101
|
Lonergan PE, Tindall DJ. Truncated Androgen Receptor Splice Variants in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
102
|
Abstract
Persistent androgen receptor (AR) signaling despite low levels of serum androgens has been identified as a critical target for drug discovery in castration-resistant prostate cancer (CRPC). As proof of principle that the AR remains relevant in CRPC, 2 AR-targeted agents recently approved by the Food and Drug Administration-abiraterone and enzalutamide-have increased overall survival for patients with CRPC in the setting of prior chemotherapy. This review focuses on the AR and 2 direct antagonists, enzalutamide and ARN-509. These next-generation AR antagonists offer great promise for patients with advanced disease. Relative to conventional antiandrogens such as bicalutamide, they bind to the receptor with higher affinity, prevent nuclear translocation and DNA binding, and induce apoptosis without agonist activity in preclinical models. The success of these AR-targeted agents in the clinic has changed the landscape of therapy for patients with CRPC, and further therapeutic options building on this platform are currently in development.
Collapse
Affiliation(s)
- Dana Rathkopf
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Howard I. Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
103
|
Sheikh H, Abdulghani J, Ali S, Sinha R, Lipton A. Impact of Genetic Targets on Prostate Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:359-83. [DOI: 10.1007/978-1-4614-6176-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
104
|
Thadani-Mulero M, Nanus DM, Giannakakou P. Androgen receptor on the move: boarding the microtubule expressway to the nucleus. Cancer Res 2012; 72:4611-5. [PMID: 22987486 DOI: 10.1158/0008-5472.can-12-0783] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies have shown that the microtubule-stabilizing drug paclitaxel, which is commonly used for the treatment of prostate cancer, inhibits signaling from the androgen receptor by inhibiting its nuclear accumulation downstream of microtubule stabilization. This mechanism is independent of paclitaxel-induced mitotic arrest and could provide an alternative mechanism of drug action that can explain its clinical activity. In this review, we highlight the importance of signaling and trafficking pathways that depend on intact and dynamic microtubules, and, as such, they represent downstream targets of microtubule inhibitors. We showcase prostate cancer, which is driven by the activity of the androgen receptor, as recent reports have revealed a connection between the microtubule-dependent trafficking of the androgen receptor and the clinical efficacy of taxanes. Identification and further elucidation of microtubule-dependent tumor-specific pathways will help us better understand the molecular basis of clinical taxane resistance as well as to identify individual patients more likely to respond to treatment.
Collapse
Affiliation(s)
- Maria Thadani-Mulero
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York 10065-4896, USA
| | | | | |
Collapse
|
105
|
Caboni L, Lloyd DG. Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors. Med Res Rev 2012; 33:1081-118. [PMID: 23344935 DOI: 10.1002/med.21275] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nuclear receptors (NRs) are a family of ligand-modulated transcription factors with significant therapeutic relevance from metabolic disorders and inflammation to cancer, neurodegenerative, and psychiatric disorders. Drug discovery efforts are typically concentrated on modulating the natural ligand action within the ligand-binding pocket (LBP) in the C-terminal ligand-binding domain (LBD). Drawbacks of LBP-based strategies include physiological alterations due to disruption of ligand binding and difficulties in achieving tissue specificity. Furthermore, the lack of a "pure" and predictable mechanism of action predisposes such intervention toward drug resistance. Recent outstanding progress in our understanding of NR biology has shifted the focus of drug discovery efforts from inside to outside the LBP, affording consideration to the interaction between NRs and coactivator proteins, the interaction between NRs and DNA and the NRs' ligand-independent functions. This review encompasses such currently available NR non-LBP-based interventions and their potential application in therapy or as specific tools to probe NR biology.
