415617851] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022]
Abstract
The peptide hormone relaxin has traditionally been linked to the maternal adaptation of the cardiovascular system during the first trimester of pregnancy. By promoting nitric oxide formation through different molecular signaling events, relaxin has been proposed as a pleiotropic and cardioprotective hormone in the setting of many cardiovascular diseases. In fact, preclinical studies were able to demonstrate that relaxin promotes vasodilatation and angiogenesis, ameliorates ischemia/reperfusion injury, and regulates extracellular matrix turnover and remodeling. In the RELAX-AHF phase 3 clinical trial, serelaxin (recombinant human relaxin) was shown to be safe, and it exerted survival benefits in patients with acute heart failure. RELAX-AHF-2 is currently ongoing, and it aims to address a larger population and evaluate harder clinical outcomes. Besides heart failure, acute myocardial infarction, peripheral arterial disease, and stable coronary disease could be target diseases for treatment with serelaxin in future clinical trials.
Collapse
Affiliation(s)
- Juan M Valle Raleigh
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Stefano Toldo
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Anindita Das
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Fadi N Salloum
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
102
|
A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice. Int J Cardiol 2015; 198:66-9. [DOI: 10.1016/j.ijcard.2015.06.136] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/21/2015] [Accepted: 06/27/2015] [Indexed: 12/19/2022]
|
103
|
Somanna NK, Valente AJ, Krenz M, Fay WP, Delafontaine P, Chandrasekar B. The Nox1/4 Dual Inhibitor GKT137831 or Nox4 Knockdown Inhibits Angiotensin-II-Induced Adult Mouse Cardiac Fibroblast Proliferation and Migration. AT1 Physically Associates With Nox4. J Cell Physiol 2015; 231:1130-41. [PMID: 26445208 DOI: 10.1002/jcp.25210] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023]
Abstract
Both oxidative stress and inflammation contribute to chronic hypertension-induced myocardial fibrosis and adverse cardiac remodeling. Here we investigated whether angiotensin (Ang)-II-induced fibroblast proliferation and migration are NADPH oxidase (Nox) 4/ROS and IL-18 dependent. Our results show that the potent induction of mouse cardiac fibroblast (CF) proliferation and migration by Ang-II is markedly attenuated by Nox4 knockdown and the Nox inhibitor DPI. Further, Nox4 knockdown and DPI pre-treatment attenuated Ang-II-induced IL-18, IL-18Rα and collagen expression, and MMP9 and LOX activation. While neutralization of IL-18 blunted Ang-II-induced CF proliferation and migration, knockdown of MMP9 attenuated CF migration. The antioxidant NAC and the cell-permeable SOD mimetics Tempol, MnTBAP, and MnTMPyP attenuated oxidative stress and inhibited CF proliferation and migration. The Nox1/Nox4 dual inhibitor GKT137831 also blunted Ang-II-induced H2 O2 production and CF proliferation and migration. Further, AT1 bound Nox4, and Ang-II enhanced their physical association. Notably, GKT137831 attenuated the AT1/Nox4 interaction. These results indicate that Ang-II induces CF proliferation and migration in part via Nox4/ROS-dependent IL-18 induction and MMP9 activation, and may involve AT1/Nox4 physical association. Thus, either (i) neutralizing IL-18, (ii) blocking AT1/Nox4 interaction or (iii) use of the Nox1/Nox4 inhibitor GKT137831 may have therapeutic potential in chronic hypertension-induced adverse cardiac remodeling.
