101
|
Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes. Leukemia 2018; 32:2374-2387. [PMID: 29743719 DOI: 10.1038/s41375-018-0112-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/27/2022]
Abstract
Interleukin-1 receptor-associated kinase 1 (IRAK1), an essential mediator of innate immunity and inflammatory responses, is constitutively active in multiple cancers. We evaluated the role of IRAK1 in acute myeloid leukemia (AML) and assessed the inhibitory activity of multikinase inhibitor pacritinib on IRAK1 in AML. We demonstrated that IRAK1 is overexpressed in AML and provides a survival signal to AML cells. Genetic knockdown of IRAK1 in primary AML samples and xenograft model showed a significant reduction in leukemia burden. Kinase profiling indicated pacritinib has potent inhibitory activity against IRAK1. Computational modeling combined with site-directed mutagenesis demonstrated high-affinity binding of pacritinib to the IRAK1 kinase domain. Pacritinib exposure reduced IRAK1 phosphorylation in AML cells. A higher percentage of primary AML samples showed robust sensitivity to pacritinib, which inhibits FLT3, JAK2, and IRAK1, relative to FLT3 inhibitor quizartinib or JAK1/2 inhibitor ruxolitinib, demonstrating the importance of IRAK1 inhibition. Pacritinib inhibited the growth of AML cells harboring a variety of genetic abnormalities not limited to FLT3 and JAK2. Pacritinib treatment reduced AML progenitors in vitro and the leukemia burden in AML xenograft model. Overall, IRAK1 contributes to the survival of leukemic cells, and the suppression of IRAK1 may be beneficial among heterogeneous AML subtypes.
Collapse
|
102
|
Larrosa-Garcia M, Baer MR. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions. Mol Cancer Ther 2018; 16:991-1001. [PMID: 28576946 DOI: 10.1158/1535-7163.mct-16-0876] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/13/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase fms-like tyrosine kinase 3 (FLT3), involved in regulating survival, proliferation, and differentiation of hematopoietic stem/progenitor cells, is expressed on acute myeloid leukemia (AML) cells in most patients. Mutations of FLT3 resulting in constitutive signaling are common in AML, including internal tandem duplication (ITD) in the juxtamembrane domain in 25% of patients and point mutations in the tyrosine kinase domain in 5%. Patients with AML with FLT3-ITD have a high relapse rate and short relapse-free and overall survival after chemotherapy and after transplant. A number of inhibitors of FLT3 signaling have been identified and are in clinical trials, both alone and with chemotherapy, with the goal of improving clinical outcomes in patients with AML with FLT3 mutations. While inhibitor monotherapy produces clinical responses, they are usually incomplete and transient, and resistance develops rapidly. Diverse combination therapies have been suggested to potentiate the efficacy of FLT3 inhibitors and to prevent development of resistance or overcome resistance. Combinations with epigenetic therapies, proteasome inhibitors, downstream kinase inhibitors, phosphatase activators, and other drugs that alter signaling are being explored. This review summarizes the current status of translational and clinical research on FLT3 inhibitors in AML, and discusses novel combination approaches. Mol Cancer Ther; 16(6); 991-1001. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Clinical Trials as Topic
- Drug Evaluation, Preclinical
- Drug Resistance, Neoplasm/genetics
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mutation
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Multimerization
- Tandem Repeat Sequences
- Treatment Outcome
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/chemistry
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Maria Larrosa-Garcia
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
103
|
Minson KA, DeRyckere D, Graham DK. The Current State of FLT3 Inhibition in Acute Myeloid Leukemia - Pitfalls and Promises. ACTA ACUST UNITED AC 2017; 2. [PMID: 29806049 PMCID: PMC5964994 DOI: 10.4172/2576-1471.1000166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Katherine A Minson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, USA.,Department of Pediatrics, Atlanta, GA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, USA
| |
Collapse
|
104
|
Naqvi K, Konopleva M, Ravandi F. Targeted therapies in Acute Myeloid Leukemia: a focus on FLT-3 inhibitors and ABT199. Expert Rev Hematol 2017; 10:863-874. [PMID: 28799432 DOI: 10.1080/17474086.2017.1366852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) remains a therapeutic challenge. Despite ongoing research, the standard therapy for AML has not changed significantly in the past four decades. With the identification of cytogenetic and molecular abnormalities, several promising therapeutic agents are currently being investigated. FLT3 mutation is a well-recognized target seen in 30% of the cytogenetically normal AML. More recently, the BCL2 family of anti-apoptotic proteins have also generated great interest as a therapeutic target. Areas covered: This review will cover the role of FLT3 inhibitors in AML, discussing trials in relapsed/refractory AML and in the frontline setting, including the young and elderly patient population. Toxicities and potential mechanism of resistance will also be covered. In addition, most current studies demonstrating the role of BCL-2 inhibitors namely ABT-199/venetoclax in AML will also be discussed. Expert commentary: AML is one of the most heterogeneous group of hematological malignancies. It remains a therapeutic challenge with limited therapeutic progress despite ongoing research. With the identification of different mutations in AML, several drugs are being evaluated in clinical trials. Targeted agents such as FLT3 inhibitors and BH3 mimetics so far have shown promising results in terms of response and toxicity profile.
