101
|
La Gerche A, Claessen G, Burns AT. To assess exertional breathlessness you must exert the breathless. Eur J Heart Fail 2013; 15:713-4. [PMID: 23645500 DOI: 10.1093/eurjhf/hft074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
102
|
Nakano S, Sujino Y, Tanno J, Ariyama M, Muramatsu T, Senbonmatsu T, Nishimura S, Tamura Y, Fukuda K. Inducible intrapulmonary arteriovenous shunt in a patient with beriberi heart. Am J Respir Crit Care Med 2013; 187:332-3. [PMID: 23378443 DOI: 10.1164/ajrccm.187.3.332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
103
|
Stickland MK, Lindinger MI, Olfert IM, Heigenhauser GJF, Hopkins SR. Pulmonary gas exchange and acid-base balance during exercise. Compr Physiol 2013; 3:693-739. [PMID: 23720327 PMCID: PMC8315793 DOI: 10.1002/cphy.c110048] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As the first step in the oxygen-transport chain, the lung has a critical task: optimizing the exchange of respiratory gases to maintain delivery of oxygen and the elimination of carbon dioxide. In healthy subjects, gas exchange, as evaluated by the alveolar-to-arterial PO2 difference (A-aDO2), worsens with incremental exercise, and typically reaches an A-aDO2 of approximately 25 mmHg at peak exercise. While there is great individual variability, A-aDO2 is generally largest at peak exercise in subjects with the highest peak oxygen consumption. Inert gas data has shown that the increase in A-aDO2 is explained by decreased ventilation-perfusion matching, and the development of a diffusion limitation for oxygen. Gas exchange data does not indicate the presence of right-to-left intrapulmonary shunt developing with exercise, despite recent data suggesting that large-diameter arteriovenous shunt vessels may be recruited with exercise. At the same time, multisystem mechanisms regulate systemic acid-base balance in integrative processes that involve gas exchange between tissues and the environment and simultaneous net changes in the concentrations of strong and weak ions within, and transfer between, extracellular and intracellular fluids. The physicochemical approach to acid-base balance is used to understand the contributions from independent acid-base variables to measured acid-base disturbances within contracting skeletal muscle, erythrocytes and noncontracting tissues. In muscle, the magnitude of the disturbance is proportional to the concentrations of dissociated weak acids, the rate at which acid equivalents (strong acid) accumulate and the rate at which strong base cations are added to or removed from muscle.
Collapse
Affiliation(s)
- Michael K. Stickland
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Michael I. Lindinger
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - I. Mark Olfert
- Robert C. Byrd Health Sciences Center, Center for Cardiovascular and Respiratory Sciences, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | | | - Susan R. Hopkins
- Departments of Medicine and Radiology, University of California, San Diego, San Diego, California
| |
Collapse
|
104
|
Heinonen I, Savolainen AM, Han C, Kemppainen J, Oikonen V, Luotolahti M, Duncker DJ, Merkus D, Knuuti J, Kalliokoski KK. Pulmonary blood flow and its distribution in highly trained endurance athletes and healthy control subjects. J Appl Physiol (1985) 2013; 114:329-34. [DOI: 10.1152/japplphysiol.00710.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary blood flow (PBF) is an important determinant of endurance sports performance, yet studies investigating adaptations of the pulmonary circulation in athletes are scarce. In the present study, we investigated PBF, its distribution, and heterogeneity at baseline and during intravenous systemic adenosine infusion in 10 highly trained male endurance athletes and 10 untrained but fit healthy controls, using positron emission tomography and [15O]water at rest and during adenosine infusion at supine body posture. Our results indicate that PBF at rest and during adenosine stimulation was similar in both groups (213 ± 55 and 563 ± 138 ml·100 ml−1·min−1 in athletes and 206 ± 83 and 473 ± 212 ml·100 ml−1·min−1 in controls, respectively). Although the PBF response to adenosine was thus unchanged in athletes, overall PBF heterogeneity was reduced from rest to adenosine infusion (from 84 ± 18 to 70 ± 19%, P < 0.05), while remaining unchanged in healthy controls (77 ± 16 to 85 ± 33%, P = 0.4). Additionally, there was a marked gravitational influence on general PBF distribution so that clear dorsal dominance was observed both at rest and during adenosine infusion, but training status did not have an effect on this distribution. Regional blood flow heterogeneity was markedly lower in the high-perfusion dorsal areas, both at rest and during adenosine, in all subjects, but flow heterogeneity in dorsal area tended to further decrease in response to adenosine in athletes. In conclusion, reduced blood flow heterogeneity in response to adenosine in endurance athletes may be a reflection of capillary reserve, which is more extensively recruitable in athletes than in matched healthy control subjects.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku and Turku University Hospital, Turku, Finland
