101
|
Hang Z, Cooper MA, Ziora ZM. Platinum-based anticancer drugs encapsulated liposome and polymeric micelle formulation in clinical trials. ACTA ACUST UNITED AC 2016. [DOI: 10.7243/2052-9341-4-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
102
|
Sobot D, Mura S, Couvreur P. How can nanomedicines overcome cellular-based anticancer drug resistance? J Mater Chem B 2016; 4:5078-5100. [DOI: 10.1039/c6tb00900j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the mechanisms of anticancer drug resistance according to its cellular level of action and outlines the nanomedicine-based strategies adopted to overcome it.
Collapse
Affiliation(s)
- Dunja Sobot
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Patrick Couvreur
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| |
Collapse
|
103
|
Zare-Zardini H, Amiri A, Shanbedi M, Taheri-Kafrani A, Sadri Z, Ghanizadeh F, Neamatzadeh H, Sheikhpour R, Keyvani Boroujeni F, Masoumi Dehshiri R, Hashemi A, Aminorroaya MM, Dehgahnzadeh MR, Shahriari S. Nanotechnology and Pediatric Cancer: Prevention, Diagnosis and Treatment. IRANIAN JOURNAL OF PEDIATRIC HEMATOLOGY AND ONCOLOGY 2015; 5:233-48. [PMID: 26985357 PMCID: PMC4779159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 10/05/2015] [Indexed: 11/17/2022]
Abstract
Despite development of new approaches for the treatment of cancer disease, it is the second cause of mortality in world. Annually, 30000 persons die in Iran due to cancer diseases. Eighty percent of cancer patients are children which about 50% children lead to death. Given the high rate of cancer-related death, the new approaches for prevention, control, early diagnosis, and treatment of this disease seem necessary. Investigation of new strategies is the major challenge for scientists at recent century. Nanotechnology as a new scientific field with novel and small compounds utilized different fields over the past ten years especially in medicine. This science has come to the forefront in the areas of medical diagnostics, imaging, and therapeutic scheduls. Therefore, it has the potential applications for cancer detection and therapy. This review will discuss the therapeutic applications of different nano-materials in diagnosis, imaging, and delivery of therapeutic agents for the treatment of cancer with a major focus on their applications for the treatment of cancer and cancer- related diseases in children. The advancements in established nanoparticle technologies such as liposomes, polymer micelles, and functionalization regarding tumor targeting and controlled release strategies as well as drug delivery were discussed. It will also review the blood toxicity of used nanostructures.
Collapse
Affiliation(s)
- H Zare-Zardini
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - A Amiri
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - M Shanbedi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - A Taheri-Kafrani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Z Sadri
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - F Ghanizadeh
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - H Neamatzadeh
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - R Sheikhpour
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | | | - R Masoumi Dehshiri
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - A Hashemi
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - MM Aminorroaya
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - MR Dehgahnzadeh
- Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Sh Shahriari
- Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
104
|
Zhang W, Li C, Shen C, Liu Y, Zhao X, Liu Y, Zou D, Gao Z, Yue C. Prodrug-based nano-drug delivery system for co-encapsulate paclitaxel and carboplatin for lung cancer treatment. Drug Deliv 2015; 23:2575-2580. [PMID: 26056720 DOI: 10.3109/10717544.2015.1035466] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
CONTEXT Paclitaxel (PTX) and carboplatin (CBP) are widely used for the combined chemotherapy of non-small cell lung cancer (NSCLC). However, the development of multidrug resistance of cancer cells, as well as systemic toxic side effects resulting from nonspecific localization of anticancer drugs to non-tumor areas are major obstacles to the success of chemotherapy in treating cancers. OBJECTIVE This study aimed to engineer a prodrug-based nano-drug delivery system for co-encapsulate hydrophilic (CBP) and hydrophobic anti-tumor drugs (PTX). This system was expected to resolve the multidrug resistance cause by single drug, and the dual-drug-loaded liposome was also planned to specifically target the cancer cells without obvious influence on normal cells and tissues. METHODS In this paper, PLGA-PEG-CBP was synthesized by the conjugation between the carboxylic group of PLGA-PEG-COOH and the amino group of CBP. Then, self-assembled nanoparticles for combination delivery of PTX and PLGA-PEG-CBP (PTX/CBP NPs) were prepared by solvent displacement technique. The in vitro and in vivo anti-tumor efficacy was assessed in NCL-H460 human non-small cell lung carcinoma cell line. RESULTS PTX/CBP NPs achieved the highest cytotoxic effect among all formulations in vitro, as compared with single drug delivery NPs. In vivo investigation on NSCLC animal models showed that co-delivery of PTX and CBP possessed high tumor-targeting capacity and strong anti-tumor activity. CONCLUSIONS The PTX/CBP NPs constructed in this research offers an effective strategy for targeted combinational lung cancer therapy.
