101
|
Targeting Integrin-Dependent Adhesion and Signaling with 3-Arylquinoline and 3-Aryl-2-Quinolone Derivatives: A new Class of Integrin Antagonists. PLoS One 2015; 10:e0141205. [PMID: 26509443 PMCID: PMC4624933 DOI: 10.1371/journal.pone.0141205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 12/26/2022] Open
Abstract
We previously reported the anti-migratory function of 3-aryl-2-quinolone derivatives, chemically close to flavonoids (Joseph et al., 2002). Herein we show that 3-arylquinoline or 3-aryl-2-quinolone derivatives disrupt cell adhesion in a dose dependent and reversible manner yet antagonized by artificial integrin activation such as manganese. Relying on this anti-adhesive activity, a Structure-Activity Relationship (SAR) study was established on 20 different compounds to throw the bases of future optimization strategies. Active drugs efficiently inhibit platelet spreading, aggregation, and clot retraction, processes that rely on αllbβ3 integrin activation and clustering. In vitro these derivatives interfere with β3 cytoplasmic tail interaction with kindlin-2 in pulldown assays albeit little effect was observed with pure proteins suggesting that the drugs may block an alternative integrin activation process that may not be directly related to kindlin recruitment. Ex vivo, these drugs blunt integrin signaling assayed using focal adhesion kinase auto-phosphorylation as a read-out. Hence, 3-arylquinoline and 3-aryl-2-quinolone series are a novel class of integrin activation and signaling antagonists.
Collapse
|
102
|
Zhang L, Zou W. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway. Mol Med Rep 2015; 12:7869-76. [PMID: 26497667 PMCID: PMC4758278 DOI: 10.3892/mmr.2015.4443] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 06/26/2015] [Indexed: 01/11/2023] Open
Abstract
Integrin β1 (ITGB1) is frequently upregulated in ovarian cancer, and promotes ovarian tumorigenesis and cancer progression. However, the effects of ITGB1 inhibition on ovarian cancer progression and anticancer therapy remain to be elucidated. The results of the present study indicated that ITGB1 was upregulated in HO-8910 and HO-8910PM ovarian cancer cell lines, and knockdown of ITGB1 using short hairpin RNA markedly increased tumor cell apoptosis, decreased tumor cell adhesion and migration, and reduced tumor cell invasion by suppressing matrix metalloproteinase (MMP)-2 and MMP-9 expression. Furthermore, the results of the present study provided evidence regarding the role of ITGB1 inhibition in bevacizumab anticancer therapy. The activation of signal transducer and activator of transcription 1 (STAT1) by focal adhesion kinase (FAK) is involved in integrin-mediated cell migration and adhesion. In the present study, the expression levels of FAK were markedly upregulated in ovarian cancer. The adherence and migratory potentials of ovarian cancer cells were significantly reduced when the FAK/STAT1 signaling pathway was inhibited by fludarabine. The results of the present study demonstrated that ITGB1 inhibition effectively reduced tumorigenesis and disease exacerbation, and contributed to bevacizumab anticancer therapy via the FAK/STAT1 signaling pathway, suggesting that inhibition of ITGB1 is a potential novel therapeutic strategy for ovarian carcinogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Wen Zou
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
103
|
Chen IH, Shih HC, Hsieh PW, Chang FR, Wu YC, Wu CC. HPW-RX40 restores anoikis sensitivity of human breast cancer cells by inhibiting integrin/FAK signaling. Toxicol Appl Pharmacol 2015; 289:330-40. [PMID: 26386190 DOI: 10.1016/j.taap.2015.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 11/30/2022]
Abstract
Anoikis is defined as apoptosis, which is induced by inappropriate cell-matrix interactions. Cancer cells with anoikis resistance tend to undergo metastasis, and this phenomenon has been reported to be associated with integrin and FAK activity. HPW-RX40 is a derivative of 3,4-methylenedioxy-β-nitrostyrene, which is known to prevent platelet aggregation by inhibition of integrin. In the present study, we investigated the effect of HPW-RX40 on an anoikis-resistant human breast cancer cell line MDA-MB-231. HPW-RX40 inhibited cell aggregation and induced cell death in suspending MDA-MB-231 cells, but had only little effect on the monolayer growth of adherent cells. Analysis of caspase activation and poly (ADP-ribose) polymerase (PARP) cleavage confirmed anoikis in HPW-RX40-treated suspending cancer cells. HPW-RX40 also affected the Bcl-2 family proteins in detached cancer cells. Furthermore, HPW-RX40 inhibited detachment-induced activation of FAK and the downstream phosphorylation of Src and paxillin, but did not affect this pathway in adherent cancer cells. We also found that the expression and activation of β1 integrin in MDA-MB-231 cells were reduced by HPW-RX40. The combination of HPW-RX40 with an EGFR inhibitor led to enhanced anoikis and inhibition of the FAK pathway in breast cancer cells. Taken together, our results suggest that HPW-RX40 restores the anoikis sensitivity in the metastatic breast cancer cells by inhibiting integrin and subsequent FAK activation, and reveal a potential strategy for prevention of tumor metastasis.