Collapse
Affiliation(s)
- Laura Caboni
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
106
|
Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 2012; 32:4130-8. [PMID: 23069658 DOI: 10.1038/onc.2012.425] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/10/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022]
Abstract
Although prostate cancer (CaP) is the most frequently diagnosed malignant tumor in American men, the mechanisms underlying the development and progression of CaP remain largely unknown. Recent studies have shown that downregulation of the microRNA miR-124 occurs in several types of human cancer, suggesting a tumor suppressive function of miR-124. Until now, however, it has been unclear whether miR-124 is associated with CaP. In the present study, we completed a series of experiments to understand the functional role of miR-124 in CaP. We detected the expression level of miR-124 in clinical CaP tissues, evaluated the influence of miR-124 on the growth of CaP cells and investigated the mechanism underlying the dysregulation of miR-124. We found that (i) miR-124 directly targets the androgen receptor (AR) and subsequently induces an upregulation of p53; (ii) miR-124 is significantly downregulated in malignant prostatic cells compared to benign cells, and DNA methylation causes the reduced expression of miR-124; and (iii) miR-124 can inhibit the growth of CaP cells in vitro and in vivo. Data from this study revealed that loss of miR-124 expression is a common event in CaP, which may contribute to the pathogenesis of CaP. Our studies also suggest that miR-124 is a potential tumor suppressive gene in CaP, and restoration of miR-124 expression may represent a novel strategy for CaP therapy.
Collapse
|
107
|
Rawlinson A, Mohammed A, Miller M, Kunkler R. The role of enzalutamide in the treatment of castration-resistant prostate cancer. Future Oncol 2012; 8:1073-81. [DOI: 10.2217/fon.12.99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the most common solid organ cancer affecting the male population. Men with metastatic prostate cancer treated with androgen ablation therapy often respond rapidly, with improvement in bone pain and decreases in serum prostate-specific antigen. However, almost all patients progress to the castration-resistant state and abiraterone acetate was the last treatment available with proven survival benefit. Enzalutamide (formerly MDV3100) is an androgen receptor signaling inhibitor that has been shown to improve survival in men with metastatic castration-resistant prostate cancer previously treated with chemotherapy. In this article we discuss the characteristics of enzalutamide and provide a review of its clinical development.
Collapse
Affiliation(s)
- Alex Rawlinson
- Department of Urology, Northampton General Hospital, Cliftonville Road, Northampton, NN1 5BD, UK
| | - Aza Mohammed
- Department of Urology, Northampton General Hospital, Cliftonville Road, Northampton, NN1 5BD, UK
| | - Marek Miller
- Department of Urology, Northampton General Hospital, Cliftonville Road, Northampton, NN1 5BD, UK
| | - Roger Kunkler
- Department of Urology, Northampton General Hospital, Cliftonville Road, Northampton, NN1 5BD, UK
| |
Collapse
|
108
|
Cai H, Memarzadeh S, Stoyanova T, Beharry Z, Kraft AS, Witte ON. Collaboration of Kras and androgen receptor signaling stimulates EZH2 expression and tumor-propagating cells in prostate cancer. Cancer Res 2012; 72:4672-81. [PMID: 22805308 PMCID: PMC3445707 DOI: 10.1158/0008-5472.can-12-0228] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Elevation of the chromatin repression factor enhancer of zeste homolog (EZH2) is associated with progression and poor prognosis in several human cancers including prostate cancer. However, the mechanisms driving EZH2 expression are not fully understood. In this study, we investigated the functional synergy in prostate cancers in mice resulting from activation of the androgen receptor, Kras, and Akt, which drives three of the most frequently activated oncogenic signaling pathways in prostate cancer. Although, any two of these three events were sufficient to promote the formation and progression of prostate cancer, only the synergy of androgen receptor and Kras signaling could elevate EZH2 expression and expand prostate cancer progenitor cells in vivo. Our findings have revealed a genetic mechanism resulting in enhanced EZH2 expression during the progression of aggressive prostate cancer, with important implications for understanding how to target advanced disease where cancer progenitor cells may be critical.