Collapse
Affiliation(s)
- Wen Zhang
- a Department of Pharmacy , Shandong Provincial Hospital Affiliated to Shandong University , Ji'nan , People's Republic of China
| | - Changzheng Li
- b Department of Internal Medicine Oncology , Shandong Tumor Hospital and Institute , Ji'nan , People's Republic of China
| | - Chengwu Shen
- a Department of Pharmacy , Shandong Provincial Hospital Affiliated to Shandong University , Ji'nan , People's Republic of China
| | - Yuguo Liu
- c Department of Pharmacy , Shandong Tumor Hospital and Institute , Ji'nan , People's Republic of China
| | - Xiaoting Zhao
- b Department of Internal Medicine Oncology , Shandong Tumor Hospital and Institute , Ji'nan , People's Republic of China
| | - Ying Liu
- b Department of Internal Medicine Oncology , Shandong Tumor Hospital and Institute , Ji'nan , People's Republic of China
| | - Dongna Zou
- a Department of Pharmacy , Shandong Provincial Hospital Affiliated to Shandong University , Ji'nan , People's Republic of China
| | - Zhenfa Gao
- d Department of Pharmacy , The Hospital Pharmacy, Maternal and Child Health Care of Zaozhuang , Zaozhuang , People's Republic of China, and
| | - Chunwen Yue
- e Department of Pharmacy , The Second Hospital of Shandong University , Ji'nan , People's Republic of China
| |
Collapse
|
105
|
Affiliation(s)
- Bhushan S Pattni
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States
| | - Vladimir V Chupin
- Laboratory for Advanced Studies of Membrane Proteins, Moscow Institute of Physics and Technology , Dolgoprudny 141700, Russia
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States.,Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| |
Collapse
|
106
|
Chellan P, Sadler PJ. The elements of life and medicines. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140182. [PMID: 25666066 PMCID: PMC4342972 DOI: 10.1098/rsta.2014.0182] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Which elements are essential for human life? Here we make an element-by-element journey through the periodic table and attempt to assess whether elements are essential or not, and if they are, whether there is a relevant code for them in the human genome. There are many difficulties such as the human biochemistry of several so-called essential elements is not well understood, and it is not clear how we should classify elements that are involved in the destruction of invading microorganisms, or elements which are essential for microorganisms with which we live in symbiosis. In general, genes do not code for the elements themselves, but for specific chemical species, i.e. for the element, its oxidation state, type and number of coordinated ligands, and the coordination geometry. Today, the biological periodic table is in a position somewhat similar to Mendeleev's chemical periodic table of 1869: there are gaps and we need to do more research to fill them. The periodic table also offers potential for novel therapeutic and diagnostic agents, based on not only essential elements, but also non-essential elements, and on radionuclides. Although the potential for inorganic chemistry in medicine was realized more than 2000 years ago, this area of research is still in its infancy. Future advances in the design of inorganic drugs require more knowledge of their mechanism of action, including target sites and metabolism. Temporal speciation of elements in their biological environments at the atomic level is a major challenge, for which new methods are urgently needed.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
107
|
Ganta S, Singh A, Kulkarni P, Keeler AW, Piroyan A, Sawant RR, Patel NR, Davis B, Ferris C, O'Neal S, Zamboni W, Amiji MM, Coleman TP. EGFR Targeted Theranostic Nanoemulsion for Image-Guided Ovarian Cancer Therapy. Pharm Res 2015; 32:2753-63. [PMID: 25732960 DOI: 10.1007/s11095-015-1660-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/18/2015] [Indexed: 01/12/2023]
Abstract
PURPOSE Platinum-based therapies are the first line treatments for most types of cancer including ovarian cancer. However, their use is associated with dose-limiting toxicities and resistance. We report initial translational studies of a theranostic nanoemulsion loaded with a cisplatin derivative, myrisplatin and pro-apoptotic agent, C6-ceramide. METHODS The surface of the nanoemulsion is annotated with an endothelial growth factor receptor (EGFR) binding peptide to improve targeting ability and gadolinium to provide diagnostic capability for image-guided therapy of EGFR overexpressing ovarian cancers. A high shear microfludization process was employed to produce the formulation with particle size below 150 nm. RESULTS Pharmacokinetic study showed a prolonged blood platinum and gadolinium levels with nanoemulsions in nu/nu mice. The theranostic nanoemulsions also exhibited less toxicity and enhanced the survival time of mice as compared to an equivalent cisplatin treatment. CONCLUSIONS Magnetic resonance imaging (MRI) studies indicate the theranostic nanoemulsions were effective contrast agents and could be used to track accumulation in a tumor. The MRI study additionally indicate that significantly more EGFR-targeted theranostic nanoemulsion accumulated in a tumor than non-targeted nanoemulsuion providing the feasibility of using a targeted theranostic agent in conjunction with MRI to image disease loci and quantify the disease progression.