Collapse
Affiliation(s)
- I-Hua Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Chu Shih
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan.
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80708, Taiwan; Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
104
|
Zhou J, Hualong Q, Zhou P, Guo F. Different maspin functions in the lung adenocarcinoma A549 and SPC-A1 cell lines. Int J Mol Med 2015; 36:1440-8. [PMID: 26329803 DOI: 10.3892/ijmm.2015.2336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/24/2015] [Indexed: 11/06/2022] Open
Abstract
Mammary serine protease inhibitor (maspin) is a tumor suppressor gene that is silenced in the majority of cancer cells during metastatic progression by transcriptional and epigenetic mechanisms. The function of maspin in non‑small cell lung cancer cells (NSCLC) has not been clearly defined. In the present study, the expression of maspin in NSCLC cell lines, in particular, the adenocarcinoma cell lines, was heterogeneous. While the expression levels of maspin in PC‑9 and H460 cell lines were intact, the expression of maspin in the A549 and SPC‑A1 cells was hardly detected. Ectopic expression of maspin in A549 cells carrying the K‑ras gene point mutation significantly inhibited cell migration and invasion abilities, which was associated with downregulated expression of matrix metalloproteinase‑2 and integrin β1. Ectopic expression of maspin in SPC‑A1 cells harboring the wild‑type K‑ras gene predominantly affected cell growth via targeting the AKT signaling molecules. Maspin functions differently in lung adenocarcinoma cells, possibly due to the varied molecular characteristics.
Collapse
Affiliation(s)
- Jun Zhou
- Central Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qin Hualong
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Peng Zhou
- Central Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Feng Guo
- Central Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
105
|
Huang L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B 2015; 5:390-401. [PMID: 26579470 PMCID: PMC4629442 DOI: 10.1016/j.apsb.2015.07.001] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 12/30/2022] Open
Abstract
Since the discovery that non-small cell lung cancer (NSCLC) is driven by epidermal growth factor receptor (EGFR) mutations, the EGFR tyrosine kinase inhibitors (EGFR-TKIs, e.g., gefitinib and elrotinib) have been effectively used for clinical treatment. However, patients eventually develop drug resistance. Resistance to EGFR-TKIs is inevitable due to various mechanisms, such as the secondary mutation (T790M), activation of alternative pathways (c-Met, HGF, AXL), aberrance of the downstream pathways (K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism), histologic transformation, ATP binding cassette (ABC) transporter effusion, etc. Here we review and summarize the known resistant mechanisms to EGFR-TKIs and provide potential targets for development of new therapeutic strategies.