Collapse
Affiliation(s)
- Naveen K Somanna
- Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Anthony J Valente
- Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - William P Fay
- Medicine/Cardiology, University of Missouri, Columbia, Missouri
| | | | - Bysani Chandrasekar
- Medicine/Cardiology, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| |
Collapse
|
104
|
van Hout GPJ, Arslan F, Pasterkamp G, Hoefer IE. Targeting danger-associated molecular patterns after myocardial infarction. Expert Opin Ther Targets 2015; 20:223-39. [DOI: 10.1517/14728222.2016.1088005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
105
|
Rigante D, Emmi G, Fastiggi M, Silvestri E, Cantarini L. Macrophage activation syndrome in the course of monogenic autoinflammatory disorders. Clin Rheumatol 2015; 34:1333-1339. [PMID: 25846831 DOI: 10.1007/s10067-015-2923-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 01/15/2023]
Abstract
An overwhelming activation of cytotoxic T cells and well-differentiated macrophages leading to systemic overload of inflammatory mediators characterizes the so-called macrophage activation syndrome (MAS); this potentially life-threatening clinical entity may derive from several genetic defects involved in granule-mediated cytotoxicity but has been largely observed in patients with juvenile idiopathic arthritis, many rheumatologic diseases, infections, and malignancies. The occurrence of MAS in the natural history or as the revealing clue of monogenic autoinflammatory disorders (AIDs), rare conditions caused by disrupted innate immunity pathways with overblown release of proinflammatory cytokines, has been only reported in few isolated patients with cryopyrin-associated periodic syndrome, mevalonate kinase deficiency, familial Mediterranean fever, and tumor necrosis factor receptor-associated periodic syndrome since 2001. All these patients displayed various clinical, laboratory, and histopathologic features of MAS and have often required intensive care support. Only one patient has died due to MAS. Defective cytotoxic cell function was documented in a minority of patients. Corticosteroids were the first-line treatment, but anakinra was clinically effective in three refractory cases. Even if MAS and AIDs share multiple clinical features as well as heterogeneous pathogenetic scenes and a potential response to anti-interleukin-1 targeted therapies, MAS requires a prompt specific recognition in the course of AIDs due to its profound severity and high mortality rate.
Collapse
Affiliation(s)
- Donato Rigante
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | | | | | | | | |
Collapse
|
106
|
Zakkar M, Ascione R, James AF, Angelini GD, Suleiman MS. Inflammation, oxidative stress and postoperative atrial fibrillation in cardiac surgery. Pharmacol Ther 2015; 154:13-20. [PMID: 26116810 DOI: 10.1016/j.pharmthera.2015.06.009] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/18/2015] [Indexed: 01/24/2023]
Abstract
Postoperative atrial fibrillation (POAF) is a common complication of cardiac surgery that occurs in up to 60% of patients. POAF is associated with increased risk of cardiovascular mortality, stroke and other arrhythmias that can impact on early and long term clinical outcomes and health economics. Many factors such as disease-induced cardiac remodelling, operative trauma, changes in atrial pressure and chemical stimulation and reflex sympathetic/parasympathetic activation have been implicated in the development of POAF. There is mounting evidence to support a major role for inflammation and oxidative stress in the pathogenesis of POAF. Both are consequences of using cardiopulmonary bypass and reperfusion following ischaemic cardioplegic arrest. Subsequently, several anti-inflammatory and antioxidant drugs have been tested in an attempt to reduce the incidence of POAF. However, prevention remains suboptimal and thus far none of the tested drugs has provided sufficient efficacy to be widely introduced in clinical practice. A better understanding of the cellular and molecular mechanisms responsible for the onset and persistence of POAF is needed to develop more effective prediction and interventions.
Collapse
Affiliation(s)
- M Zakkar
- Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - R Ascione
- Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - A F James
- School of Physiology & Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - G D Angelini
- Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - M S Suleiman
- Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK.
| |
Collapse
|
107
|
Butts B, Gary RA, Dunbar SB, Butler J. The Importance of NLRP3 Inflammasome in Heart Failure. J Card Fail 2015; 21:586-93. [PMID: 25982825 DOI: 10.1016/j.cardfail.2015.04.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/08/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022]
Abstract
Patients with heart failure continue to suffer adverse health consequences despite advances in therapies over the past 2 decades. Identification of novel therapeutic targets that may attenuate disease progression is therefore needed. The inflammasome may play a central role in modulating chronic inflammation and in turn affecting heart failure progression. The inflammasome is a complex of intracellular interaction proteins that trigger maturation of proinflammatory cytokines interleukin-1β and interleukin-18 to initiate the inflammatory response. This response is amplified through production of tumor necrosis factor α and activation of inducible nitric oxide synthase. The purpose of this review is to discuss recent evidence implicating this inflammatory pathway in the pathophysiology of heart failure.