Collapse
Affiliation(s)
- Srinivas Ganta
- Nemucore Medical Innovations, Inc., Worcester, Massachusetts, 01608, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
|
109
|
|
110
|
Lee HY, Mohammed KA, Goldberg EP, Kaye F, Nasreen N. Cisplatin loaded albumin mesospheres for lung cancer treatment. Am J Cancer Res 2015; 5:603-615. [PMID: 25973300 PMCID: PMC4396024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023] Open
Abstract
The low solubility of cisplatin in aqueous solution limits the treatment effectiveness and the application of cisplatin in various kinds of drug-eluting devices. Although cisplatin has a high solubility in Dimethyl sulfoxide (DMSO), the toxicity of cisplatin can be greatly reduced while dissolved in DMSO. In this study, the solid powder of cisplatin-loaded albumin mesospheres (CDDP/DMSO-AMS), in a size range of 1 to 10 µm, were post-loaded with cisplatin and showed high cisplatin content (16% w/w) and effective cytotoxicity to lung cancer cells. Cisplatin were efficiently absorbed into the albumin mesospheres (AMS) in DMSO and, most importantly, the toxicity of cisplatin was remained at 100% after the loading process. This CDDP/DMSO-AMS was designed for the intratumoral injection through the bronchoscopic catheter or dry powder inhalation (DPI) due to its high stability in air or in solution. This CDDP/DMSO-AMS showed a fast cisplatin release within 24 hours. In the in vitro study, CDDP/DMSO-AMS showed high effectiveness on killing the lung cancer cells including the non-small cell lung cancer (NCL-H23 and A549), malignant mesothelioma (CRL-2081) and the mouse lung carcinoma (Lewis lung carcinoma) cell lines. The albumin based mesospheres provide an ideal loading matrix for cisplatin and other metal-based drugs due to the high swelling degree and fast uptake rate in the organic solvents with high polarity. In addition, to investigate the effects of polysaccharides, such as chitosan and chondroitin, on enhancing loading efficiency and lasting cytotoxicity of cisplatin, the polysaccharide-modified albumin mesospheres were synthesized and loaded with cisplatin in this study.
Collapse
Affiliation(s)
- Hung-Yen Lee
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of FloridaP. O. Box 100225, Gainesville, FL 32611-6400, USA
- Biomaterials Center, Department of Materials Sciences and Engineering, University of FloridaP. O. Box 116400, Gainesville, FL 32611-6400, USA
| | - Kamal A Mohammed
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of FloridaP. O. Box 100225, Gainesville, FL 32611-6400, USA
- NF/SGVHS, Malcom Randall VA Medical Center, University of FloridaP. O. Box 100225, Gainesville, FL 32611-6400, USA
| | - Eugene P Goldberg
- Biomaterials Center, Department of Materials Sciences and Engineering, University of FloridaP. O. Box 116400, Gainesville, FL 32611-6400, USA
| | - Frederic Kaye
- Hematology and oncology, University of FloridaP. O. Box 116400, Gainesville, FL 32611-6400, USA
| | - Najmunnisa Nasreen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of FloridaP. O. Box 100225, Gainesville, FL 32611-6400, USA
- NF/SGVHS, Malcom Randall VA Medical Center, University of FloridaP. O. Box 100225, Gainesville, FL 32611-6400, USA
| |
Collapse
|
111
|
Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13:813-27. [PMID: 25287120 DOI: 10.1038/nrd4333] [Citation(s) in RCA: 1063] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
112
|
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
113
|
Casagrande N, Celegato M, Borghese C, Mongiat M, Colombatti A, Aldinucci D. Preclinical activity of the liposomal cisplatin lipoplatin in ovarian cancer. Clin Cancer Res 2014; 20:5496-506. [PMID: 25231401 DOI: 10.1158/1078-0432.ccr-14-0713] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cisplatin and its platinum derivatives are first-line chemotherapeutic agents in the treatment of ovarian cancer; however, treatment is associated with tumor resistance and significant toxicity. Here we investigated the antitumoral activity of lipoplatin, one of the most promising liposomal platinum drug formulations under clinical investigation. EXPERIMENTAL DESIGN In vitro effects of lipoplatin were tested on a panel of ovarian cancer cell lines, sensitive and resistant to cisplatin, using both two-dimensional (2D) and 3D cell models. We evaluated in vivo the lipoplatin anticancer activity using tumor xenografts. RESULTS Lipoplatin exhibited a potent antitumoral activity in all ovarian cancer cell lines tested, induced apoptosis, and activated caspase-9, -8, and -3, downregulating Bcl-2 and upregulating Bax. Lipoplatin inhibited thioredoxin reductase enzymatic activity and increased reactive oxygen species accumulation and reduced EGF receptor (EGFR) expression and inhibited cell invasion. Lipoplatin demonstrated a synergistic effect when used in combination with doxorubicin, widely used in relapsed ovarian cancer treatment, and with the albumin-bound paclitaxel, Abraxane. Lipoplatin decreased both ALDH and CD133 expression, markers of ovarian cancer stem cells. Multicellular aggregates/spheroids are present in ascites of patients and most contribute to the spreading to secondary sites. Lipoplatin decreased spheroids growth, vitality, and cell migration out of preformed spheroids. Finally, lipoplatin inhibited more than 90% tumor xenograft growth with minimal systemic toxicity, and after the treatment suspension, no tumor progression was observed. CONCLUSION These preclinical data suggest that lipoplatin has potential for clinical assessment in aggressive cisplatin-resistant patients with ovarian cancer.