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Anna M. Savolainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Chunlei Han
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jukka Kemppainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Matti Luotolahti
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Dirk J. Duncker
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Juhani Knuuti
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Kari K. Kalliokoski
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
105
|
Naeije R, Vanderpool R, Dhakal BP, Saggar R, Saggar R, Vachiery JL, Lewis GD. Exercise-induced pulmonary hypertension: physiological basis and methodological concerns. Am J Respir Crit Care Med 2013; 187:576-83. [PMID: 23348976 DOI: 10.1164/rccm.201211-2090ci] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Exercise stresses the pulmonary circulation through increases in cardiac output (.Q) and left atrial pressure. Invasive as well as noninvasive studies in healthy volunteers show that the slope of mean pulmonary artery pressure (mPAP)-flow relationships ranges from 0.5 to 3 mm Hg.min.L(-1). The upper limit of normal mPAP at exercise thus approximates 30 mm Hg at a .Q of less than 10 L.min(-1) or a total pulmonary vascular resistance at exercise of less than 3 Wood units. Left atrial pressure increases at exercise with an average upstream transmission to PAP in a close to one-for-one mm Hg fashion. Multipoint PAP-flow relationships are usually described by a linear approximation, but present with a slight curvilinearity, which is explained by resistive vessel distensibility. When mPAP is expressed as a function of oxygen uptake or workload, plateau patterns may be observed in patients with systolic heart failure who cannot further increase .Q at the highest levels of exercise. Exercise has to be dynamic to avoid the increase in systemic vascular resistance and abrupt changes in intrathoracic pressure that occur with resistive exercise and can lead to unpredictable effects on the pulmonary circulation. Postexercise measurements are unreliable because of the rapid return of pulmonary vascular pressures and flows to the baseline resting state. Recent studies suggest that exercise-induced increase in PAP to a mean higher than 30 mm Hg may be associated with dyspnea-fatigue symptomatology.
Collapse
Affiliation(s)
- Robert Naeije
- Department of Pathophysiology, Erasme Campus of the Univerrsité Libre de Bruxelles, 808 Lennik Road, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
106
|
Kindermann W, Corrado D, Scharhag J. The right heart in athletes. Do we really have sufficient evidence for exercise-induced arrhythmogenic right ventricular cardiomyopathy? Herzschrittmacherther Elektrophysiol 2013; 23:144-5; author reply 145-6. [PMID: 22854825 DOI: 10.1007/s00399-012-0207-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
107
|
|
108
|
Bossone E, D'Andrea A, D'Alto M, Citro R, Argiento P, Ferrara F, Cittadini A, Rubenfire M, Naeije R. Echocardiography in pulmonary arterial hypertension: from diagnosis to prognosis. J Am Soc Echocardiogr 2012; 26:1-14. [PMID: 23140849 DOI: 10.1016/j.echo.2012.10.009] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Indexed: 12/27/2022]
Abstract
Pulmonary arterial hypertension is most often diagnosed in its advanced stages because of the nonspecific nature of early symptoms and signs. Although clinical assessment is essential when evaluating patients with suspected pulmonary arterial hypertension, echocardiography is a key screening tool in the diagnostic algorithm. It provides an estimate of pulmonary artery pressure, either at rest or during exercise, and is useful in ruling out secondary causes of pulmonary hypertension. In addition, echocardiography is valuable in assessing prognosis and treatment options, monitoring the efficacy of specific therapeutic interventions, and detecting the preclinical stages of disease.