Collapse
Key Words
- ABC, ATP binding cassette
- ABCB1, ATP binding cassette, sub-family B, member 1
- ABCC1, ATP binding cassette, sub-family C, member 1
- ABCC10, ATP binding cassette, sub-family C, member 10
- ABCG2, ATP binding cassette, sub-family G, member 2
- AKT, protein kinase B
- ALK, anaplastic lymphoma kinase
- AXL, Anexelekto
- BCL-2, B-cell CLL/lymphoma-2
- BCL2L11/BIM, BCL2-like 11
- BH3, BCL2-homology domain 3
- BRAF, v-RAF murine sarcoma viral oncogene homolog B1
- CML, chronic myelogenous leukemia
- CRKL, Crk-like protein
- EGFR
- EGFR, epidermal growth factor receptor
- EGFR-TKIs, epidermal growth factor receptor tyrosine kinase inhibitors
- EGFRvIII, EGFR variant III
- EML4, echinoderm microtubule-associated protein-like 4
- EMT, epithelial mesenchymal transition
- ERK1/2, extracellular signal-regulated kinases
- FGFRs, fibroblast growth factor receptors
- FGFs, fibroblast growth factors
- GAS6, growth-arrest-specific protein 6
- HER, human epidermal receptor
- HGF, hepatocyte growth factor
- IGF, insulin growth factor
- IGF-1R, IGF-1 receptor
- IGFBPs, IGF-binding proteins
- IL, interleukin
- IL-6R, IL-6 receptor
- JAK, janus kinase
- MAPK, mitogen-activated protein kinase
- MEK, mitogen-activated protein kinase
- Mechanisms
- NSCLC, non-small cell lung cancer
- PDGFRs, platelet-derived growth factor receptors
- PDGFs, platelet-derived growth factors
- PI3K, phosphatidylinositol-3-kinase
- PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase,catalytic subunit alpha
- PTEN, phosphatase and tensin homolog
- RAF, rapidly accelerated fibrosarcoma
- RAS, rat sarcoma
- RTK, tyrosine kinase receptor
- Resistance
- SF, scatter factor
- SOCS3, suppressor of cytokine signaling 3
- STAT, signal transducers and activators of transcription
- TKIs
- TKIs, tyrosine kinase inhibitors
- TKs, tyrosine kinases
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
Collapse
Affiliation(s)
| | - Liwu Fu
- Corresponding author. Tel.: +86 20 87343163; fax: +86 20 87343170.
| |
Collapse
|
106
|
Naci D, Vuori K, Aoudjit F. Alpha2beta1 integrin in cancer development and chemoresistance. Semin Cancer Biol 2015; 35:145-53. [PMID: 26297892 DOI: 10.1016/j.semcancer.2015.08.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 01/06/2023]
Abstract
Extracellular matrix, via its receptors the integrins, has emerged as a crucial factor in cancer development. The α2β1 integrin is a major collagen receptor that is widely expressed and known to promote cell migration and control tissue homeostasis. Growing evidence suggests that it can be a key pathway in cancer. Recent studies have shown that α2β1 integrin is a regulator of cancer metastasis either by promoting or inhibiting the dissemination process of cancer cells. The α2β1 integrin signaling can also enhance tumor angiogenesis. Emerging evidence supports a role for α2β1 integrin in cancer chemoresistance especially in hematological malignancies originating from the T cell lineage. In addition, α2β1 integrin has been associated with cancer stem cells. In this review, we will discuss the complex role of α2β1 integrin in these processes. Collagen is a major matrix protein of the tumor microenvironment and thus, understanding how α2β1 integrin regulates cancer pathogenesis is likely to lead to new therapeutic approaches and agents for cancer treatment.
Collapse
Affiliation(s)
- Dalila Naci
- Centre de recherche du CHU de Québec, Axe des maladies infectieuses et immunitaires and Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Kristiina Vuori
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Fawzi Aoudjit
- Centre de recherche du CHU de Québec, Axe des maladies infectieuses et immunitaires and Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, Canada.