Collapse
Affiliation(s)
- Naike Casagrande
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Marta Celegato
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Cinzia Borghese
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Maurizio Mongiat
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Alfonso Colombatti
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy. Department of Medical and Biological Science Technology and MATI (Microgravity Ageing Training Immobility) Excellence Center, University of Udine, Udine, Italy
| | - Donatella Aldinucci
- Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, Italy.
| |
Collapse
|
114
|
|
115
|
Xue X, Hall MD, Zhang Q, Wang PC, Gottesman MM, Liang XJ. Nanoscale drug delivery platforms overcome platinum-based resistance in cancer cells due to abnormal membrane protein trafficking. ACS NANO 2013; 7:10452-64. [PMID: 24219825 PMCID: PMC3907077 DOI: 10.1021/nn405004f] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The development of cellular resistance to platinum-based chemotherapies is often associated with reduced intracellular platinum concentrations. In some models, this reduction is due to abnormal membrane protein trafficking, resulting in reduced uptake by transporters at the cell surface. Given the central role of platinum drugs in the clinic, it is critical to overcome cisplatin resistance by bypassing the plasma membrane barrier to significantly increase the intracellular cisplatin concentration enough to inhibit the proliferation of cisplatin-resistant cells. Therefore, rational design of appropriate nanoscale drug delivery platforms (nDDPs) loaded with cisplatin or other platinum analogues as payloads is a possible strategy to solve this problem. This review will focus on the known mechanism of membrane trafficking in cisplatin-resistant cells and the development and employment of nDDPs to improve cell uptake of cisplatin.
Collapse
Affiliation(s)
- Xue Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
- Department of Pharmaceutics, School of Pharmaceutical Science, Peking University, Beijing 100191, P. R. China
| | - Matthew D. Hall
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Science, Peking University, Beijing 100191, P. R. China
| | - Paul C. Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington D.C. 20060, USA
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| |
Collapse
|
116
|
Preclinical evaluation of a new liposomal formulation of cisplatin, lipoplatin, to treat cisplatin-resistant cervical cancer. Gynecol Oncol 2013; 131:744-52. [DOI: 10.1016/j.ygyno.2013.08.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 01/27/2023]
|
117
|
Pillai G, Ceballos-Coronel ML. Science and technology of the emerging nanomedicines in cancer therapy: A primer for physicians and pharmacists. SAGE Open Med 2013; 1:2050312113513759. [PMID: 26770691 PMCID: PMC4687778 DOI: 10.1177/2050312113513759] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/29/2013] [Indexed: 12/19/2022] Open
Abstract
Nanomedicine, the medical applications of devices based on nanotechnology, promises an endless range of applications from biomedical imaging to drug and gene delivery. The size range of the nanomaterials is strictly defined as 1–100 nm, although many marketed nanomedicines are in the submicron range of 100–1000 nm. The major advantages of using nanomaterials as a carrier for anticancer agents are the possibility of targeted delivery to the tumor; their physical properties such as optical and magnetic properties, which can be exploited for developing contrast agents for tumor imaging; their ability to hold thousands of molecules of a drug and deliver at the required site and also the ability to overcome solubility and stability issues. Currently, there are several nanotechnology-enabled diagnostic and therapeutic agents undergoing clinical trials and a few already approved by Food and Drug Administration. Targeted delivery of anticancer agents is achieved by exploiting a unique characteristic of the rapidly dividing tumor cells called “the enhanced permeability and retention effect.” Nanoparticles with mean diameter between 100 and 200 nm or even above 200 nm have also been reported to be taken up by tumor cells via the enhanced permeability and retention effect. In addition to this passive targeting based on size, the nanoparticle surface may be modified with a variety of carefully chosen ligands that would interact with specific receptors on the surface of the tumor cells, thus imparting additional specificity for active targeting. Regional release of a drug contained in a nanoparticulate system by the application of external stimuli such as hyperthermia to a thermosensitive device is another innovative strategy for targeted delivery. Nanoparticles protect the enclosed drug from rapid elimination from the body, keep them in circulation for prolonged periods and often evade expulsion by the efflux pump mechanisms, which also leads to avoidance of development of resistance. This review focuses on the science and technology of Food and Drug Administration–approved cancer nanomedicines such as Abraxane, Doxil, DaunoXome and those drug-delivery systems that have reached an advanced stage of clinical development utilizing liposomes, albumin nanospheres, thermosensitive devices and gold nanoshells.