Collapse
Affiliation(s)
- Brittany Butts
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Rebecca A Gary
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Sandra B Dunbar
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Javed Butler
- Cardiology Division, Stony Brook University, Stony Brook, NY.
| |
Collapse
|
108
|
Toldo S, Mezzaroma E, Mauro AG, Salloum F, Van Tassell BW, Abbate A. The inflammasome in myocardial injury and cardiac remodeling. Antioxid Redox Signal 2015; 22:1146-61. [PMID: 25330141 DOI: 10.1089/ars.2014.5989] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE An inflammatory response follows an injury of any nature, and while such a response is an attempt to promote healing, it may, itself, result in further injury. RECENT ADVANCES The inflammasome is a macromolecular structure recently recognized as a central mediator in the acute inflammatory response. The inflammasome senses the injury and it amplifies the response by leading to the release of powerful pro-inflammatory cytokines, interleukin-1β (IL-1β) and IL-18. CRITICAL ISSUES The activation of the inflammasome in the heart during ischemic and nonischemic injury represents an exaggerated response to sterile injury and promotes adverse cardiac remodeling and failure. FUTURE DIRECTIONS Pilot clinical trials have explored blockade of the inflammasome-derived IL-1β and have shown beneficial effects on cardiac function. Additional clinical studies testing this approach are warranted. Moreover, specific inflammasome inhibitors that are ready for clinical use are currently lacking.
Collapse
Affiliation(s)
- Stefano Toldo
- 1 VCU Pauley Heart Center, Virginia Commonwealth University , Richmond, Virginia
| | | | | | | | | | | |
Collapse
|
109
|
Frangogiannis NG. Interleukin-1 in cardiac injury, repair, and remodeling: pathophysiologic and translational concepts. Discoveries (Craiova) 2015; 3. [PMID: 26273700 PMCID: PMC4532433 DOI: 10.15190/d.2015.33] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the infarcted myocardium, necrotic cardiomyocytes release danger signals activating an intense inflammatory reaction that serves to clear the wound from dead cells and matrix debris, but may also extend injury. A growing body of evidence suggests an important role for members of the Interleukin (IL)-1 family in injury, repair and remodeling of the infarcted heart. This review manuscript discusses the pathophysiologic functions of IL-1 in the infarcted and remodeling myocardium and its potential role as a therapeutic target in patients with myocardial infarction. Dead cardiomyocytes release IL-1a that may function as a crucial alarmin triggering the post-infarction inflammatory reaction. IL-1b is markedly upregulated in the infarcted myocardium; activation of the inflammasome in both cardiomyocytes and interstitial cells results in release of bioactive IL-1b in the infarcted area. Binding of IL-1 to the type 1 receptor triggers an inflammatory cascade, inducing recruitment of pro-inflammatory leukocytes and stimulating a matrix-degrading program in fibroblasts, while delaying myofibroblast conversion. IL-1 mediates dilative remodeling following infarction and may play a role in the pathogenesis of post-infarction heart failure. As the wound is cleared from dead cells and matrix debris, endogenous inhibitory signals suppress the IL-1 response resulting in repression of inflammation and resolution of the inflammatory infiltrate. Other members of the IL-1 family (such as IL-18 and IL-33) are also implicated in regulation of the inflammatory and reparative response following myocardial infarction. IL-18 may participate in pro-inflammatory signaling, whereas IL-33 may exert cytoprotective effects. Early clinical trials suggest that IL-1 blockade may be a promising therapeutic strategy for patients with myocardial infarction.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| |
Collapse
|
110
|