| |
Collapse
|
107
|
Kang CW, Jang KW, Sohn J, Kim SM, Pyo KH, Kim H, Yun MR, Kang HN, Kim HR, Lim SM, Moon YW, Paik S, Kim DJ, Kim JH, Cho BC. Antitumor Activity and Acquired Resistance Mechanism of Dovitinib (TKI258) in RET-Rearranged Lung Adenocarcinoma. Mol Cancer Ther 2015. [DOI: 10.1158/1535-7163.mct-15-0350] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
108
|
Li LY, Jiang H, Xie YM, Liao LD, Cao HH, Xu XE, Chen B, Zeng FM, Zhang YL, Du ZP, Chen H, Huang W, Jia W, Zheng W, Xie JJ, Li EM, Xu LY. Macrolide analog F806 suppresses esophageal squamous cell carcinoma (ESCC) by blocking β1 integrin activation. Oncotarget 2015; 6:15940-52. [PMID: 25909284 PMCID: PMC4599248 DOI: 10.18632/oncotarget.3612] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/14/2015] [Indexed: 02/05/2023] Open
Abstract
The paucity of new drugs for the treatment of esophageal squamous cell carcinoma (ESCC) limits the treatment options. This study characterized the therapeutic efficacy and action mechanism of a novel natural macrolide compound F806 in human ESCC xenograft models and cell lines. F806 inhibited growth of ESCC, most importantly, it displayed fewer undesirable side effects on normal tissues in two human ESCC xenograft models. F806 inhibited proliferation of six ESCC cells lines, with the half maximal inhibitory concentration (IC50) ranging from 9.31 to 16.43 μM. Furthermore, F806 induced apoptosis of ESCC cells, contributing to its growth-inhibitory effect. Also, F806 inhibited cell adhesion resulting in anoikis. Mechanistic studies revealed that F806 inhibited the activation of β1 integrin in part by binding to a novel site Arg610 of β1 integrin, suppressed focal adhesion formation, decreased cell adhesion to extracellular matrix and eventually triggered apoptosis. We concluded that F806 would potentially be a well-tolerated anticancer drug by targeting β1 integrin, resulting in anoikis in ESCC cells.
Collapse
Affiliation(s)
- Li-Yan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Hong Jiang
- Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian, P.R. China
| | - Yang-Min Xie
- Experimental Animal Center, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Hui-Hui Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Bo Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Fa-Min Zeng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, P.R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Ying-Li Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Ze-Peng Du
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Hong Chen
- Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian, P.R. China
| | - Wei Huang
- Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian, P.R. China
| | - Wei Jia
- Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian, P.R. China
| | - Wei Zheng
- Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian, P.R. China
| | - Jian-Jun Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, P.R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, P.R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| |
Collapse
|
109
|
Feedback activation of STAT3 mediates trastuzumab resistance via upregulation of MUC1 and MUC4 expression. Oncotarget 2015; 5:8317-29. [PMID: 25327561 PMCID: PMC4226685 DOI: 10.18632/oncotarget.2135] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although HER2-targeting antibody trastuzumab confers a substantial benefit for patients with HER2-overexpressing breast and gastric cancer, overcoming trastuzumab resistance remains a large unmet need. In this study, we revealed a STAT3-centered positive feedback loop that mediates the resistance of trastuzumab. Mechanistically, chronic exposure of trastuzumab causes the upregulation of fibronection (FN), EGF and IL-6 in parental trastuzumab-sensitive breast and gastric cells and convergently leads to STAT3 hyperactivation. Activated STAT3 enhances the expression of FN, EGF and IL-6, thus constituting a positive feedback loop which amplifies and maintains the STAT3 signal; furthermore, hyperactivated STAT3 signal promotes the expression of MUC1 and MUC4, consequently mediating trastuzumab resistance via maintenance of persistent HER2 activation and masking of trastuzumab binding to HER2 respectively. Genetic or pharmacological inhibition of STAT3 disrupted STAT3-dependent positive feedback loop and recovered the trastuzumab sensitivity partially due to increased apoptosis induction. Combined trastuzumab with STAT3 inhibition synergistically suppressed the growth of the trastuzumab-resistant tumor xenografts in vivo. Taken together, our results suggest that feedback activation of STAT3 constitutes a key node mediating trastuzumab resistance. Combinatorial targeting on both HER2 and STAT3 may enhance the efficacy of trastuzumab or other HER2-targeting agents in HER2-positive breast and gastric cancer.