Collapse
Affiliation(s)
- Houjian Cai
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | |
Collapse
|
109
|
Hu R, Lu C, Mostaghel EA, Yegnasubramanian S, Gurel M, Tannahill C, Edwards J, Isaacs WB, Nelson PS, Bluemn E, Plymate SR, Luo J. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012; 72:3457-62. [PMID: 22710436 DOI: 10.1158/0008-5472.can-11-3892] [Citation(s) in RCA: 470] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Continued androgen receptor (AR) signaling is an established mechanism underlying castration-resistant prostate cancer (CRPC), and suppression of androgen receptor signaling remains a therapeutic goal of CRPC therapy. Constitutively active androgen receptor splice variants (AR-Vs) lack the androgen receptor ligand-binding domain (AR-LBD), the intended target of androgen deprivation therapies including CRPC therapies such as abiraterone and MDV3100. While the canonical full-length androgen receptor (AR-FL) and AR-Vs are both increased in CRPCs, their expression regulation, associated transcriptional programs, and functional relationships have not been dissected. In this study, we show that suppression of ligand-mediated AR-FL signaling by targeting AR-LBD leads to increased AR-V expression in two cell line models of CRPCs. Importantly, treatment-induced AR-Vs activated a distinct expression signature enriched for cell-cycle genes without requiring the presence of AR-FL. Conversely, activation of AR-FL signaling suppressed the AR-Vs signature and activated expression programs mainly associated with macromolecular synthesis, metabolism, and differentiation. In prostate cancer cells and CRPC xenografts treated with MDV3100 or abiraterone, increased expression of two constitutively active AR-Vs, AR-V7 and ARV567ES, but not AR-FL, paralleled increased expression of the androgen receptor-driven cell-cycle gene UBE2C. Expression of AR-V7, but not AR-FL, was positively correlated with UBE2C in clinical CRPC specimens. Together, our findings support an adaptive shift toward AR-V-mediated signaling in a subset of CRPC tumors as the AR-LBD is rendered inactive, suggesting an important mechanism contributing to drug resistance to CRPC therapy.
Collapse
Affiliation(s)
- Rong Hu
- Department of Urology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:233-47. [PMID: 22531108 DOI: 10.1097/med.0b013e3283542fb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
111
|
Guan M, Fousek K, Chow WA. Nelfinavir inhibits regulated intramembrane proteolysis of sterol regulatory element binding protein-1 and activating transcription factor 6 in castration-resistant prostate cancer. FEBS J 2012; 279:2399-411. [PMID: 22540830 DOI: 10.1111/j.1742-4658.2012.08619.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nelfinavir induces apoptosis in liposarcoma by inhibiting site-2 protease (S2P) activity, which leads to suppression of regulated intramembrane proteolysis. We postulate similar effects in castration-resistant prostate cancer because it exhibits a lipogenic phenotype. Nelfinavir inhibited androgen receptor activation in androgen-sensitive prostate cancer and the nuclear translocation of the fusion proteins sterol regulatory element binding protein-1 (SREBP-1)-enhanced green fluorescence protein (EGFP) and activating transcription factor 6 (ATF6)-EGFP in castration-resistant prostate cancer cells, viewed under confocal microscopy. Nelfinavir and site-1 protease (S1P) and S2P small interfering RNAs (siRNAs) reduced the proliferation of castration-resistant prostate cancer and induced apoptosis, which was opposed by autophagy. Inhibition of autophagy with hydroxychloroquine was additive to the apoptotic effect of nelfinavir. Western blotting of S1P and S2P siRNA knockdown and/or nelfinavir-treated cells confirmed the accumulation of precursor SREBP-1 and ATF6. 