101
|
Ippolito L, Giannoni E, Chiarugi P, Parri M. Mitochondrial Redox Hubs as Promising Targets for Anticancer Therapy. Front Oncol 2020; 10:256. [PMID: 32185131 PMCID: PMC7058804 DOI: 10.3389/fonc.2020.00256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/14/2020] [Indexed: 01/10/2023] Open
Abstract
Mitochondria play multifaceted roles in malignant tumor progression. Beyond their bioenergetic role, mitochondria are essential for providing malignant cells a higher plasticity to face the harsh environmental conditions. Cell-autonomous metabolic deregulation of cancer cells, or metabolic adaptation to microenvironmental cues (lack of nutrients, stromal supply, hypoxia, etc.), represent the triggering event of mitochondria overexploitation to orchestrate nutrient sensing and upload, signaling, and redox circuits. As readout of their higher function, mitochondria produce high amounts of reactive oxygen species (ROS) that are functional for multiple signaling networks underlying tumor proliferation, survival, and metastatic process. To compensate for the higher rate of mitochondrial ROS production, cancer cells have evolved adaptive mechanisms to increase their antioxidant systems and to address ROS activating pathways useful for the tumor cell adaptation to environmental changes. As these properties are critical for cancer progression, mitochondrial ROS have recently become an attractive target for anti-cancer therapies. We discuss how understanding of mitochondrial function in the tumor-specific generation of ROS will impact on the development of novel redox-based targeted therapeutic strategies.
Collapse
Affiliation(s)
- Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
102
|
Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet 2020; 11:95. [PMID: 32180794 PMCID: PMC7059738 DOI: 10.3389/fgene.2020.00095] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
The regulation of mitochondrial proteome is unique in that its components have origins in both mitochondria and nucleus. With the development of OMICS technologies, emerging evidence indicates an interaction between mitochondria and nucleus based not only on the proteins but also on the non-coding RNAs (ncRNAs). It is now accepted that large parts of the non‐coding genome are transcribed into various ncRNA species. Although their characterization has been a hot topic in recent years, the function of the majority remains unknown. Recently, ncRNA species microRNA (miRNA) and long-non coding RNAs (lncRNA) have been gaining attention as direct or indirect modulators of the mitochondrial proteome homeostasis. These ncRNA can impact mitochondria indirectly by affecting transcripts encoding for mitochondrial proteins in the cytoplasm. Furthermore, reports of mitochondria-localized miRNAs, termed mitomiRs, and lncRNAs directly regulating mitochondrial gene expression suggest the import of RNA to mitochondria, but also transcription from the mitochondrial genome. Interestingly, ncRNAs have been also shown to hide small open reading frames (sORFs) encoding for small functional peptides termed micropeptides, with several examples reported with a role in mitochondria. In this review, we provide a literature overview on ncRNAs and micropeptides found to be associated with mitochondrial biology in the context of both health and disease. Although reported, small study overlap and rare replications by other groups make the presence, transport, and role of ncRNA in mitochondria an attractive, but still challenging subject. Finally, we touch the topic of their potential as prognosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| |
Collapse
|
103
|
Huan C, Xiaoxu C, Xifang R. Zinc Finger Protein 521, Negatively Regulated by MicroRNA-204-5p, Promotes Proliferation, Motility and Invasion of Gastric Cancer Cells. Technol Cancer Res Treat 2020; 18:1533033819874783. [PMID: 31526099 PMCID: PMC6749787 DOI: 10.1177/1533033819874783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This study aims to investigate the expression, role, and detailed mechanism of microRNA-204-5p and zinc finger protein 521 in gastric cancer. METHODS Immunohistochemistry was adopted to detect the expressions of zinc finger protein 521 in 82 cases of gastric cancer tissues. Western blot was used to detect the expressions of zinc finger protein 521 in gastric cancer cells and adjacent cells. Moreover, the correlation between zinc finger protein 521 and the prognosis of patients were also evaluated. Cell Counting Kit 8 assay and colony formation assay were performed to figure out the impact of zinc finger protein 521 on the proliferation of gastric cancer cells. By conducting flow cytometry, the effect of zinc finger protein 521 on the apoptosis of gastric cancer cells was determined. The scratch wound healing assay and transwell invasion assay were carried out to determine the effect of zinc finger protein 521 on regulating the motility and invasion of gastric cancer cells. Ultimately, the targeting relationship and interaction between microRNA-204-5p and zinc finger protein 521 were verified by real-time polymerase chain reaction, Western blot, and dual luciferase reporter gene assay. RESULTS Compared with adjacent cells, zinc finger protein 521 was highly expressed in gastric cancer cells, which was related to TNM stage (P = .0388), tumor size (P = .0168), and local lymph node metastasis (P = .0024). Overexpressed zinc finger protein 521 can promote the proliferation, migration, and invasion of gastric cancer cells and inhibit the apoptosis. Zinc finger protein 521 is a target gene of microRNA-106-5p, and there was a negative correlation between the expression of zinc finger protein 521 and microRNA-204-5p. CONCLUSION Zinc finger protein 521 can arrest the apoptosis and enhance the proliferation, migration, and invasion of gastric cancer cells via regulating microRNA-204-5p. Our study may provide novel clues for the treatment of patients with gastric cancer.