Collapse
|
110
|
GLI2-dependent c-MYC upregulation mediates resistance of pancreatic cancer cells to the BET bromodomain inhibitor JQ1. Sci Rep 2015; 5:9489. [PMID: 25807524 PMCID: PMC4452877 DOI: 10.1038/srep09489] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
JQ1 and I-BET151 are selective inhibitors of BET bromodomain proteins that have efficacy against a number of different cancers. Since the effectiveness of targeted therapies is often limited by development of resistance, we examined whether it was possible for cancer cells to develop resistance to the BET inhibitor JQ1. Here we show that pancreatic cancer cells developing resistance to JQ1 demonstrate cross-resistance to I-BET151 and insensitivity to BRD4 downregulation. The resistant cells maintain expression of c-MYC, increase expression of JQ1-target genes FOSL1 and HMGA2, and demonstrate evidence of epithelial-mesenchymal transition (EMT). However, reverting EMT fails to sensitize the resistant cells to JQ1 treatment. Importantly, the JQ1-resistant cells remain dependent on c-MYC that now becomes co-regulated by high levels of GLI2. Furthermore, downregulating GLI2 re-sensitizes the resistant cells to JQ1. Overall, these results identify a mechanism by which cancer cells develop resistance to BET inhibitors.
Collapse
|
111
|
CpG hypermethylation contributes to decreased expression of PTEN during acquired resistance to gefitinib in human lung cancer cell lines. Lung Cancer 2015; 87:265-71. [DOI: 10.1016/j.lungcan.2015.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/29/2014] [Accepted: 01/13/2015] [Indexed: 11/20/2022]
|
112
|
Eke I, Zscheppang K, Dickreuter E, Hickmann L, Mazzeo E, Unger K, Krause M, Cordes N. Simultaneous β1 integrin-EGFR Targeting and Radiosensitization of Human Head and Neck Cancer. ACTA ACUST UNITED AC 2015; 107:dju419. [DOI: 10.1093/jnci/dju419] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
113
|
Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 2015; 25:234-40. [PMID: 25572304 DOI: 10.1016/j.tcb.2014.12.006] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022]
Abstract
Interactions between cancer cells and their surroundings can trigger essential signaling cues that determine cell fate and influence the evolution of the malignant phenotype. As the primary receptors involved in cell-matrix adhesion, integrins present on the surface of tumor and stromal cells have a profound impact on the ability to survive in specific locations, but in some cases, these receptors can also function in the absence of ligand binding to promote stemness and survival in the presence of environmental and therapeutic stresses. Understanding how integrin expression and function is regulated in this context will enable the development of new therapeutic approaches to sensitize tumors to therapy and suppress their metastatic phenotype.
Collapse
Affiliation(s)
- Laetitia Seguin
- Department of Pathology and the Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jay S Desgrosellier
- Department of Pathology and the Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sara M Weis
- Department of Pathology and the Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - David A Cheresh
- Department of Pathology and the Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
114
|
Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 2014; 25:198-213. [PMID: 25540894 DOI: 10.1016/j.tcb.2014.11.006] [Citation(s) in RCA: 545] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 02/08/2023]
Abstract
The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and metastasis but also has profound effects on therapeutic efficacy. In the case of microenvironment-mediated resistance this can involve an intrinsic response, including the co-option of pre-existing structural elements and signaling networks, or an acquired response of the tumor stroma following the therapeutic insult. Alternatively, in other contexts, the TME has a multifaceted ability to enhance therapeutic efficacy. This review examines recent advances in our understanding of the contribution of the TME during cancer therapy and discusses key concepts that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Florian Klemm
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
115
|
Engel BE, Cress WD, Santiago-Cardona PG. THE RETINOBLASTOMA PROTEIN: A MASTER TUMOR SUPPRESSOR ACTS AS A LINK BETWEEN CELL CYCLE AND CELL ADHESION. ACTA ACUST UNITED AC 2014; 7:1-10. [PMID: 28090172 DOI: 10.2147/chc.s28079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RB1 was the first tumor suppressor gene discovered. Over four decades of work have revealed that the Rb protein (pRb) is a master regulator of biological pathways influencing virtually every aspect of intrinsic cell fate including cell growth, cell-cycle checkpoints, differentiation, senescence, self-renewal, replication, genomic stability and apoptosis. While these many processes may account for a significant portion of RB1's potency as a tumor suppressor, a small, but growing stream of evidence suggests that RB1 also significantly influences how a cell interacts with its environment, including cell-to-cell and cell-to-extracellular matrix interactions. This review will highlight pRb's role in the control of cell adhesion and how alterations in the adhesive properties of tumor cells may drive the deadly process of metastasis.