3,4-Dichloroisocoumarin, an S1P inhibitor, did not affect SREBP-1 processing. In contrast, 1,10-phenanthroline, an S2P inhibitor, reproduced the nelfinavir-treated molecular and biological phenotype. Nelfinavir-mediated inhibition of regulated intramembrane proteolysis led to the accumulation of unprocessed SREBP-1 and ATF6. This resulted in sequential endoplasmic reticulum stress, inhibition of the unfolded protein response, reduced fatty acid synthase expression and apoptosis, which was countered by autophagy. Inhibition of autophagy was at least additive to this pro-apoptotic effect. These findings provide new insights into nelfinavir-induced endoplasmic reticulum stress and cancer cell death, and lead us to propose investigating its clinical activity in castration-resistant prostate cancer. This report validates S2P as a therapeutic target in castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Min Guan
- Department of Molecular Pharmacology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
112
|
Haendler B, Cleve A. Recent developments in antiandrogens and selective androgen receptor modulators. Mol Cell Endocrinol 2012; 352:79-91. [PMID: 21704118 DOI: 10.1016/j.mce.2011.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/16/2011] [Accepted: 06/03/2011] [Indexed: 11/30/2022]
Abstract
The androgens testosterone and dihydrotestosterone play an essential role in the development and maintenance of primary and secondary male characteristics. Androgens bind to a specific androgen receptor (AR), a ligand-dependent transcription factor which controls the expression of a large number of downstream target genes. The AR is an essential player in early and late prostate cancer, and may also be involved in some forms of breast cancer. It also represents a drug target for the treatment of hypogonadism. Recent studies furthermore indicate that targeting the AR in pathologies such as frailty syndrome, cachexia or polycystic ovary syndrome may have clinical benefit. Numerous AR ligands with very different pharmacological properties have been identified in the last 40 years and helped to treat several of these diseases. However, progress still needs to be made in order to find compounds with an improved profile with regard to efficacy, differentiation and side-effects. This will only be achieved through a better understanding of the mechanisms involved in normal and aberrant AR signaling.
Collapse
Affiliation(s)
- Bernard Haendler
- TRG Oncology, Global Drug Discovery, Bayer HealthCare, D-13342 Berlin, Germany.
| | | |
Collapse
|
113
|
Robins DM. Androgen receptor gene polymorphisms and alterations in prostate cancer: of humanized mice and men. Mol Cell Endocrinol 2012; 352:26-33. [PMID: 21689727 PMCID: PMC3188356 DOI: 10.1016/j.mce.2011.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/18/2011] [Accepted: 06/03/2011] [Indexed: 11/26/2022]
Abstract
Germline polymorphisms and somatic mutations of the androgen receptor (AR) have been intensely investigated in prostate cancer but even with genomic approaches their impact remains controversial. To assess the functional significance of AR genetic variation, we converted the mouse gene to the human sequence by germline recombination and engineered alleles to query the role of a polymorphic glutamine (Q) tract implicated in cancer risk. In a prostate cancer model, AR Q tract length influences progression and castration response. Mutation profiling in mice provides direct evidence that somatic AR variants are selected by therapy, a finding validated in human metastases from distinct treatment groups. Mutant ARs exploit multiple mechanisms to resist hormone ablation, including alterations in ligand specificity, target gene selectivity, chaperone interaction and nuclear localization. Regardless of their frequency, these variants permute normal function to reveal novel means to target wild type AR and its key interacting partners.
Collapse
Affiliation(s)
- Diane M Robins
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109-5618, USA.