Mezzaroma E, Mikkelsen RB, Toldo S, Mauro AG, Sharma K, Marchetti C, Alam A, Van Tassell BW, Gewirtz DA, Abbate A. Role of Interleukin-1 in Radiation-Induced Cardiomyopathy. Mol Med 2015; 21:210-8. [PMID: 25822795 DOI: 10.2119/molmed.2014.00243] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/25/2015] [Indexed: 01/14/2023] Open
Abstract
Thoracic X-ray therapy (XRT), used in cancer treatment, is associated with increased risk of heart failure. XRT-mediated injury to the heart induces an inflammatory response leading to cardiomyopathy. The aim of this study was to determine the role of interleukin (IL)-1 in response to XRT injury to the heart and on the cardiomyopathy development in the mouse. Female mice with genetic deletion of the IL-1 receptor type I (IL-1R1 knockout mice [IL-1R1 KO]) and treatment with recombinant human IL-1 receptor antagonist anakinra, 10 mg/kg twice daily for 7 d, were used as independent approaches to determine the role of IL-1. Wild-type (wt) or IL-1R1 KO mice were treated with a single session of XRT (20 or 14 gray [Gy]). Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson's trichrome was used to assess myocardial fibrosis and pericardial thickening. After 20 Gy, the contractile reserve was impaired in wt mice at d 3, and the LV ejection fraction (EF) was reduced after 4 months when compared with sham-XRT. IL-1R1 KO mice had preserved contractile reserve at 3 d and 4 months and LVEF at 4 months after XRT. Anakinra treatment for 1 d before and 7 d after XRT prevented the impairment in contractile reserve. A significant increase in LV end-diastolic pressure, associated with increased myocardial interstitial fibrosis and pericardial thickening, was observed in wt mice, as well as in IL-1R1 KO-or anakinra-treated mice. In conclusion, induction of IL-1 by XRT mediates the development of some, such as the contractile impairment, but not all aspects of the XRT-induced cardiomyopathy, such as myocardial fibrosis or pericardial thickening.
Collapse
Affiliation(s)
- Eleonora Mezzaroma
- Virginia Commonwealth University (VCU) Pauley Heart Center, Richmond, Virginia, United States of America.,VCU Victoria Johnson Center, Richmond, Virginia, United States of America.,School of Pharmacy, VCU, Richmond, Virginia, United States of America
| | - Ross B Mikkelsen
- Radiation Oncology, Massey Cancer Center, VCU, Richmond, Virginia, United States of America
| | - Stefano Toldo
- Virginia Commonwealth University (VCU) Pauley Heart Center, Richmond, Virginia, United States of America.,VCU Victoria Johnson Center, Richmond, Virginia, United States of America
| | - Adolfo G Mauro
- Virginia Commonwealth University (VCU) Pauley Heart Center, Richmond, Virginia, United States of America.,VCU Victoria Johnson Center, Richmond, Virginia, United States of America
| | - Khushboo Sharma
- Pharmacology and Toxicology, Massey Cancer Center, VCU, Richmond, Virginia, United States of America
| | - Carlo Marchetti
- Virginia Commonwealth University (VCU) Pauley Heart Center, Richmond, Virginia, United States of America.,VCU Victoria Johnson Center, Richmond, Virginia, United States of America
| | - Asim Alam
- Radiation Oncology, Massey Cancer Center, VCU, Richmond, Virginia, United States of America
| | - Benjamin W Van Tassell
- Virginia Commonwealth University (VCU) Pauley Heart Center, Richmond, Virginia, United States of America.,VCU Victoria Johnson Center, Richmond, Virginia, United States of America.,School of Pharmacy, VCU, Richmond, Virginia, United States of America
| | - David A Gewirtz
- Pharmacology and Toxicology, Massey Cancer Center, VCU, Richmond, Virginia, United States of America
| | - Antonio Abbate
- Virginia Commonwealth University (VCU) Pauley Heart Center, Richmond, Virginia, United States of America.,VCU Victoria Johnson Center, Richmond, Virginia, United States of America
| |
Collapse
|
111
|
Interleukin-18 increases TLR4 and mannose receptor expression and modulates cytokine production in human monocytes. Mediators Inflamm 2015; 2015:236839. [PMID: 25873755 PMCID: PMC4383410 DOI: 10.1155/2015/236839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022] Open