Collapse
Affiliation(s)
- B E Engel
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - W D Cress
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
116
|
Abstract
Lung adenocarcinomas harboring activating mutations in the epidermal growth factor receptor (EGFR) represent a common molecular subset of non-small cell lung cancer (NSCLC) cases. EGFR mutations predict sensitivity to EGFR tyrosine kinase inhibitors (TKIs) and thus represent a dependency in NSCLCs harboring these alterations, but the genetic basis of EGFR dependence is not fully understood. Here, we applied an unbiased, ORF-based screen to identify genetic modifiers of EGFR dependence in EGFR-mutant NSCLC cells. This approach identified 18 kinase and kinase-related genes whose overexpression can substitute for EGFR in EGFR-dependent PC9 cells, and these genes include seven of nine Src family kinase genes, FGFR1, FGFR2, ITK, NTRK1, NTRK2, MOS, MST1R, and RAF1. A subset of these genes can complement loss of EGFR activity across multiple EGFR-dependent models. Unbiased gene-expression profiling of cells overexpressing EGFR bypass genes, together with targeted validation studies, reveals EGFR-independent activation of the MEK-ERK and phosphoinositide 3-kinase (PI3K)-AKT pathways. Combined inhibition of PI3K-mTOR and MEK restores EGFR dependence in cells expressing each of the 18 EGFR bypass genes. Together, these data uncover a broad spectrum of kinases capable of overcoming dependence on EGFR and underscore their convergence on the PI3K-AKT and MEK-ERK signaling axes in sustaining EGFR-independent survival.
Collapse
|
117
|
|
118
|
Takeuchi S, Yano S. Clinical significance of epidermal growth factor receptor tyrosine kinase inhibitors: sensitivity and resistance. Respir Investig 2014; 52:348-56. [PMID: 25453378 DOI: 10.1016/j.resinv.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/16/2014] [Accepted: 10/14/2014] [Indexed: 01/01/2023]
Abstract
Gefitinib and erlotinib, which are epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs), are highly effective against lung tumors with EGFR activating mutations. However, in 20-30% of cases, there is intrinsic resistance, and even if the treatment is effective, resistance is acquired in one to several years. Possible mechanisms of acquired resistance to EGFR-TKI, thus far, include a gatekeeper mutation of EGFR, activation of an alternate pathway, activation of EGFR downstream signals, transformation to small cell lung cancer, and epithelial-mesenchymal transition (EMT). Recently, BIM (BCL2L11), which is a BH3-only proapoptotic member of the Bcl-2 protein family, was shown to play a central role in inducing apoptosis in response to EGFR-TKI treatment in EGFR mutant lung cancer cells. Moreover, when the expression of active BIM protein was low, there was resistance to apoptosis induction by EGFR-TKI treatment and early disease progression. A polymorphism of the BIM gene unique to East Asian people has been detected and is now attracting attention as a factor causing resistance to EGFR-TKI due to decreased BIM activity.
Collapse
Affiliation(s)
- Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan; Cancer Center, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan.
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan; Cancer Center, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| |
Collapse
|
119
|
Bansal N, Mims J, Kuremsky JG, Olex AL, Zhao W, Yin L, Wani R, Qian J, Center B, Marrs GS, Porosnicu M, Fetrow JS, Tsang AW, Furdui CM. Broad phenotypic changes associated with gain of radiation resistance in head and neck squamous cell cancer. Antioxid Redox Signal 2014; 21:221-36. [PMID: 24597745 PMCID: PMC4060837 DOI: 10.1089/ars.2013.5690] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The central issue of resistance to radiation remains a significant challenge in the treatment of cancer despite improvements in treatment modality and emergence of new therapies. To facilitate the identification of molecular factors that elicit protection against ionizing radiation, we developed a matched model of radiation resistance for head and neck squamous cell cancer (HNSCC) and characterized its properties using quantitative mass spectrometry and complementary assays. RESULTS Functional network analysis of proteomics data identified DNA replication and base excision repair, extracellular matrix-receptor interaction, cell cycle, focal adhesion, and regulation of actin cytoskeleton as significantly up- or downregulated networks in resistant (rSCC-61) HNSCC cells. Upregulated proteins in rSCC-61 included a number of cytokeratins, fatty acid synthase, and antioxidant proteins. In addition, the rSCC-61 cells displayed two unexpected features compared with parental radiation-sensitive SCC-61 cells: (i) rSCC-61 had increased sensitivity to Erlotinib, a small-molecule inhibitor of epidermal growth factor receptor; and (ii) there was evidence of mesenchymal-to-epithelial transition in rSCC-61, confirmed by the expression of protein markers and functional assays (e.g., Vimentin, migration). INNOVATION The matched model of radiation resistance presented here shows that multiple signaling and metabolic pathways converge to produce the rSCC-61 phenotype, and this points to the function of the antioxidant system as a major regulator of resistance to ionizing radiation in rSCC-61, a phenomenon further confirmed by analysis of HNSCC tumor samples. CONCLUSION The rSCC-61/SCC-61 model provides the opportunity for future investigations of the redox-regulated mechanisms of response to combined radiation and Erlotinib in a preclinical setting.