Collapse
Affiliation(s)
- Gopalakrishna Pillai
- Department of Pharmaceutical Sciences, Sullivan University College of Pharmacy, Louisville, KY, USA
| | - Maria L Ceballos-Coronel
- Department of Pharmaceutical Sciences, Sullivan University College of Pharmacy, Louisville, KY, USA
| |
Collapse
|
118
|
Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK. Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 2013; 65:1667-85. [PMID: 24113520 PMCID: PMC4197009 DOI: 10.1016/j.addr.2013.09.014] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 12/18/2022]
Abstract
Platinum based anticancer drugs have revolutionized cancer chemotherapy, and continue to be in widespread clinical use especially for management of tumors of the ovary, testes, and the head and neck. However, several dose limiting toxicities associated with platinum drug use, partial anti-tumor response in most patients, development of drug resistance, tumor relapse, and many other challenges have severely limited the patient quality of life. These limitations have motivated an extensive research effort towards development of new strategies for improving platinum therapy. Nanocarrier-based delivery of platinum compounds is one such area of intense research effort beginning to provide encouraging preclinical and clinical results and may allow the development of the next generation of platinum chemotherapy. This review highlights current understanding on the pharmacology and limitations of platinum compounds in clinical use, and provides a comprehensive analysis of various platinum-polymer complexes, micelles, dendrimers, liposomes and other nanoparticles currently under investigation for delivery of platinum drugs.
Collapse
Affiliation(s)
- Hardeep S. Oberoi
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia V. Nukolova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Russian State Medical University, Department of Medical Nanobiotechnology, Ostrovityanova 1, Moscow 117997, Russia
| | - Alexander V. Kabanov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Center for Nanotechnology in Drug Delivery and Division of Molecular Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Tatiana K. Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
119
|
Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 2013; 8:1509-28. [PMID: 23914966 PMCID: PMC3842602 DOI: 10.2217/nnm.13.118] [Citation(s) in RCA: 435] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of liposomes for drug delivery began early in the history of pharmaceutical nanocarriers. These nanosized, lipid bilayered vesicles have become popular as drug delivery systems owing to their efficiency, biocompatibility, nonimmunogenicity, enhanced solubility of chemotherapeutic agents and their ability to encapsulate a wide array of drugs. Passive and ligand-mediated active targeting promote tumor specificity with diminished adverse off-target effects. The current field of liposomes focuses on both clinical and diagnostic applications. Recent efforts have concentrated on the development of multifunctional liposomes that target cells and cellular organelles with a single delivery system. This review discusses the recent advances in liposome research in tumor targeting.
Collapse
Affiliation(s)
- Pranali P Deshpande
- Center for Pharmaceutical Biotechnology & Nanomedicine, 360 Huntington Avenue, 140 The Fenway, Northeastern University, Boston, MA 02115, USA
| | - Swati Biswas
- Center for Pharmaceutical Biotechnology & Nanomedicine, 360 Huntington Avenue, 140 The Fenway, Northeastern University, Boston, MA 02115, USA
- Department of Pharmacy, Birla Institute of Technology & Sciences – PiIani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Andhra Pradesh 500078, India
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology & Nanomedicine, 360 Huntington Avenue, 140 The Fenway, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
120
|
Liu D, He C, Wang AZ, Lin W. Application of liposomal technologies for delivery of platinum analogs in oncology. Int J Nanomedicine 2013; 8:3309-19. [PMID: 24023517 PMCID: PMC3767488 DOI: 10.2147/ijn.s38354] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Platinum-based chemotherapy, such as cisplatin, oxaliplatin, and carboplatin, is one of the most widely utilized classes of cancer therapeutics. While highly effective, the clinical applications of platinum-based drugs are limited by their toxicity profiles as well as suboptimal pharmacokinetic properties. Therefore, one of the key research areas in oncology has been to develop novel platinum analog drugs and engineer new platinum drug formulations to improve the therapeutic ratio further. Such efforts have led to the development of platinum analogs including nedaplatin, heptaplatin, and lobaplatin. Moreover, reformulating platinum drugs using liposomes has resulted in the development of L-NDPP (Aroplatin™), SPI-77, Lipoplatin™, Lipoxal™, and LiPlaCis®. Liposomes possess several attractive biological activities, including biocompatibility, high drug loading, and improved pharmacokinetics, that are well suited for platinum drug delivery. In this review, we discuss the various platinum drugs and their delivery using liposome-based drug delivery vehicles. We compare and contrast the different liposome platforms as well as speculate on the future of platinum drug delivery research.