Abstract
Interleukin-18 is a proinflammatory cytokine belonging to the interleukin-1 family of cytokines. This cytokine exerts many unique biological and immunological effects. To explore the role of IL-18 in inflammatory innate immune responses, we investigated its impact on expression of two toll-like receptors (TLR2 and TLR4) and mannose receptor (MR) by human peripheral blood monocytes and its effect on TNF-α, IL-12, IL-15, and IL-10 production. Monocytes from healthy donors were stimulated or not with IL-18 for 18 h, and then the TLR2, TLR4, and MR expression and intracellular TNF-α, IL-12, and IL-10 production were assessed by flow cytometry and the levels of TNF-α, IL-12, IL-15, and IL-10 in culture supernatants were measured by ELISA. IL-18 treatment was able to increase TLR4 and MR expression by monocytes. The production of TNF-α and IL-10 was also increased by cytokine treatment. However, IL-18 was unable to induce neither IL-12 nor IL-15 production by these cells. Taken together, these results show an important role of IL-18 on the early phase of inflammatory response by promoting the expression of some pattern recognition receptors (PRRs) that are important during the microbe recognition phase and by inducing some important cytokines such as TNF-α and IL-10.
Collapse
|
112
|
Toldo S, Abbate A. Diastolic dysfunction in chronic hypoxia: IL-18 provides the elusive link. Acta Physiol (Oxf) 2015; 213:298-300. [PMID: 25293945 DOI: 10.1111/apha.12403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- S. Toldo
- VCU Pauley Heart Center; Virginia Commonwealth University; Richmond VA USA
- Victoria Johnson Research Laboratory; Virginia Commonwealth University; Richmond VA USA
| | - A. Abbate
- VCU Pauley Heart Center; Virginia Commonwealth University; Richmond VA USA
- Victoria Johnson Research Laboratory; Virginia Commonwealth University; Richmond VA USA
| |
Collapse
|
113
|
Hillestad V, Espe EKS, Cero F, Larsen KO, Sjaastad I, Nygård S, Skjønsberg OH, Christensen G. IL-18 neutralization during alveolar hypoxia improves left ventricular diastolic function in mice. Acta Physiol (Oxf) 2015; 213:492-504. [PMID: 25182570 DOI: 10.1111/apha.12376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 06/30/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022]
Abstract
AIM In patients, an association exists between pulmonary diseases and diastolic dysfunction of the left ventricle (LV). We have previously shown that alveolar hypoxia in mice induces LV diastolic dysfunction and that mice exposed to hypoxia have increased levels of circulating interleukin-18 (IL-18), suggesting involvement of IL-18 in development of diastolic dysfunction. IL-18 binding protein (IL-18BP) is a natural inhibitor of IL-18. In this study, we hypothesized that neutralization of IL-18 during alveolar hypoxia would improve LV diastolic function. METHODS Mice were exposed to 10% oxygen for 2 weeks while treated with IL-18BP or vehicle. Cardiac function and morphology were measured using echocardiography, intraventricular pressure measurements and magnetic resonance imaging (MRI). For characterization of molecular changes in the heart, both real-time PCR and Western blotting were performed. ELISA technique was used to measure levels of circulating cytokines. RESULTS As expected, exposure to hypoxia-induced LV diastolic dysfunction, as shown by prolonged time constant of isovolumic relaxation (τ). Improved relaxation with IL-18BP treatment was demonstrated by a significant reduction towards control τ values. Decreased levels of phosphorylated phospholamban (P-PLB) in hypoxia, but normalization by IL-18BP treatment suggest a role for IL-18 in regulation of calcium-handling proteins in hypoxia-induced diastolic dysfunction. In addition, MRI showed less increase in right ventricular (RV) wall thickness in IL-18BP-treated animals exposed to hypoxia, indicating an effect on RV hypertrophy. CONCLUSION Neutralization of IL-18 during alveolar hypoxia improves LV diastolic function and partly prevents RV hypertrophy.