Collapse
Affiliation(s)
- Nidhi Bansal
- 1 Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Modjtahedi H, Cho BC, Michel MC, Solca F. A comprehensive review of the preclinical efficacy profile of the ErbB family blocker afatinib in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2014; 387:505-21. [PMID: 24643470 PMCID: PMC4019832 DOI: 10.1007/s00210-014-0967-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/19/2014] [Indexed: 01/07/2023]
Abstract
Afatinib (also known as BIBW 2992) has recently been approved in several countries for the treatment of a distinct type of epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer. This manuscript comprehensively reviews the preclinical data on afatinib, an irreversible inhibitor of the tyrosine kinase activity of members of the epidermal growth factor receptor family (ErbB) including EGFR, HER2 and ErbB4. Afatinib covalently binds to cysteine 797 of the EGFR and the corresponding cysteines 805 and 803 in HER2 and ErbB4, respectively. Such covalent binding irreversibly inhibits the tyrosine kinase activity of these receptors, resulting in reduced auto- and transphosphorylation within the ErbB dimers and inhibition of important steps in the signal transduction of all ErbB receptor family members. Afatinib inhibits cellular growth and induces apoptosis in a wide range of cells representative for non-small cell lung cancer, breast cancer, pancreatic cancer, colorectal cancer, head and neck squamous cell cancer and several other cancer types exhibiting abnormalities of the ErbB network. This translates into tumour shrinkage in a variety of in vivo rodent models of such cancers. Afatinib retains inhibitory effects on signal transduction and in vitro and in vivo cancer cell growth in tumours resistant to reversible EGFR inhibitors, such as those exhibiting the T790M mutations. Several combination treatments have been explored to prevent and/or overcome development of resistance to afatinib, the most promising being those with EGFR- or HER2-targeted antibodies, other tyrosine kinase inhibitors or inhibitors of downstream signalling molecules.
Collapse
Affiliation(s)
- Helmout Modjtahedi
- School of Life Science, Faculty of Science, Engineering and Computing, Kingston University London, Kingston upon Thames, UK
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
- Department of Regional Medicine and Scientific Affairs, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Flavio Solca
- Department of Pharmacology, Boehringer Ingelheim RCV GmbH & Co. KG, Doktor-Böhringer Gasse 5-11, 1120 Vienna, Austria
| |
Collapse
|
121
|
Tanaka R, Seki Y, Saito Y, Kamiya S, Fujita M, Okutsu H, Iyoda T, Takai T, Owaki T, Yajima H, Taira J, Hayashi R, Kodama H, Matsunaga T, Fukai F. Tenascin-C-derived peptide TNIIIA2 highly enhances cell survival and platelet-derived growth factor (PDGF)-dependent cell proliferation through potentiated and sustained activation of integrin α5β1. J Biol Chem 2014; 289:17699-708. [PMID: 24808173 DOI: 10.1074/jbc.m113.546622] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tenascin-C is an adhesion modulatory matrix protein that is highly expressed in tumors; however, its biochemical activity involved in tumorigenesis is not fully understood. On the other hand, increasing evidence indicates the importance of integrin α5β1 in cancer development. We previously demonstrated that tenascin-C harbors a functional site that can be released as a proadhesive peptide such as TNIIIA2. Peptide TNIIIA2 is capable of inducing activation of β1-integrins including α5β1 via syndecan-4. In this study the proadhesive effect of TNIIIA2 was characterized by potentiated and sustained activation of integrin α5β1. Based on this effect, TNIIIA2 rendered nontransformed fibroblasts (NIH3T3) resistant to serum deprivation-elicited anoikis through activation of the Akt/Bcl-2 pathway. Moreover, TNIIIA2 hyperstimulated PDGF-dependent proliferation of NIH3T3 by activating integrin α5β1. Tenascin-C, a parental protein of TNIIIA2, also stimulated PDGF-dependent proliferation, which was blocked by a matrix metalloproteinase-2/9 inhibitor and an