Collapse
Affiliation(s)
- Chen Huan
- Department of Gastroenterology, The First People's Hospital of Yichang, Yichang, Hubei, China.,Department of Gastroenterology, The People's Hospital of Three Gorges University, Yichang, Hubei, China
| | - Cai Xiaoxu
- Department of Gastroenterology, The People's Hospital of Three Gorges University, Yichang, Hubei, China.,Department of Oncology, The First People's Hospital of Yichang, Yichang, Hubei, China
| | - Ren Xifang
- Department of Gastroenterology, The First People's Hospital of Yichang, Yichang, Hubei, China.,Department of Gastroenterology, The People's Hospital of Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
104
|
Links between cancer metabolism and cisplatin resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:107-164. [PMID: 32475471 DOI: 10.1016/bs.ircmb.2020.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cisplatin is one of the most potent and widely used chemotherapeutic agent in the treatment of several solid tumors, despite the high toxicity and the frequent relapse of patients due to the onset of drug resistance. Resistance to chemotherapeutic agents, either intrinsic or acquired, is currently one of the major problems in oncology. Thus, understanding the biology of chemoresistance is fundamental in order to overcome this challenge and to improve the survival rate of patients. Studies over the last 30 decades have underlined how resistance is a multifactorial phenomenon not yet completely understood. Recently, tumor metabolism has gained a lot of interest in the context of chemoresistance; accumulating evidence suggests that the rearrangements of the principal metabolic pathways within cells, contributes to the sensitivity of tumor to the drug treatment. In this review, the principal metabolic alterations associated with cisplatin resistance are highlighted. Improving the knowledge of the influence of metabolism on cisplatin response is fundamental to identify new possible metabolic targets useful for combinatory treatments, in order to overcome cisplatin resistance.