Collapse
Affiliation(s)
- V. Hillestad
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
| | - E. K. S. Espe
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
| | - F. Cero
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
- Departement of Pulmonary Medicine; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
| | - K. O. Larsen
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
- Departement of Pulmonary Medicine; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
| | - I. Sjaastad
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
| | - S. Nygård
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
- Bioinformatics Core Facility; Institute for Medical Informatics; Oslo University Hospital and University of Oslo; Oslo Norway
| | - O. H. Skjønsberg
- Departement of Pulmonary Medicine; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
| | - G. Christensen
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
| |
Collapse
|
114
|
Toldo S, Mezzaroma E, McGeough MD, Peña CA, Marchetti C, Sonnino C, Van Tassell BW, Salloum FN, Voelkel NF, Hoffman HM, Abbate A. Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovasc Res 2014; 105:203-12. [PMID: 25524927 DOI: 10.1093/cvr/cvu259] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS The NLRP3 inflammasome is activated in the ischaemic heart promoting caspase-1 activation, inflammation, and cell death. Ischaemic injury establishes both a priming signal (transcription of inflammasome components) and a trigger (NLRP3 activation). Whether NLRP3 activation, without priming, induces cardiac dysfunction and/or failure is unknown. The aim of this study was to assess the independent and complementary roles of the priming and the triggering signals in the heart, in the absence of ischaemia or myocardial injury. METHODS AND RESULTS We used mice with mutant NLRP3 (constitutively active), NLRP3-A350V, under the control of tamoxifen-driven expression of the Cre recombinase (Nlrp3-A350V/CreT mice). The mice were treated for 10 days with tamoxifen before measuring the activity of caspase-1, the effector enzyme in the inflammasome. Tamoxifen treatment induced the inflammasome in the spleen but not in the heart, despite expression of the mutant NLRP3-A350V. The components of the inflammasome were significantly less expressed in the heart compared with the spleen. Subclinical low-dose lipopolysaccharide (LPS; 2 mg/kg) in Nlrp3-A350V/CreT mice induced the expression of the components of the inflammasome (priming), measured using real-time PCR and western blot, leading to the formation of an active inflammasome (caspase-1 activation) in the heart and LV systolic dysfunction while low-dose LPS was insufficient to induce LV systolic dysfunction in wild-type mice (all P < 0.01 for mutant vs. wild-type mice). CONCLUSION The signalling pathway governing the inflammasome formation in the heart requires a priming signal in order for an active NLRP3 to induce caspase-1 activation and LV dysfunction.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Box 980281, 1220 East Broad Street, Richmond, VA 23298, USA Victoria Johnson Research Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Eleonora Mezzaroma
- VCU Pauley Heart Center, Virginia Commonwealth University, Box 980281, 1220 East Broad Street, Richmond, VA 23298, USA Victoria Johnson Research Center, Virginia Commonwealth University, Richmond, VA, USA School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew D McGeough
- Division of Allergy, Immunology and Rheumatology, University of California at San Diego, La Jolla, CA, USA
| | - Carla A Peña
- Division of Allergy, Immunology and Rheumatology, University of California at San Diego, La Jolla, CA, USA
| | - Carlo Marchetti
- VCU Pauley Heart Center, Virginia Commonwealth University, Box 980281, 1220 East Broad Street, Richmond, VA 23298, USA Victoria Johnson Research Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Chiara Sonnino
- VCU Pauley Heart Center, Virginia Commonwealth University, Box 980281, 1220 East Broad Street, Richmond, VA 23298, USA Victoria Johnson Research Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Benjamin W Van Tassell
- Victoria Johnson Research Center, Virginia Commonwealth University, Richmond, VA, USA School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Fadi N Salloum
- VCU Pauley Heart Center, Virginia Commonwealth University, Box 980281, 1220 East Broad Street, Richmond, VA 23298, USA
| | - Norbert F Voelkel
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Hal M Hoffman