Collapse
Affiliation(s)
- Eduardo Bossone
- Department of Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Yim ES, Corrado G. Ultrasound in sports medicine: relevance of emerging techniques to clinical care of athletes. Sports Med 2012; 42:665-80. [PMID: 22712843 DOI: 10.2165/11632680-000000000-00000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The applications of ultrasound in managing the clinical care of athletes have been expanding over the past decade. This review provides an analysis of the research that has been published regarding the use of ultrasound in athletes and focuses on how these emerging techniques can impact the clinical management of athletes by sports medicine physicians. Electronic database literature searches were performed using the subject terms 'ultrasound' and 'athletes' from the years 2003 to 2012. The following databases were searched: PubMed, Web of Science, Cochrane Library, CINAHL, and SPORTDiscus™. The search produced 617 articles in total, with a predominance of articles focused on cardiac and musculoskeletal ultrasound. 266 of the studies involved application of ultrasound in evaluating the cardiovascular properties of athletes, and 151 studies involved musculoskeletal ultrasound. Other applications of ultrasound included abdominal, vascular, bone density and volume status. New techniques in echocardiography have made significant contributions to the understanding of the physiological changes that occur in the athlete's heart in response to the haemodynamic stress associated with different types of activity. The likely application of these techniques will be in managing athletes with hypertrophic cardiomyopathy, and the techniques are near ready for application into clinical practice. These techniques are highly specialized, however, and will require referral to dedicated laboratories to influence the clinical management of athletes. Investigation of aortic root pathology and pulmonary vascular haemodynamics are also emerging, but will require additional studies with larger numbers and outcomes analysis to validate their clinical utility. Some of these techniques are relatively simple, and thus hold the potential to enter clinical management in a point-of-care fashion. Musculoskeletal ultrasound has demonstrated a number of diagnostic and therapeutic techniques applicable to pathology of the shoulder, elbow, wrist, hand, hip, knee and ankle. These techniques have been applied mainly to the management of impingement syndromes, tendinopathies and arthritis. Many of these techniques have been validated and have entered clinical practice, while more recently developed techniques (such as dynamic ultrasound and platelet-rich plasma injections) will require further research to verify efficacy. Research in musculoskeletal ultrasound has also been helpful in identifying risk factors for injury and, thus, serving as a focus for developing interventions. Research in abdominal ultrasound has investigated the potential role of ultrasound imaging in assessing splenomegaly in athletes with mononucleosis, in an attempt to inform decisions and policies regarding return to play. Future research will have to demonstrate a reduction in adverse events in order to justify the application of such a technique into policy. The role of ultrasound in assessing groin pain and abdominal pain in ultraendurance athletes has also been investigated, providing promising areas of focus for the development of treatment interventions and physical therapy. Finally, preliminary research has also identified the role of ultrasound in addressing vascular disease, bone density and volume status in athletes. The potential applications of ultrasound in athletes are broad, and continuing research, including larger outcome studies, will be required to establish the clinical utility of these techniques in the care of athletes.
Collapse
Affiliation(s)
- Eugene Sun Yim
- Division of Sports Medicine, Childrens Hospital Boston, Boston, MA 02115, USA.
| | | |
Collapse
|
110
|
Laurie SS, Elliott JE, Goodman RD, Lovering AT. Catecholamine-induced opening of intrapulmonary arteriovenous anastomoses in healthy humans at rest. J Appl Physiol (1985) 2012; 113:1213-22. [PMID: 22858627 DOI: 10.1152/japplphysiol.00565.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism or mechanisms that cause intrapulmonary arteriovenous anastomoses (IPAVA) to either open during exercise in subjects breathing room air and at rest when breathing hypoxic gas mixtures, or to close during exercise while breathing 100% oxygen, remain unknown. During conditions when IPAVA are open, plasma epinephrine (EPI) and dopamine (DA) concentrations both increase, potentially representing a common mechanism. The purpose of this study was to determine whether EPI or DA infusions open IPAVA in resting subjects breathing room air and, subsequently, 100% oxygen. We hypothesized that these catecholamine infusions would open IPAVA. We performed saline-contrast echocardiography in nine subjects without a patent foramen ovale before and during serial EPI and DA infusions while breathing room air and then while breathing 100% oxygen. Bubble scores (0-5) were assigned based on the number and spatial distribution of bubbles in the left ventricle. Pulmonary artery systolic pressure (PASP) was estimated using Doppler ultrasound, while cardiac output (Q(C)) was measured using echocardiography. Bubble scores were significantly greater during EPI infusions of 80-320 ng·kg(-1)·min(-1) compared with baseline when subjects breathed room air; however, bubble scores did not increase when they breathed 100% oxygen. At comparable Q(C) and PASP, intravenous DA (16 μg·kg(-1)·min(-1)) and EPI (40 ng·kg(-1)·min(-1)) resulted in identical bubble scores. Subsequent studies revealed that β-blockade did not prevent hypoxia-induced opening of IPAVA. We suggest that increases in Q(C) or PASP (or both) secondary to EPI or DA infusions open IPAVA in normoxia. The closing mechanism associated with breathing 100% oxygen is independent from the opening mechanisms.