| |
Collapse
|
114
|
Buzón V, Carbó LR, Estruch SB, Fletterick RJ, Estébanez-Perpiñá E. A conserved surface on the ligand binding domain of nuclear receptors for allosteric control. Mol Cell Endocrinol 2012; 348:394-402. [PMID: 21878368 DOI: 10.1016/j.mce.2011.08.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/08/2011] [Accepted: 08/12/2011] [Indexed: 12/26/2022]
Abstract
Nuclear receptors (NRs) form a large superfamily of transcription factors that participate in virtually every key biological process. They control development, fertility, gametogenesis and are misregulated in many cancers. Their enormous functional plasticity as transcription factors relates in part to NR-mediated interactions with hundreds of coregulatory proteins upon ligand (e.g., hormone) binding to their ligand binding domains (LBD), or following covalent modification. Some coregulator association relates to the distinct residues that shape a coactivator binding pocket termed AF-2, a surface groove that primarily determines the preference and specificity of protein-protein interactions. However, the highly conserved AF-2 pocket in the NR superfamily appears to be insufficient to account for NR subtype specificity leading to fine transcriptional modulation in certain settings. Additional protein-protein interaction surfaces, most notably on their LBD, may contribute to modulating NR function. NR coregulators and chaperones, normally much larger than the NR itself, may also bind to such interfaces. In the case of the androgen receptor (AR) LBD surface, structural and functional data highlighted the presence of another site named BF-3, which lies at a distinct but topographically adjacent surface to AF-2. AR BF-3 is a hot spot for mutations involved in prostate cancer and androgen insensitivity syndromes, and some FDA-approved drugs bind at this site. Structural studies suggested an allosteric relationship between AF-2 and BF-3, as occupancy of the latter affected coactivator recruitment to AF-2. Physiological relevant partners of AR BF-3 have not been described as yet. The newly discovered site is highly conserved among the steroid receptors subclass, but is also present in other NRs. Several missense mutations in the BF-3 regions of these human NRs are implicated in pathology and affect their function in vitro. The fact that AR BF-3 pocket is a druggable site evidences its pharmacological potential. Compounds that may affect allosterically NR function by binding to BF-3 open promising avenues to develop type-specific NR modulators.
Collapse
Affiliation(s)
- Víctor Buzón
- Institut de Biomedicina, Universitat de Barcelona, Baldiri Reixac 15-21, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
115
|
Meimetis LG, Williams DE, Mawji NR, Banuelos CA, Lal AA, Park JJ, Tien AH, Fernandez JG, de Voogd NJ, Sadar MD, Andersen RJ. Niphatenones, glycerol ethers from the sponge Niphates digitalis block androgen receptor transcriptional activity in prostate cancer cells: structure elucidation, synthesis, and biological activity. J Med Chem 2011; 55:503-14. [PMID: 22148427 DOI: 10.1021/jm2014056] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracts of the marine sponge Niphates digitalis collected in Dominica showed strong activity in a cell-based assay designed to detect antagonists of the androgen receptor (AR) that could act as lead compounds for the development of a new class of drugs to treat castration recurrent prostate cancer (CRPC). Assay-guided fractionation showed that niphatenones A (3) and B (4), two new glycerol ether lipids, were the active components of the extracts. The structures of 3 and 4 were elucidated by analysis of NMR and MS data and confimed via total synthesis. Biological evaluation of synthetic analogues of the niphatenones has shown that the enantiomers 7 and 8 are more potent than the natural products in the screening assay and defined preliminary SAR for the new AR antagonist pharmacophore, including the finding that the Michael acceptor enone functionality is not required for activity. Niphatenone B (4) and its enantiomer 8 blocked androgen-induced proliferation of LNCaP prostate cancer cells but had no effect on the proliferation of PC3 prostate cancer cells that do not express functional AR, consistent with activity as AR antagonists. Use of the propargyl ether 44 and Click chemistry showed that niphatenone B binds covalently to the activation function-1 (AF1) region of the AR N-terminus domain (NTD).