Collapse
|
105
|
Dong Z, Pu L, Cui H. Mitoepigenetics and Its Emerging Roles in Cancer. Front Cell Dev Biol 2020; 8:4. [PMID: 32039210 PMCID: PMC6989428 DOI: 10.3389/fcell.2020.00004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
In human beings, there is a ∼16,569 bp circular mitochondrial DNA (mtDNA) encoding 22 tRNAs, 12S and 16S rRNAs, 13 polypeptides that constitute the central core of ETC/OxPhos complexes, and some non-coding RNAs. Recently, mtDNA has been shown to have some covalent modifications such as methylation or hydroxylmethylation, which play pivotal epigenetic roles in mtDNA replication and transcription. Post-translational modifications of proteins in mitochondrial nucleoids such as mitochondrial transcription factor A (TFAM) also emerge as essential epigenetic modulations in mtDNA replication and transcription. Post-transcriptional modifications of mitochondrial RNAs (mtRNAs) including mt-rRNAs, mt-tRNAs and mt-mRNAs are important epigenetic modulations. Besides, mtDNA or nuclear DNA (n-DNA)-derived non-coding RNAs also play important roles in the regulation of translation and function of mitochondrial genes. These evidences introduce a novel concept of mitoepigenetics that refers to the study of modulations in the mitochondria that alter heritable phenotype in mitochondria itself without changing the mtDNA sequence. Since mitochondrial dysfunction contributes to carcinogenesis and tumor development, mitoepigenetics is also essential for cancer. Understanding the mode of actions of mitoepigenetics in cancers may shade light on the clinical diagnosis and prevention of these diseases. In this review, we summarize the present study about modifications in mtDNA, mtRNA and nucleoids and modulations of mtDNA/nDNA-derived non-coding RNAs that affect mtDNA translation/function, and overview recent studies of mitoepigenetic alterations in cancer.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Longjun Pu
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
106
|
Conti I, Varano G, Simioni C, Laface I, Milani D, Rimondi E, Neri LM. miRNAs as Influencers of Cell-Cell Communication in Tumor Microenvironment. Cells 2020; 9:cells9010220. [PMID: 31952362 PMCID: PMC7016744 DOI: 10.3390/cells9010220] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level, inducing the degradation of the target mRNA or translational repression. MiRNAs are involved in the control of a multiplicity of biological processes, and their absence or altered expression has been associated with a variety of human diseases, including cancer. Recently, extracellular miRNAs (ECmiRNAs) have been described as mediators of intercellular communication in multiple contexts, including tumor microenvironment. Cancer cells cooperate with stromal cells and elements of the extracellular matrix (ECM) to establish a comfortable niche to grow, to evade the immune system, and to expand. Within the tumor microenvironment, cells release ECmiRNAs and other factors in order to influence and hijack the physiological processes of surrounding cells, fostering tumor progression. Here, we discuss the role of miRNAs in the pathogenesis of multicomplex diseases, such as Alzheimer’s disease, obesity, and cancer, focusing on the contribution of both intracellular miRNAs, and of released ECmiRNAs in the establishment and development of cancer niche. We also review growing evidence suggesting the use of miRNAs as novel targets or potential tools for therapeutic applications.
Collapse
Affiliation(s)
- Ilaria Conti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Gabriele Varano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Ilaria Laface
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
- LTTA—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455940
| |
Collapse
|
107
|
Mitochondrial MiRNA in Cardiovascular Function and Disease. Cells 2019; 8:cells8121475. [PMID: 31766319 PMCID: PMC6952824 DOI: 10.3390/cells8121475] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs functioning as crucial post-transcriptional regulators of gene expression involved in cardiovascular development and health. Recently, mitochondrial miRNAs (mitomiRs) have been shown to modulate the translational activity of the mitochondrial genome and regulating mitochondrial protein expression and function. Although mitochondria have been verified to be essential for the development and as a therapeutic target for cardiovascular diseases, we are just beginning to understand the roles of mitomiRs in the regulation of crucial biological processes, including energy metabolism, oxidative stress, inflammation, and apoptosis. In this review, we summarize recent findings regarding how mitomiRs impact on mitochondrial gene expression and mitochondrial function, which may help us better understand the contribution of mitomiRs to both the regulation of cardiovascular function under physiological conditions and the pathogenesis of cardiovascular diseases.