Collapse
Affiliation(s)
- Steven S Laurie
- Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | | | | | | |
Collapse
|
111
|
|
112
|
Lalande S, Yerly P, Faoro V, Naeije R. Pulmonary vascular distensibility predicts aerobic capacity in healthy individuals. J Physiol 2012; 590:4279-88. [PMID: 22733662 DOI: 10.1113/jphysiol.2012.234310] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It has been suggested that shallow slopes of mean pulmonary artery pressure (MPPA)–cardiac output (Q) relationships and pulmonary transit of agitated contrast during exercise may be associated with a higher maximal aerobic capacity V(O(2)max). If so, individuals with a higher V(O(2)max) could also exhibit a higher pulmonary vascular distensibility and increased pulmonary capillary blood volume during exercise. Exercise stress echocardiography was performed with repetitive injections of agitated contrast and measurements of MPPA, Q and lung diffusing capacities for carbon monoxide (D(L,CO)) and nitric oxide (D(L,CO)) in 24 healthy individuals. A pulmonary vascular distensibility coefficient α was mathematically determined from the slight natural curvilinearity of multipoint MPPA–Q plots. Membrane (D(m)) and capillary blood volume (V(c)) components of lung diffusing capacity were calculated. Maximal exercise increased MPPA, cardiac index (CI), D(L,CO) and (D(L,NO). The slope of the linear best fit of MPPA–CI was 3.2 ± 0.5 mmHg min l(-1) m(2) and α was 1.1 ± 0.3% mmHg(-1). A multivariable analysis showed that higher α and greater V(c) independently predicted V(O(2)max). All individuals had markedly positive pulmonary transit of agitated contrast at maximal exercise, with increases proportional to increases in pulmonary capillary pressure and V(c). Pulmonary transit of agitated contrast was not related to pulse oximetry arterial oxygen saturation. Therefore, a more distensible pulmonary circulation and a greater pulmonary capillary blood volume are associated with a higher V(O(2)max) in healthy individuals. Agitated contrast commonly transits through the pulmonary circulation at exercise, in proportion to increased pulmonary capillary pressures.
Collapse
Affiliation(s)
- Sophie Lalande
- Laboratory of Cardiorespiratory Physiology, Faculté des Sciences de la Motricité, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | |
Collapse
|
113
|
Bryan TL, van Diepen S, Bhutani M, Shanks M, Welsh RC, Stickland MK. The effects of dobutamine and dopamine on intrapulmonary shunt and gas exchange in healthy humans. J Appl Physiol (1985) 2012; 113:541-8. [PMID: 22700799 DOI: 10.1152/japplphysiol.00404.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The development of intrapulmonary shunts with increased cardiac output during exercise in healthy humans has been reported in several recent studies, but mechanisms governing their recruitment remain unclear. Dobutamine and dopamine are inotropes commonly used to augment cardiac output; however, both can increase venous admixture/shunt fraction (Qs/Qt). It is possible that, as with exercise, intrapulmonary shunts are recruited with increased cardiac output during dobutamine and/or dopamine infusion that may contribute to the observed increase in Qs/Qt. The purpose of this study was to examine how dobutamine and dopamine affect intrapulmonary shunt and gas exchange. Nine resting healthy subjects received serial infusions of dobutamine and dopamine at incremental doses under normoxic and hyperoxic (inspired O(2) fraction = 1.0) conditions. At each step, alveolar-to-arterial Po(2) difference (A-aDo(2)) and Qs/Qt were calculated from arterial blood gas samples, intrapulmonary shunt was evaluated using contrast echocardiography, and cardiac output was calculated by Doppler echocardiography. Both dobutamine and dopamine increased cardiac output and Qs/Qt. Intrapulmonary shunt developed in most subjects with both drugs and paralleled the increase in Qs/Qt. A-aDo(2) was unchanged due to a concurrent rise in mixed venous oxygen content. Hyperoxia consistently eliminated intrapulmonary shunt. These findings contribute to our present understanding of the mechanisms governing recruitment of these intrapulmonary shunts as well as their impact on gas exchange. In addition, given the deleterious effect on Qs/Qt and the risk of neurological complications with intrapulmonary shunts, these findings could have important implications for use of dobutamine and dopamine in the clinical setting.