Collapse
Affiliation(s)
- Kiran Naqvi
- a Department of Leukemia , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Marina Konopleva
- a Department of Leukemia , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Farhad Ravandi
- a Department of Leukemia , University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
105
|
Hou P, Wu C, Wang Y, Qi R, Bhavanasi D, Zuo Z, Dos Santos C, Chen S, Chen Y, Zheng H, Wang H, Perl A, Guo D, Huang J. A Genome-Wide CRISPR Screen Identifies Genes Critical for Resistance to FLT3 Inhibitor AC220. Cancer Res 2017. [PMID: 28625976 DOI: 10.1158/0008-5472.can-16-1627] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant hematopoietic disease and the most common type of acute leukemia in adults. The mechanisms underlying drug resistance in AML are poorly understood. Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are the most common molecular abnormality in AML. Quizartinib (AC220) is a potent and selective second-generation inhibitor of FLT3. It is in clinical trials for the treatment of relapsed or refractory FLT3-ITD-positive and -negative AML patients and as maintenance therapy. To understand the mechanisms of drug resistance to AC220, we undertook an unbiased approach with a novel CRISPR-pooled library to screen new genes whose loss of function confers resistance to AC220. We identified SPRY3, an intracellular inhibitor of FGF signaling, and GSK3, a canonical Wnt signaling antagonist, and demonstrated reactivation of downstream FGF/Ras/ERK and Wnt signaling as major mechanisms of resistance to AC220. We confirmed these findings in primary AML patient samples. Expression of SPRY3 and GSK3A was dramatically reduced in AC220-resistant AML samples, and SPRY3-deleted primary AML cells were resistant to AC220. Intriguingly, expression of SPRY3 was greatly reduced in GSK3 knockout AML cells, which positioned SPRY3 downstream of GSK3 in the resistance pathway. Taken together, our study identified novel genes whose loss of function conferred resistance to a selective FLT3 inhibitor, providing new insight into signaling pathways that contribute to acquired resistance in AML. Cancer Res; 77(16); 4402-13. ©2017 AACR.
Collapse
Affiliation(s)
- Panpan Hou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P.R. China.,Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Chao Wu
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Yuchen Wang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing, P.R. China
| | - Rui Qi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Dheeraj Bhavanasi
- Department of Medicine (Hematology-Oncology), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
| | - Cedric Dos Santos
- Clinical Biomarkers - Oncology at AMGEN, Inc., South San Francisco, California
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Hong Zheng
- Division of Hematology/Oncology, Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Alexander Perl
- Department of Medicine (Hematology-Oncology), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Deyin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Jian Huang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
106
|
Ghiaur G, Levis M. Mechanisms of Resistance to FLT3 Inhibitors and the Role of the Bone Marrow Microenvironment. Hematol Oncol Clin North Am 2017; 31:681-692. [PMID: 28673395 DOI: 10.1016/j.hoc.2017.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The presence of FLT3 mutations in acute myeloid leukemia (AML) carries a particularly poor prognosis, making the development of FLT3 inhibitors an imperative goal. The last decade has seen an abundance of clinical trials using these drugs alone or in combination with chemotherapy. This culminated with the recent approval by the US Food and Drug Administration of Midostaurin for the treatment of FLT3-mutated AML. Initial success has been followed by the emergence of clinical resistance. Although novel FLT3 inhibitors are being developed, studies into mechanisms of resistance raise hope of new strategies to prevent emergence of resistance and eliminate minimal residual disease.
Collapse
Affiliation(s)
- Gabriel Ghiaur
- Adult Leukemia Program, Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street CRB I, Room 243, Baltimore, MD 21287, USA.
| | - Mark Levis
- Adult Leukemia Program, Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street CRB I, Room 2M44, Baltimore, MD 21287, USA
| |
Collapse
|