Collapse
|
108
|
Sharma N, Pasala MS, Prakash A. Mitochondrial DNA: Epigenetics and environment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:668-682. [PMID: 31335990 PMCID: PMC6941438 DOI: 10.1002/em.22319] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 05/22/2023]
Abstract
Maintenance of the mitochondrial genome is essential for proper cellular function. For this purpose, mitochondrial DNA (mtDNA) needs to be faithfully replicated, transcribed, translated, and repaired in the face of constant onslaught from endogenous and environmental agents. Although only 13 polypeptides are encoded within mtDNA, the mitochondrial proteome comprises over 1500 proteins that are encoded by nuclear genes and translocated to the mitochondria for the purpose of maintaining mitochondrial function. Regulation of mtDNA and mitochondrial proteins by epigenetic changes and post-translational modifications facilitate crosstalk between the nucleus and the mitochondria and ultimately lead to the maintenance of cellular health and homeostasis. DNA methyl transferases have been identified in the mitochondria implicating that methylation occurs within this organelle; however, the extent to which mtDNA is methylated has been debated for many years. Mechanisms of demethylation within this organelle have also been postulated, but the exact mechanisms and their outcomes is still an active area of research. Mitochondrial dysfunction in the form of altered gene expression and ATP production, resulting from epigenetic changes, can lead to various conditions including aging-related neurodegenerative disorders, altered metabolism, changes in circadian rhythm, and cancer. Here, we provide an overview of the epigenetic regulation of mtDNA via methylation, long and short noncoding RNAs, and post-translational modifications of nucleoid proteins (as mitochondria lack histones). We also highlight the influence of xenobiotics such as airborne environmental pollutants, contamination from heavy metals, and therapeutic drugs on mtDNA methylation. Environ. Mol. Mutagen., 60:668-682, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
|
109
|
Cocetta V, Ragazzi E, Montopoli M. Mitochondrial Involvement in Cisplatin Resistance. Int J Mol Sci 2019; 20:ijms20143384. [PMID: 31295873 PMCID: PMC6678541 DOI: 10.3390/ijms20143384] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Cisplatin is one of the worldwide anticancer drugs and, despite its toxicity and frequent recurrence of resistance phenomena, it still remains the only therapeutic option for several tumors. Circumventing cisplatin resistance remains, therefore, a major goal for clinical therapy and represents a challenge for scientific research. Recent studies have brought to light the fundamental role of mitochondria in onset, progression, and metastasis of cancer, as well as its importance in the resistance to chemotherapy. The aim of this review is to give an overview of the current knowledge about the implication of mitochondria in cisplatin resistance and on the recent development in this research field. Recent studies have highlighted the role of mitochondrial DNA alterations in onset of resistance phenomena, being related both to redox balance alterations and to signal crosstalk with the nucleus, allowing a rewiring of cell metabolism. Moreover, an important role of the mitochondrial dynamics in the adaptation mechanism of cancer cells to challenging environment has been revealed. Giving bioenergetic plasticity to tumor cells, mitochondria allow cells to evade death pathways in stressful conditions, including chemotherapy. So far, even if the central role of mitochondria is recognized, little is known about the specific mechanisms implicated in the resistance. Nevertheless, mitochondria appear to be promising pharmacological targets for overcoming cisplatin resistance, but further studies are necessary.
Collapse
Affiliation(s)
- Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Egidio Meneghetti 2, 35131 Padua, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Egidio Meneghetti 2, 35131 Padua, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Egidio Meneghetti 2, 35131 Padua, Italy.
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy.
| |
Collapse
|
110
|
miR-23b-3p suppressing PGC1α promotes proliferation through reprogramming metabolism in osteosarcoma. Cell Death Dis 2019; 10:381. [PMID: 31097683 PMCID: PMC6522531 DOI: 10.1038/s41419-019-1614-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 01/31/2023]
Abstract
Metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis is a hallmark of osteosarcoma (OS). However, the mechanisms of the metabolic switch have not been completely elucidated. Here we reported that the miR-23b-3p was significantly upregulated in OS cells. Functional studies suggested that knockdown of miR-23b-3p could inhibit OS cell proliferation in vitro or in vivo. In addition, suppression of miR-23b-3p could lead to upregulation of OXPHOS and suppression of glycolysis. Mechanistically, miR-23b-3p promoted OS cell proliferation and inhibited OXPHOS in OS, at least in part, by directly targeting peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α) and inhibiting its expression. Our data highlights important roles of miR-23b-3p and PGC1α in glucose metabolism reprogram of OS. The suppression of miR-23b-3p may provide effective therapeutic strategies for the treatment of OS.