Collapse
Affiliation(s)
- Tracey L Bryan
- Department of Medicine, Pulmonary Division, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
114
|
Heidbüchel H, La Gerche A. The right heart in athletes. Evidence for exercise-induced arrhythmogenic right ventricular cardiomyopathy. Herzschrittmacherther Elektrophysiol 2012; 23:82-86. [PMID: 22782727 DOI: 10.1007/s00399-012-0180-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although 'athlete's heart' usually constitutes a balanced dilation and hypertrophy of all four chambers, there is increasing evidence that intense endurance activity may particularly tax the right ventricle (RV), both acutely and chronically. We review the evidence that the high wall stress of the RV during intense sports may explain observed B-type natriuretic peptide (BNP) elevations immediately after a race, may lead to cellular disruption and leaking of cardiac enzymes, and may even result in transient RV dilatation and dysfunction. Over time, this could lead to chronic remodelling and a pro-arrhythmic state resembling arrhythmogenic RV cardiomyopathy (ARVC) in some cases. ARVC in high-endurance athletes most often develops in the absence of underlying desmosomal abnormalities, probably only as a result of excessive RV wall stress during exercise. Therefore, we have labelled this syndrome 'exercise-induced ARVC'. Sports cardiologists should be aware that excessive sports activity can lead to cardiac sports injuries in some individuals, just like orthopaedic specialists are familiar with musculoskeletal sports injuries. This does not negate the fact that moderate exercise has positive cardiovascular effects and should be encouraged.
Collapse
Affiliation(s)
- H Heidbüchel
- Department of Cardiovascular Medicine, Cardiology - Electrophysiology, University Hospital Gasthuisberg, University of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | | |
Collapse
|
115
|
Kennedy JM, Foster GE, Koehle MS, Potts JE, Sandor GG, Potts MT, Houghton KM, Henderson WR, Sheel AW. Exercise-induced intrapulmonary arteriovenous shunt in healthy women. Respir Physiol Neurobiol 2012; 181:8-13. [DOI: 10.1016/j.resp.2012.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/15/2011] [Accepted: 01/10/2012] [Indexed: 12/18/2022]
|
116
|
Bates ML, Fulmer BR, Farrell ET, Drezdon A, Pegelow DF, Conhaim RL, Eldridge MW. Hypoxia recruits intrapulmonary arteriovenous pathways in intact rats but not isolated rat lungs. J Appl Physiol (1985) 2012; 112:1915-20. [PMID: 22422800 DOI: 10.1152/japplphysiol.00985.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intrapulmonary arteriovenous anastomoses (IPAVS) directly connect the arterial and venous circulations in the lung, bypassing the capillary network. Here, we used solid, latex microspheres and isolated rat lung and intact, spontaneously breathing rat models to test the hypothesis that IPAVS are recruited by alveolar hypoxia. We found that hypoxia recruits IPAVS in the intact rat, but not the isolated lung. IPAVS are at least 70 μm in the rat and, interestingly, appear to be recruited when the mixed venous Po(2) falls below 22 mmHg. These data provide evidence that large-diameter, direct arteriovenous connections exist in the lung and are recruitable by hypoxia in the intact animal.
Collapse
Affiliation(s)
- Melissa L Bates
- Department of Pediatrics and the John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | | | | | | | | | | | | |
Collapse
|
117
|
La Gerche A, Burns AT, D’Hooge J, MacIsaac AI, Heidbüchel H, Prior DL. Exercise Strain Rate Imaging Demonstrates Normal Right Ventricular Contractile Reserve and Clarifies Ambiguous Resting Measures in Endurance Athletes. J Am Soc Echocardiogr 2012; 25:253-262.e1. [DOI: 10.1016/j.echo.2011.11.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Indexed: 11/24/2022]
|
118
|
Abstract
The pulmonary circulation is a high-flow and low-pressure circuit, with an average resistance of 1 mmHg/min/L in young adults, increasing to 2.5 mmHg/min/L over four to six decades of life. Pulmonary vascular mechanics at exercise are best described by distensible models. Exercise does not appear to affect the time constant of the pulmonary circulation or the longitudinal distribution of resistances. Very high flows are associated with high capillary pressures, up to a 20 to 25 mmHg threshold associated with interstitial lung edema and altered ventilation/perfusion relationships. Pulmonary artery pressures of 40 to 50 mmHg, which can be achieved at maximal exercise, may correspond to the extreme of tolerable right ventricular afterload. Distension of capillaries that decrease resistance may be of adaptative value during exercise, but this is limited by hypoxemia from altered diffusion/perfusion relationships. Exercise in hypoxia is associated with higher pulmonary vascular pressures and lower maximal cardiac output, with increased likelihood of right ventricular function limitation and altered gas exchange by interstitial lung edema. Pharmacological interventions aimed at the reduction of pulmonary vascular tone have little effect on pulmonary vascular pressure-flow relationships in normoxia, but may decrease resistance in hypoxia, unloading the right ventricle and thereby improving exercise capacity. Exercise in patients with pulmonary hypertension is associated with sharp increases in pulmonary artery pressure and a right ventricular limitation of aerobic capacity. Exercise stress testing to determine multipoint pulmonary vascular pressures-flow relationships may uncover early stage pulmonary vascular disease.