Collapse
Affiliation(s)
- Demin Liu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
121
|
Kawada I, Hasina R, Lennon FE, Bindokas VP, Usatyuk P, Tan YHC, Krishnaswamy S, Arif Q, Carey G, Hseu RD, Robinson M, Tretiakova M, Brand TM, Iida M, Ferguson MK, Wheeler DL, Husain AN, Natarajan V, Vokes EE, Singleton PA, Salgia R. Paxillin mutations affect focal adhesions and lead to altered mitochondrial dynamics: relevance to lung cancer. Cancer Biol Ther 2013; 14:679-91. [PMID: 23792636 PMCID: PMC3742497 DOI: 10.4161/cbt.25091] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cytoskeletal and focal adhesion abnormalities are observed in several types of cancer, including lung cancer. We have previously reported that paxillin (PXN) was mutated, amplified, and overexpressed in a significant number of lung cancer patient samples, that PXN protein was upregulated in more advanced stages of lung cancer compared with lower stages, and that the PXN gene was also amplified in some pre-neoplastic lung lesions. Among the mutations investigated, we previously found that PXN variant A127T in lung cancer cells enhanced cell proliferation and focal adhesion formation and colocalized with the anti-apoptotic protein B Cell Lymphoma 2 (BCL-2), which is known to localize to the mitochondria, among other sites. To further explore the effects of activating mutations of PXN on mitochondrial function, we cloned and expressed wild-type PXN and variants containing the most commonly occurring PXN mutations (P46S, P52L, G105D, A127T, P233L, T255I, D399N, E423K, P487L, and K506R) in a GFP-tagged vector using HEK-293 human embryonic kidney cells. Utilizing live-cell imaging to systematically study the effects of wild-type PXN vs. mutants, we created a model that recapitulates the salient features of the measured dynamics and conclude that compared with wild-type, some mutant clones confer enhanced focal adhesion and lamellipodia formation (A127T, P233L, and P487L) and some confer increased association with BCL-2, Dynamin-related Protein-1 (DRP-1), and Mitofusion-2 (MFN-2) proteins (P233L and D399N). Further, PXN mutants, through their interactions with BCL-2 and DRP-1, could regulate cisplatin drug resistance in human lung cancer cells. The data reported herein suggest that mutant PXN variants play a prominent role in mitochondrial dynamics with direct implications on lung cancer progression and hence, deserve further exploration as therapeutic targets.
Collapse
Affiliation(s)
- Ichiro Kawada
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Fan Y, Zhang Q. Development of liposomal formulations: From concept to clinical investigations. Asian J Pharm Sci 2013. [DOI: 10.1016/j.ajps.2013.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
123
|
Zalba S, Garrido MJ. Liposomes, a promising strategy for clinical application of platinum derivatives. Expert Opin Drug Deliv 2013; 10:829-44. [DOI: 10.1517/17425247.2013.778240] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
124
|
Schütz CA, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M. Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine (Lond) 2013; 8:449-67. [DOI: 10.2217/nnm.13.8] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
125
|
Improved pharmacological profile of the lipophilic antitumor dichloro-(N-dodecyl)-propanediamine-platinum(II) complex after incorporation into pegylated liposomes. Anticancer Drugs 2013; 24:131-9. [DOI: 10.1097/cad.0b013e3283599a34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
126
|
Accardo A, Mangiapia G, Paduano L, Morelli G, Tesauro D. Octreotide labeled aggregates containing platinum complexes as nanovectors for drug delivery. J Pept Sci 2013; 19:190-7. [DOI: 10.1002/psc.2481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 01/21/2023]
Affiliation(s)
- Antonella Accardo
- CIRPeB, Department of Biological Sciences and IBB CNR; University of Naples ‘Federico II’ Via Mezzocannone; 16-80134 Napoli Italy
| | - Gaetano Mangiapia
- Department of Chemical Sciences; University of Naples ‘Federico II’; Via Cynthia 80126 Napoli Italy
| | - Luigi Paduano
- Department of Chemical Sciences; University of Naples ‘Federico II’; Via Cynthia 80126 Napoli Italy
| | - Giancarlo Morelli
- CIRPeB, Department of Biological Sciences and IBB CNR; University of Naples ‘Federico II’ Via Mezzocannone; 16-80134 Napoli Italy
| | - Diego Tesauro
- CIRPeB, Department of Biological Sciences and IBB CNR; University of Naples ‘Federico II’ Via Mezzocannone; 16-80134 Napoli Italy
| |
Collapse
|
127
|
Hosta-Rigau L, Zhang Y, Teo BM, Postma A, Städler B. Cholesterol--a biological compound as a building block in bionanotechnology. NANOSCALE 2013; 5:89-109. [PMID: 23172231 DOI: 10.1039/c2nr32923a] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cholesterol is a molecule with many tasks in nature but also a long history in science. This feature article highlights the contribution of this small compound to bionanotechnology. We discuss relevant chemical aspects in this context followed by an overview of its self-assembly capabilities both as a free molecule and when conjugated to a polymer. Further, cholesterol in the context of liposomes is reviewed and its impact ranging from biosensing to drug delivery is outlined. Cholesterol is and will be an indispensable player in bionanotechnology, contributing to the progress of this potent field of research.