- Division of Allergy, Immunology and Rheumatology, University of California at San Diego, La Jolla, CA, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Box 980281, 1220 East Broad Street, Richmond, VA 23298, USA Victoria Johnson Research Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
115
|
|
116
|
Yoshida T, Friehs I, Mummidi S, del Nido PJ, Addulnour-Nakhoul S, Delafontaine P, Valente AJ, Chandrasekar B. Pressure overload induces IL-18 and IL-18R expression, but markedly suppresses IL-18BP expression in a rabbit model. IL-18 potentiates TNF-α-induced cardiomyocyte death. J Mol Cell Cardiol 2014; 75:141-51. [PMID: 25108227 PMCID: PMC4157969 DOI: 10.1016/j.yjmcc.2014.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 10/24/2022]
Abstract
Recurrent or sustained inflammation plays a causal role in the development and progression of left ventricular hypertrophy (LVH) and its transition to failure. Interleukin (IL)-18 is a potent pro-hypertrophic inflammatory cytokine. We report that induction of pressure overload in the rabbit, by constriction of the descending thoracic aorta induces compensatory hypertrophy at 4weeks (mass/volume ratio: 1.7±0.11) and ventricular dilatation indicative of heart failure at 6weeks (mass/volume ratio: 0.7±0.04). In concordance with this, fractional shortening was preserved at 4weeks, but markedly attenuated at 6weeks. We cloned rabbit IL-18, IL-18Rα, IL-18Rβ, and IL-18 binding protein (IL-18BP) cDNA, and show that pressure overload, while enhancing IL-18 and IL-18R expression in hypertrophied and failing hearts, markedly attenuated the level of expression of the endogenous IL-18 antagonist IL-18BP. Cyclical mechanical stretch (10% cyclic equibiaxial stretch, 1Hz) induced hypertrophy of primary rabbit cardiomyocytes in vitro and enhanced ANP, IL-18, and IL-18Rα expression. Further, treatment with rhIL-18 induced its own expression and that of IL-18Rα via AP-1 activation, and induced cardiomyocyte hypertrophy in part via PI3K/Akt/GATA4 signaling. In contrast, IL-18 potentiated TNF-α-induced cardiomyocyte death, and by itself induced cardiac endothelial cell death. These results demonstrate that pressure overload is associated with enhanced IL-18 and its receptor expression in hypertrophied and failingrabbit hearts. Since IL-18BP expression is markedly inhibited, our results indicate a positive amplification in IL-18 proinflammatory signaling during pressure overload, and suggest IL-18 as a potential therapeutic target in pathological hypertrophy and cardiac failure.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ingeborg Friehs
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Srinivas Mummidi
- South Texas Veterans Health Care System and Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Pedro J del Nido
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Solange Addulnour-Nakhoul
- Department of Medicine-Gastroenterology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Anthony J Valente
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Bysani Chandrasekar
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA; Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA.
| |
Collapse
|
117
|
Fisman EZ, Tenenbaum A. Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol 2014; 13:103. [PMID: 24957699 PMCID: PMC4230016 DOI: 10.1186/1475-2840-13-103] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 01/14/2023] Open
Abstract
Adiponectin is the most abundant peptide secreted by adipocytes, being a key component in the interrelationship between adiposity, insulin resistance and inflammation. Central obesity accompanied by insulin resistance is a key factor in the development of metabolic syndrome (MS) and future macrovascular complications. Moreover, the remarkable correlation between coronary artery disease (CAD) and alterations in glucose metabolism has raised the likelihood that atherosclerosis and type 2 diabetes mellitus (T2DM) may share a common biological background. We summarize here the current knowledge about the influence of adiponectin on insulin sensitivity and endothelial function, discussing its forthcoming prospects and potential role as a therapeutic target for MS, T2DM, and cardiovascular disease. Adiponectin is present in the circulation as a dimer, trimer or protein complex of high molecular weight hexamers, >400 kDa. AdipoR1 and AdipoR2 are its major receptors in vivo mediating the metabolic actions. Adiponectin stimulates phosphorylation and AMP (adenosin mono phosphate) kinase activation, exerting direct effects on vascular endothelium, diminishing the inflammatory response to mechanical injury and enhancing endothelium protection in cases of apolipoprotein E deficiency. Hypoadiponectinemia is consistently associated with