Collapse
Affiliation(s)
- R NAEIJE
- Department of Physiology, Erasme Campus of the Free University of Brussels, CP 604, 808, Lennik road, B-1070 Brussels, BELGIUM, Tel +32 2 5553322, Fax +32 2 5554124
| | - N CHESLER
- University of Wisconsin at Madison, 2146 Engineering Centers Building, 1550 Engineering drive, Madison, Wisconsin 53706-1609, USA, Tel +1 608 265 8920, Fax +1 608 265 9239
| |
Collapse
|
119
|
Ljubkovic M, Zanchi J, Breskovic T, Marinovic J, Lojpur M, Dujic Z. Determinants of arterial gas embolism after scuba diving. J Appl Physiol (1985) 2012; 112:91-5. [DOI: 10.1152/japplphysiol.00943.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Scuba diving is associated with breathing gas at increased pressure, which often leads to tissue gas supersaturation during ascent and the formation of venous gas emboli (VGE). VGE crossover to systemic arteries (arterialization), mostly through the patent foramen ovale, has been implicated in various diving-related pathologies. Since recent research has shown that arterializations frequently occur in the absence of cardiac septal defects, our aim was to investigate the mechanisms responsible for these events. Divers who tested negative for patent foramen ovale were subjected to laboratory testing where agitated saline contrast bubbles were injected in the cubital vein at rest and exercise. The individual propensity for transpulmonary bubble passage was evaluated echocardiographically. The same subjects performed a standard air dive followed by an echosonographic assessment of VGE generation (graded on a scale of 0–5) and distribution. Twenty-three of thirty-four subjects allowed the transpulmonary passage of saline contrast bubbles in the laboratory at rest or after a mild/moderate exercise, and nine of them arterialized after a field dive. All subjects with postdive arterialization had bubble loads reaching or exceeding grade 4B in the right heart. In individuals without transpulmonary passage of saline contrast bubbles, injected either at rest or after an exercise bout, no postdive arterialization was detected. Therefore, postdive VGE arterialization occurs in subjects that meet two criteria: 1) transpulmonary shunting of contrast bubbles at rest or at mild/moderate exercise and 2) VGE generation after a dive reaches the threshold grade. These findings may represent a novel concept in approach to diving, where diving routines will be tailored individually.
Collapse
Affiliation(s)
- Marko Ljubkovic
- Department of Physiology, University of Split School of Medicine, and
| | | | | | - Jasna Marinovic
- Department of Physiology, University of Split School of Medicine, and
| | - Mihajlo Lojpur
- Anaesthesiology, University Hospital Split, Split, Croatia
| | - Zeljko Dujic
- Department of Physiology, University of Split School of Medicine, and
| |
Collapse
|
120
|
Affiliation(s)
- Robert Naeije
- Erasme Academic Hospital, Department of Pathophysiology, Faculty of Medicine, Free University of Brussels, Belgium.