Collapse
|
128
|
Huo T, Barth RF, Yang W, Nakkula RJ, Koynova R, Tenchov B, Chaudhury AR, Agius L, Boulikas T, Elleaume H, Lee RJ. Preparation, biodistribution and neurotoxicity of liposomal cisplatin following convection enhanced delivery in normal and F98 glioma bearing rats. PLoS One 2012; 7:e48752. [PMID: 23152799 PMCID: PMC3496719 DOI: 10.1371/journal.pone.0048752] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 10/01/2012] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to evaluate two novel liposomal formulations of cisplatin as potential therapeutic agents for treatment of the F98 rat glioma. The first was a commercially produced agent, Lipoplatin™, which currently is in a Phase III clinical trial for treatment of non-small cell lung cancer (NSCLC). The second, produced in our laboratory, was based on the ability of cisplatin to form coordination complexes with lipid cholesteryl hemisuccinate (CHEMS). The in vitro tumoricidal activity of the former previously has been described in detail by other investigators. The CHEMS liposomal formulation had a Pt loading efficiency of 25% and showed more potent in vitro cytotoxicity against F98 glioma cells than free cisplatin at 24 h. In vivo CHEMS liposomes showed high retention at 24 h after intracerebral (i.c.) convection enhanced delivery (CED) to F98 glioma bearing rats. Neurotoxicologic studies were carried out in non-tumor bearing Fischer rats following i.c. CED of Lipoplatin™ or CHEMS liposomes or their "hollow" counterparts. Unexpectedly, Lipoplatin™ was highly neurotoxic when given i.c. by CED and resulted in death immediately following or within a few days after administration. Similarly "hollow" Lipoplatin™ liposomes showed similar neurotoxicity indicating that this was due to the liposomes themselves rather than the cisplatin. This was particularly surprising since Lipoplatin™ has been well tolerated when administered intravenously. In contrast, CHEMS liposomes and their "hollow" counterparts were clinically well tolerated. However, a variety of dose dependent neuropathologic changes from none to severe were seen at either 10 or 14 d following their administration. These findings suggest that further refinements in the design and formulation of cisplatin containing liposomes will be required before they can be administered i.c. by CED for the treatment of brain tumors and that a formulation that may be safe when given systemically may be highly neurotoxic when administered directly into the brain.