Collapse
Affiliation(s)
- Labros G Meimetis
- Department of Chemistry and Earth, University of British Columbia, 2036 Main Mall, Vancouver, B.C., Canada V6T 1Z1
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Wang Z, Gao D, Fukushima H, Inuzuka H, Liu P, Wan L, Sarkar FH, Wei W. Skp2: a novel potential therapeutic target for prostate cancer. Biochim Biophys Acta Rev Cancer 2011; 1825:11-7. [PMID: 21963805 DOI: 10.1016/j.bbcan.2011.09.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 12/29/2022]
Abstract
Prostate cancer is the most frequently diagnosed tumor in men and the second most common cause of cancer-related death for males in the United States. It has been shown that multiple signaling pathways are involved in the pathogenesis of prostate cancer, such as androgen receptor (AR), Akt, Wnt, Hedgehog (Hh) and Notch. Recently, burgeoning amounts of evidence have implicated that the F-box protein Skp2 (S-phase kinase associated protein 2), a well-characterized oncoprotein, also plays a critical role in the development and progression of prostate cancer. Therefore, this review discusses the recent literature regarding the function and regulation of Skp2 in the pathogenesis of prostate cancer. Furthermore, we highlight that Skp2 may represent an attractive therapeutic target, thus warrants further development of agents to target Skp2, which could have significant therapeutic impact on prostate cancer.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Haile S, Lal A, Myung JK, Sadar MD. FUS/TLS is a co-activator of androgen receptor in prostate cancer cells. PLoS One 2011; 6:e24197. [PMID: 21909421 PMCID: PMC3164714 DOI: 10.1371/journal.pone.0024197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/02/2011] [Indexed: 11/29/2022] Open
Abstract
Androgen receptor (AR) is a member of the nuclear receptor family of transcription factors. Upon binding to androgens, AR becomes transcriptionally active to regulate the expression of target genes that harbor androgen response elements (AREs) in their promoters and/or enhancers. AR is essential for the growth and survival of prostate cancer cells and is therefore a target for current and next-generation therapeutic modalities against prostate cancer. Pathophysiologically relevant protein-protein interaction networks involving AR are, however, poorly understood. In this study, we identified the protein FUsed/Translocated in LipoSarcoma (FUS/TLS) as an AR-interacting protein by co-immunoprecipitation of endogenous proteins in LNCaP human prostate cancer cells. The hormonal response of FUS expression in LNCaP cells was shown to resemble that of other AR co-activators. FUS displayed a strong intrinsic transactivation capacity in prostate cancer cells when tethered to basal promoters using the GAL4 system. Chromatin immunoprecipitation experiments showed that FUS was recruited to ARE III of the enhancer region of the PSA gene. Data from ectopic overexpression and “knock-down” approaches demonstrated that AR transcriptional activity was enhanced by FUS. Depletion of FUS reduced androgen-dependent proliferation of LNCaP cells. Thus, FUS is a novel co-activator of AR in prostate cancer cells.
Collapse
Affiliation(s)
- Simon Haile
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Aaron Lal
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Jae-Kyung Myung
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Marianne D. Sadar
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
118
|
Antonarakis ES, Armstrong AJ. Emerging therapeutic approaches in the management of metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 2011; 14:206-18. [PMID: 21577233 PMCID: PMC4124621 DOI: 10.1038/pcan.2011.24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/11/2011] [Accepted: 04/17/2011] [Indexed: 02/01/2023]
Abstract
Although treatment options for men with castration-resistant prostate cancer (CRPC) have improved with the recent and anticipated approvals of novel immunotherapeutic, hormonal, chemotherapeutic and bone-targeted agents, clinical benefit with these systemic therapies is transient and survival times remain unacceptably short. Thus, we devote the second section of this two-part review to discussing emerging therapeutic paradigms and research strategies that are entering phase II and III clinical testing for men with metastatic CRPC. We will discuss a range of emerging hormonal, immunomodulatory, antiangiogenic, epigenetic and cell survival pathway inhibitors in current clinical trials, with an emphasis on how these therapies may complement our existing treatment options.
Collapse
Affiliation(s)
- E S Antonarakis
- Prostate Cancer Research Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231-1000, USA.
| | | |
Collapse
|
119
|
Chuu CP, Kokontis JM, Hiipakka RA, Fukuchi J, Lin HP, Lin CY, Huo C, Su LC. Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer. J Biomed Sci 2011; 18:63. [PMID: 21859492 PMCID: PMC3170584 DOI: 10.1186/1423-0127-18-63] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/23/2011] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer is the most frequently diagnosed non-cutaneous tumor of men in Western countries. While surgery is often successful for organ-confined prostate cancer, androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, this therapy is associated with several undesired side-effects, including increased risk of cardiovascular diseases. Shortening the period of androgen ablation therapy may benefit prostate cancer patients. Intermittent Androgen Deprivation therapy improves quality of life, reduces toxicity and medical costs, and delays disease progression in some patients. Cell culture and xenograft studies using androgen receptor (AR)-positive castration-resistant human prostate cancers cells (LNCaP, ARCaP, and PC-3 cells over-expressing AR) suggest that androgens may suppress the growth of AR-rich prostate cancer cells. Androgens cause growth inhibition and G1 cell cycle arrest in these cells by regulating c-Myc, Skp2, and p27Kip via AR. Higher dosages of testosterone cause greater growth inhibition of relapsed tumors. Manipulating androgen/AR signaling may therefore be a potential therapy for AR-positive advanced prostate cancer.