obesity, MS, atherosclerosis, CAD, T2DM. Lifestyle correction helps to favorably modify plasma adiponectin levels. Low adiponectinemia in obese patients is raised via continued weight loss programs in both diabetic and nondiabetic individuals and is also accompanied by reductions in pro-inflammatory factors. Diet modifications, like intake of fish, omega-3 supplementation, adherence to a Mediterranean dietary pattern and coffee consumption also increase adiponectin levels. Antidiabetic and cardiovascular pharmacological agents, like glitazones, glimepiride, angiotensin converting enzyme inhibitors and angiotensin receptor blockers are also able to improve adiponectin concentration. Fibric acid derivatives, like bezafibrate and fenofibrate, have been reported to enhance adiponectin levels as well. T-cadherin, a membrane-associated adiponectin-binding protein lacking intracellular domain seems to be a main mediator of the antiatherogenic adiponectin actions. The finding of novel pharmacologic agents proficient to improve adiponectin plasma levels should be target of exhaustive research. Interesting future approaches could be the development of adiponectin-targeted drugs chemically designed to induce the activaton of its receptors and/or postreceptor signaling pathways, or the development of specific adiponectin agonists.
Collapse
Affiliation(s)
- Enrique Z Fisman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
118
|
O'Brien LC, Mezzaroma E, Van Tassell BW, Marchetti C, Carbone S, Abbate A, Toldo S. Interleukin-18 as a therapeutic target in acute myocardial infarction and heart failure. Mol Med 2014; 20:221-9. [PMID: 24804827 DOI: 10.2119/molmed.2014.00034] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/28/2014] [Indexed: 12/13/2022] Open
Abstract
Interleukin 18 (IL-18) is a proinflammatory cytokine in the IL-1 family that has been implicated in a number of disease states. In animal models of acute myocardial infarction (AMI), pressure overload, and LPS-induced dysfunction, IL-18 regulates cardiomyocyte hypertrophy and induces cardiac contractile dysfunction and extracellular matrix remodeling. In patients, high IL-18 levels correlate with increased risk of developing cardiovascular disease (CVD) and with a worse prognosis in patients with established CVD. Two strategies have been used to counter the effects of IL-18:IL-18 binding protein (IL-18BP), a naturally occurring protein, and a neutralizing IL-18 antibody. Recombinant human IL-18BP (r-hIL-18BP) has been investigated in animal studies and in phase I/II clinical trials for psoriasis and rheumatoid arthritis. A phase II clinical trial using a humanized monoclonal IL-18 antibody for type 2 diabetes is ongoing. Here we review the literature regarding the role of IL-18 in AMI and heart failure and the evidence and challenges of using IL-18BP and blocking IL-18 antibodies as a therapeutic strategy in patients with heart disease.
Collapse
Affiliation(s)
- Laura C O'Brien
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Eleonora Mezzaroma
- Victoria Johnson Research Laboratories, Virginia Commonwealth University, Richmond, Virginia, United States of America Virginia Commonwealth University Pauley Heart Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America Pharmacotherapy and Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Benjamin W Van Tassell
- Victoria Johnson Research Laboratories, Virginia Commonwealth University, Richmond, Virginia, United States of America Virginia Commonwealth University Pauley Heart Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America Pharmacotherapy and Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Carlo Marchetti
- Victoria Johnson Research Laboratories, Virginia Commonwealth University, Richmond, Virginia, United States of America Virginia Commonwealth University Pauley Heart Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Salvatore Carbone
- Victoria Johnson Research Laboratories, Virginia Commonwealth University, Richmond, Virginia, United States of America Virginia Commonwealth University Pauley Heart Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Antonio Abbate
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America Victoria Johnson Research Laboratories, Virginia Commonwealth University, Richmond, Virginia, United States of America Virginia Commonwealth University Pauley Heart Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Stefano Toldo
- Victoria Johnson Research Laboratories, Virginia Commonwealth University, Richmond, Virginia, United States of America Virginia Commonwealth University Pauley Heart Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|