Collapse
Affiliation(s)
- Tianyao Huo
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Rolf F. Barth
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Weilian Yang
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Robin J. Nakkula
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Rumiana Koynova
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Boris Tenchov
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Abhik Ray Chaudhury
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Lawrence Agius
- Department of Pathology, Mater Dei Hospital and University of Malta Medical School, Msida, Malta
| | - Teni Boulikas
- Regulon Inc., Mountain View, California, United States of America
| | | | - Robert J. Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
129
|
Wheate NJ. Nanoparticles: the future for platinum drugs or a research red herring? Nanomedicine (Lond) 2012; 7:1285-7. [DOI: 10.2217/nnm.12.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Nial J Wheate
- Faculty of Pharmacy, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
130
|
Lainé AL, Passirani C. Novel metal-based anticancer drugs: a new challenge in drug delivery. Curr Opin Pharmacol 2012; 12:420-6. [DOI: 10.1016/j.coph.2012.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/06/2012] [Accepted: 04/21/2012] [Indexed: 02/05/2023]
|
131
|
Stathopoulos GP, Stathopoulos J, Dimitroulis J. Two consecutive days of treatment with liposomal cisplatin in non-small cell lung cancer. Oncol Lett 2012; 4:1013-1016. [PMID: 23162642 DOI: 10.3892/ol.2012.836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/16/2012] [Indexed: 11/05/2022] Open
Abstract
Liposomal cisplatin (Lipoplatin) is a new agent, a cisplatin formulation that has been investigated in a number of studies and compared with cisplatin with respect to toxicity and effectiveness. It has been administered once weekly and in combination with a second agent, once every two weeks. The main outcome of the studies was that lipoplatin has no renal toxicity and is as equally effective as cisplatin. The present study investigated toxicity and effectiveness when lipoplatin is administered on two consecutive days, repeated every two weeks. Between January 2011 and November 2011, a total of 21 patients with histologically- or cytologically-confirmed non-small cell lung cancer (NSCLC) were enrolled in the study. All but two patients, who had not been pretreated, had received one or two series of chemotherapy and some had undergone radiotherapy. Lipoplatin monotherapy was infused for 8 h the first and second days and repeated every 2 weeks with the aim of administering 6 cycles. The dose per day was 200 mg/m(2). Eight out of 21 (38.10%) patients had a partial response, 9 (42.86%) had stable disease and 4 (19.05%) had progressive disease. Results showed that there was no renal failure toxicity and no other adverse reactions apart from grade 1 myelotoxicity in only 2 patients who had been heavily pretreated, and grade 1 nausea/vomiting in 4 patients. Liposomal cisplatin is an agent with negligible toxicity and reasonably high effectiveness even when administered to pretreated patients with NSCLC.
Collapse
|
132
|
Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 2012; 14:83-93. [PMID: 22301396 DOI: 10.1007/s12094-012-0766-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conventional anticancer drugs display significant shortcomings which limit their use in cancer therapy. For this reason, important progress has been achieved in the field of nanotechnology to solve these problems and offer a promising and effective alternative for cancer treatment. Nanoparticle drug delivery systems exploit the abnormal characteristics of tumour tissues to selectively target their payloads to cancer cells, either by passive, active or triggered targeting. Additionally, nanoparticles can be easily tuned to improve their properties, thereby increasing the therapeutic index of the drug. Liposomes, polymeric nanoparticles, polymeric micelles and polymer- or lipid-drug conjugate nanoparticles incorporating cytotoxic therapeutics have been developed; some of them are already on the market and others are under clinical and preclinical research. However, there is still much research to be done to be able to defeat the limitations of traditional anticancer therapy. This review focuses on the potential of nanoparticle delivery systems in cancer treatment and the current advances achieved.
Collapse
|
133
|
Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine 2011; 7:49-60. [PMID: 22275822 PMCID: PMC3260950 DOI: 10.2147/ijn.s26766] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Indexed: 01/06/2023] Open
Abstract
Research on liposome formulations has progressed from that on conventional vesicles to new generation liposomes, such as cationic liposomes, temperature sensitive liposomes, and virosomes, by modulating the formulation techniques and lipid composition. Many research papers focus on the correlation of blood circulation time and drug accumulation in target tissues with physicochemical properties of liposomal formulations, including particle size, membrane lamellarity, surface charge, permeability, encapsulation volume, shelf time, and release rate. This review is mainly to compare the therapeutic effect of current clinically approved liposome-based drugs with free drugs, and to also determine the clinical effect via liposomal variations in lipid composition. Furthermore, the major preclinical and clinical data related to the principal liposomal formulations are also summarized.
Collapse
Affiliation(s)
- Hsin-I Chang
- Department of Biochemical Science and Technology, National Chia Yi University, Chiayi City, Taiwan
| | | |
Collapse
|
134
|
Lipoplatin formulation review article. JOURNAL OF DRUG DELIVERY 2011; 2012:581363. [PMID: 21904682 PMCID: PMC3166721 DOI: 10.1155/2012/581363] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 06/24/2011] [Indexed: 01/14/2023]
Abstract
Patented platform technologies have been used for the liposomal encapsulation of cisplatin (Lipoplatin) into tumor-targeted 110 nm (in diameter) nanoparticles. The molecular mechanisms, preclinical and clinical data concerning lipoplatin, are reviewed here. Lipoplatin has been successfully administered in three randomized Phase II and III clinical trials. The clinical data mainly include non-small-cell lung cancer but also pancreatic, breast, and head and neck cancers. It is anticipated that lipoplatin will replace cisplatin as well as increase its potential applications. For the first time, a platinum drug has shown superiority to cisplatin, at least in non-squamous non-small-cell lung cancer as reported in a Phase III study which documented a simultaneous lowering of all of the side effects of cisplatin.
Collapse
|