anti-TNIIIA2 function-blocking antibody, suggesting proteolytic exposure of the proadhesive effect of TNIIIA2. Mechanistic analyses revealed that TNIIIA2 induced a lateral association of PDGF receptor β with the molecular complex of activated integrin α5β1 and syndecan-4 in the membrane microdomains enriched with cholesterol/caveolin-1, resulting in prolonged activation of PDGF receptor β and the subsequent Ras/mitogen-activated protein kinase pathway in a PDGF-dependent manner. Of note, TNIIIA2 induced continuous proliferation in NIH3T3 in an integrin α5β1-dependent manner even after they formed a confluent monolayer. Thus, it was proposed that tenascin-C might be involved in deregulated cell growth through potentiated and sustained activation of integrin α5β1 after exposure of the proadhesive effect of TNIIIA2.
Collapse
Affiliation(s)
- Rika Tanaka
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Yutaka Seki
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Yohei Saito
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Sadahiro Kamiya
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane-shi, Chiba 283-8555, Japan
| | - Motomichi Fujita
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Hiroaki Okutsu
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Takuya Iyoda
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Tatsuya Takai
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Toshiyuki Owaki
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Hirofumi Yajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Junichi Taira
- Department of Chemistry, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Ryo Hayashi
- Faculty of Science and Engineering, Saga University, Saga 849-0922, Japan, and
| | - Hiroaki Kodama
- Faculty of Science and Engineering, Saga University, Saga 849-0922, Japan, and
| | - Takuya Matsunaga
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Fumio Fukai
- From the Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan,
| |
Collapse
|
122
|
Qin X, Du Y, Chen X, Li W, Zhang J, Yang J. Activation of Akt protects cancer cells from growth inhibition induced by PKM2 knockdown. Cell Biosci 2014; 4:20. [PMID: 24735734 PMCID: PMC4108064 DOI: 10.1186/2045-3701-4-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/14/2014] [Indexed: 11/26/2022] Open
Abstract
Background PKM2 is an attractive target for cancer therapy, however, for many cancer cells, PKM2 knockdown only leads to a modest impairment of survival and proliferation. It is not known whether PKM2 knockdown rewires cell signaling pathways in these “PKM2 knockdown resistant” cells, and whether the rewired pathways are needed for their survival. Findings In present study, we investigated the effects of PKM2 knockdown on cellular signaling pathways in “PKM2 knockdown resistant” cancer cells. We found that knockdown of PKM2 leads to activation of Akt. Furthermore, we revealed that activation of Akt in PKM2 knockdown cells is a result of glycolysis disruption. Inhibiton of PI3K-Akt signaling pathway leads to significant growth inhibition and apoptosis in PKM2 knockdown cells. Conclusions Overall, our results indicate that activation of Akt is necessary for the survival of PKM2 knockdown cells. Combing PKM2 knockdown with PI3K or Akt inhibitors may lead to a better chance to kill tumors. Our research may provide an unexpected opportunity for the development and implementation of drugs targeting cell metabolism and aberrant Akt signaling.
Collapse
Affiliation(s)
- Xiaodong Qin
- School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Yuping Du
- School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xing Chen
- School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Wuyan Li
- Department of Engineering Science, Muskingum University, 163 Stormont St, New Concord, OH 43762, USA
| | - Jinghong Zhang
- School of Biomedical Science and Institutes of Molecule Medicine, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jinbo Yang
- School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, P. R. China ; Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland OH 44195, USA
| |
Collapse
|