| |
Collapse
|
121
|
La Gerche A, Burns AT, Mooney DJ, Inder WJ, Taylor AJ, Bogaert J, Macisaac AI, Heidbüchel H, Prior DL. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 2011; 33:998-1006. [PMID: 22160404 DOI: 10.1093/eurheartj/ehr397] [Citation(s) in RCA: 528] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS Endurance training may be associated with arrhythmogenic cardiac remodelling of the right ventricle (RV). We examined whether myocardial dysfunction following intense endurance exercise affects the RV more than the left ventricle (LV) and whether cumulative exposure to endurance competition influences cardiac remodelling (including fibrosis) in well-trained athletes. METHODS AND RESULTS Forty athletes were studied at baseline, immediately following an endurance race (3-11 h duration) and 1-week post-race. Evaluation included cardiac troponin (cTnI), B-type natriuretic peptide, and echocardiography [including three-dimensional volumes, ejection fraction (EF), and systolic strain rate]. Delayed gadolinium enhancement (DGE) on cardiac magnetic resonance imaging (CMR) was assessed as a marker of myocardial fibrosis. Relative to baseline, RV volumes increased and all functional measures decreased post-race, whereas LV volumes reduced and function was preserved. B-type natriuretic peptide (13.1 ± 14.0 vs. 25.4 ± 21.4 ng/L, P = 0.003) and cTnI (0.01 ± .03 vs. 0.14 ± .17 μg/L, P < 0.0001) increased post-race and correlated with reductions in RVEF (r = 0.52, P = 0.001 and r = 0.49, P = 0.002, respectively), but not LVEF. Right ventricular ejection fraction decreased with increasing race duration (r = -0.501, P < 0.0001) and VO(2)max (r = -0.359, P = 0.011). Right ventricular function mostly recovered by 1 week. On CMR, DGE localized to the interventricular septum was identified in 5 of 39 athletes who had greater cumulative exercise exposure and lower RVEF (47.1 ± 5.9 vs. 51.1 ± 3.7%, P = 0.042) than those with normal CMR. CONCLUSION Intense endurance exercise causes acute dysfunction of the RV, but not the LV. Although short-term recovery appears complete, chronic structural changes and reduced RV function are evident in some of the most practiced athletes, the long-term clinical significance of which warrants further study.
Collapse
Affiliation(s)
- André La Gerche
- Department of Medicine, University of Melbourne, St Vincent's Hospital, 29 Regent Street, Fitzroy, VIC 3065, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Naeije R. Pro: Hypoxic Pulmonary Vasoconstriction Is a Limiting Factor of Exercise at High Altitude. High Alt Med Biol 2011; 12:309-12. [DOI: 10.1089/ham.2011.1060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Robert Naeije
- Erasme Academic Hospital, Department of Pathophysiology, Faculty of Medicine, Free University of Brussels, Belgium
| |
Collapse
|
123
|
LA GERCHE ANDRÉ, HEIDBÜCHEL HEIN, BURNS ANDREWT, MOONEY DONJ, TAYLOR ANDREWJ, PFLUGER HEINZB, INDER WARRICKJ, MACISAAC ANDREWI, PRIOR DAVIDL. Disproportionate Exercise Load and Remodeling of the Athlete's Right Ventricle. Med Sci Sports Exerc 2011; 43:974-81. [DOI: 10.1249/mss.0b013e31820607a3] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
124
|
Van De Bruaene A, La Gerche A, Prior DL, Voigt JU, Delcroix M, Budts W. Pulmonary Vascular Resistance as Assessed by Bicycle Stress Echocardiography in Patients With Atrial Septal Defect Type Secundum. Circ Cardiovasc Imaging 2011; 4:237-45. [DOI: 10.1161/circimaging.110.962571] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alexander Van De Bruaene
- From the Division of Cardiology (A.V., J.V., W.B., A.L.), University Hospitals Leuven, Belgium; Division of Cardiology (A.L., D.P.), St Vincent's Hospital, University of Melbourne, Australia; Division of Pneumology (M.D.), University Hospitals Leuven, Belgium
| | - Andre La Gerche
- From the Division of Cardiology (A.V., J.V., W.B., A.L.), University Hospitals Leuven, Belgium; Division of Cardiology (A.L., D.P.), St Vincent's Hospital, University of Melbourne, Australia; Division of Pneumology (M.D.), University Hospitals Leuven, Belgium
| | - David L. Prior
- From the Division of Cardiology (A.V., J.V., W.B., A.L.), University Hospitals Leuven, Belgium; Division of Cardiology (A.L., D.P.), St Vincent's Hospital, University of Melbourne, Australia; Division of Pneumology (M.D.), University Hospitals Leuven, Belgium
| | - Jens-Uwe Voigt
- From the Division of Cardiology (A.V., J.V., W.B., A.L.), University Hospitals Leuven, Belgium; Division of Cardiology (A.L., D.P.), St Vincent's Hospital, University of Melbourne, Australia; Division of Pneumology (M.D.), University Hospitals Leuven, Belgium
| | - Marion Delcroix
- From the Division of Cardiology (A.V., J.V., W.B., A.L.), University Hospitals Leuven, Belgium; Division of Cardiology (A.L., D.P.), St Vincent's Hospital, University of Melbourne, Australia; Division of Pneumology (M.D.), University Hospitals Leuven, Belgium
| | - Werner Budts