Collapse
|
111
|
Transcription, Processing, and Decay of Mitochondrial RNA in Health and Disease. Int J Mol Sci 2019; 20:ijms20092221. [PMID: 31064115 PMCID: PMC6540609 DOI: 10.3390/ijms20092221] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Although the large majority of mitochondrial proteins are nuclear encoded, for their correct functioning mitochondria require the expression of 13 proteins, two rRNA, and 22 tRNA codified by mitochondrial DNA (mtDNA). Once transcribed, mitochondrial RNA (mtRNA) is processed, mito-ribosomes are assembled, and mtDNA-encoded proteins belonging to the respiratory chain are synthesized. These processes require the coordinated spatio-temporal action of several enzymes, and many different factors are involved in the regulation and control of protein synthesis and in the stability and turnover of mitochondrial RNA. In this review, we describe the essential steps of mitochondrial RNA synthesis, maturation, and degradation, the factors controlling these processes, and how the alteration of these processes is associated with human pathologies.
Collapse
|
112
|
Jeandard D, Smirnova A, Tarassov I, Barrey E, Smirnov A, Entelis N. Import of Non-Coding RNAs into Human Mitochondria: A Critical Review and Emerging Approaches. Cells 2019; 8:E286. [PMID: 30917553 PMCID: PMC6468882 DOI: 10.3390/cells8030286] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 01/26/2023] Open
Abstract
Mitochondria harbor their own genetic system, yet critically depend on the import of a number of nuclear-encoded macromolecules to ensure their expression. In all eukaryotes, selected non-coding RNAs produced from the nuclear genome are partially redirected into the mitochondria, where they participate in gene expression. Therefore, the mitochondrial RNome represents an intricate mixture of the intrinsic transcriptome and the extrinsic RNA importome. In this review, we summarize and critically analyze data on the nuclear-encoded transcripts detected in human mitochondria and outline the proposed molecular mechanisms of their mitochondrial import. Special attention is given to the various experimental approaches used to study the mitochondrial RNome, including some recently developed genome-wide and in situ techniques.
Collapse
Affiliation(s)
- Damien Jeandard
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Anna Smirnova
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Ivan Tarassov
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Eric Barrey
- GABI-UMR1313, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Nina Entelis
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| |
Collapse
|
113
|
de la Cruz López KG, Toledo Guzmán ME, Sánchez EO, García Carrancá A. mTORC1 as a Regulator of Mitochondrial Functions and a Therapeutic Target in Cancer. Front Oncol 2019; 9:1373. [PMID: 31921637 PMCID: PMC6923780 DOI: 10.3389/fonc.2019.01373] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023] Open
Abstract
Continuous proliferation of tumor cells requires constant adaptations of energy metabolism to rapidly fuel cell growth and division. This energetic adaptation often comprises deregulated glucose uptake and lactate production in the presence of oxygen, a process known as the "Warburg effect." For many years it was thought that the Warburg effect was a result of mitochondrial damage, however, unlike this proposal tumor cell mitochondria maintain their functionality, and is essential for integrating a variety of signals and adapting the metabolic activity of the tumor cell. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of numerous cellular processes implicated in proliferation, metabolism, and cell growth. mTORC1 controls cellular metabolism mainly by regulating the translation and transcription of metabolic genes, such as peroxisome proliferator activated receptor γ coactivator-1 α (PGC-1α), sterol regulatory element-binding protein 1/2 (SREBP1/2), and hypoxia inducible factor-1 α (HIF-1α). Interestingly it has been shown that mTORC1 regulates mitochondrial metabolism, thus representing an important regulator in mitochondrial function. Here we present an overview on the role of mTORC1 in the regulation of mitochondrial functions in cancer, considering new evidences showing that mTORC1 regulates the translation of nucleus-encoded mitochondrial mRNAs that result in an increased ATP mitochondrial production. Moreover, we discuss the relationship between mTORC1 and glutaminolysis, as well as mitochondrial metabolites. In addition, mitochondrial fission processes regulated by mTORC1 and its impact on cancer are discussed. Finally, we also review the therapeutic efficacy of mTORC1 inhibitors in cancer treatments, considering its use in combination with other drugs, with particular focus on cellular metabolism inhibitors, that could help improve their anti neoplastic effect and eliminate cancer cells in patients.
Collapse
Affiliation(s)
- Karen Griselda de la Cruz López
- Posgrado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Alejandro García Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México & Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- *Correspondence: Alejandro García Carrancá
| |
Collapse
|