- From the Division of Cardiology (A.V., J.V., W.B., A.L.), University Hospitals Leuven, Belgium; Division of Cardiology (A.L., D.P.), St Vincent's Hospital, University of Melbourne, Australia; Division of Pneumology (M.D.), University Hospitals Leuven, Belgium
| |
Collapse
|
125
|
Elliott JE, Choi Y, Laurie SS, Yang X, Gladstone IM, Lovering AT. Reply to Van Liew and Vann. J Appl Physiol (1985) 2011. [DOI: 10.1152/japplphysiol.01229.2010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Yujung Choi
- University of Puget Sound, Tacoma, Washington; and
| | - Steven S. Laurie
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Ximeng Yang
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Igor M. Gladstone
- Department of Human Physiology, University of Oregon, Eugene, Oregon
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
126
|
Lovering AT, Elliott JE, Beasley KM, Laurie SS. Pulmonary pathways and mechanisms regulating transpulmonary shunting into the general circulation: an update. Injury 2010; 41 Suppl 2:S16-23. [PMID: 21144922 PMCID: PMC4385739 DOI: 10.1016/s0020-1383(10)70004-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Embolic insults account for a significant number of neurologic sequelae following many routine surgical procedures. Clearly, these post-intervention embolic events are a serious public health issue as they are potentially life altering. However, the pathway these emboli utilize to bypass the pulmonary microcirculatory sieve in patients without an intracardiac shunt such as an atrial septal defect or patent foramen ovale, remains unclear. In the absence of intracardiac routes and large diameter pulmonary arteriovenous malformations, inducible large diameter intrapulmonary arteriovenous anastomoses in otherwise healthy adult humans may prove to be the best explanation. Our group and others have demonstrated that inducible large diameter intrapulmonary arteriovenous anastomoses are closed at rest but can open during hyperdynamic conditions such as exercise in more than 90% of healthy humans. Furthermore, the patency of these intrapulmonary anastomoses can be modulated through the fraction of inspired oxygen and by body positioning. Of particular clinical interest, there appears to be a strong association between arterial hypoxemia and neurologic insults, suggesting a breach in the filtering ability of the pulmonary microvasculature under these conditions. In this review, we present evidence demonstrating the existence of inducible intrapulmonary arteriovenous anastomoses in healthy humans that are modulated by exercise, oxygen tension and body positioning. Additionally, we identify several clinical conditions associated with both arterial hypoxemia and an increased risk for embolic insults. Finally, we suggest some precautionary measures that should be taken during interventions to keep intrapulmonary arteriovenous anastomoses closed in order to prevent or reduce the incidence of paradoxical embolism.
Collapse
Affiliation(s)
- Andrew T Lovering
- Department of Human Physiology, University of Oregon, Cardiopulmonary & Respiratory Physiology Laboratory, Eugene, OR 97401, USA.
| | | | | | | |
Collapse
|
127
|
Lovering AT, Stickland MK. Not hearing is believing: novel insight into cardiopulmonary function using agitated contrast and ultrasound. J Appl Physiol (1985) 2010; 109:1290-1. [PMID: 20847135 DOI: 10.1152/japplphysiol.01083.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
128
|
What Limits Cardiac Performance during Exercise in Normal Subjects and in Healthy Fontan Patients? Int J Pediatr 2010; 2010. [PMID: 20871839 PMCID: PMC2943078 DOI: 10.1155/2010/791291] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/11/2010] [Accepted: 07/27/2010] [Indexed: 11/17/2022] Open
Abstract
Exercise is an important determinant of health but is significantly reduced in the patient with a univentricular circulation. Normal exercise physiology mandates an increase in pulmonary artery pressures which places an increased work demand on the right ventricle (RV). In a biventricular circulation with pathological increases in pulmonary vascular resistance and/or reductions in RV function, exercise-induced augmentation of cardiac output is limited. Left ventricular preload reserve is dependent upon flow through the pulmonary circulation and this requires adequate RV performance. In the Fontan patient, the reasons for exercise intolerance are complex. In those patients with myocardial dysfunction or other pathologies of the circulatory components, it is likely that these abnormalities serve as a limitation to cardiac performance during exercise. However, in the healthy Fontan patient, it may be the absence of a sub-pulmonary pump which limits normal increases in pulmonary pressures, trans-pulmonary flow requirements and cardiac output. If so, performance will be exquisitely dependent on pulmonary vascular resistance. This provides a potential explanation as to why pulmonary vasodilators may improve exercise tolerance. As has recently been demonstrated, these agents may offer an important new treatment strategy which directly addresses the physiological limitations in the Fontan patient.
Collapse
|