Collapse
Affiliation(s)
- Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
| | - John M Kokontis
- Ben May Department for Cancer Research, The University of Chicago, Chicago, USA
| | - Richard A Hiipakka
- Ben May Department for Cancer Research, The University of Chicago, Chicago, USA
| | | | - Hui-Ping Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
| | - Chiech Huo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
- Department of Life Sciences, National Central University, Chungli, Taiwan
| | - Liang-Cheng Su
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
120
|
Yap TA, Zivi A, Omlin A, de Bono JS. The changing therapeutic landscape of castration-resistant prostate cancer. Nat Rev Clin Oncol 2011; 8:597-610. [PMID: 21826082 DOI: 10.1038/nrclinonc.2011.117] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Castration-resistant prostate cancer (CRPC) has a poor prognosis and remains a significant therapeutic challenge. Before 2010, only docetaxel-based chemotherapy improved survival in patients with CRPC compared with mitoxantrone. Our improved understanding of the underlying biology of CRPC has heralded a new era in molecular anticancer drug development, with a myriad of novel anticancer drugs for CRPC entering the clinic. These include the novel taxane cabazitaxel, the vaccine sipuleucel-T, the CYP17 inhibitor abiraterone, the novel androgen-receptor antagonist MDV-3100 and the radioisotope alpharadin. With these developments, the management of patients with CRPC is changing. In this Review, we discuss these promising therapies along with other novel agents that are demonstrating early signs of activity in CRPC. We propose a treatment pathway for patients with CRPC and consider strategies to optimize the use of these agents, including the incorporation of predictive and intermediate end point biomarkers, such as circulating tumor cells.
Collapse
Affiliation(s)
- Timothy A Yap
- Drug Development Unit, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Downs Road, Sutton, Surrey SM2 5PT, UK
| | | | | | | |
Collapse
|
121
|
Androgen receptor and its splice variants in prostate cancer. Cell Mol Life Sci 2011; 68:3971-81. [PMID: 21748469 DOI: 10.1007/s00018-011-0766-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 12/16/2022]
Abstract
Androgen receptor (AR) is a transcription factor that becomes active upon binding to androgens via its ligand-binding domain (LBD) or in response to signaling cascades initiated by growth factors and cytokines. The activity of AR requires regions within the N-terminal domain (NTD) in a manner that is distinct from the activation of related steroid hormone receptors. Unequivocal evidence has been amassed to consider that the AR axis is the most critical pathway for the progression of prostate cancer. Qualitatively distinct insights into AR pathobiology have been garnered including that AR-regulated gene expression is stage-specifically modulated during disease progression and that the ligand requirement for AR activity could be rendered dispensable because of the expression of constitutively active AR splice variants that are devoid of LBD. The recent appreciation of the clinical challenge that stems from non-gonadal androgens that are not inhibited by traditional hormonal therapies has been tangibly translated into the development of more potent drugs that can potentially lead towards achieving an androgen-free environment. The pre-clinical evidence that proves that AR NTD is a druggable target also forecasts a further paradigm shift in the management of advanced prostate cancer. These advancements together with the identification of more robust AR antagonists and their promising clinical outcome have renewed the hope that targeting the AR pathway remains a sound strategy in the clinical management of prostate cancer. Here, we address these developments with a greater emphasis on the rapidly growing literature on AR splice variants.
Collapse
|
122
|
Bahashwan SAER, Al-Omar MAER, Ezzeldin E, Abdalla MM, Fayed AAEH, Amr AGES. Androgen Receptor Antagonists and Anti-prostate Cancer Activities of Some Synthesized Steroidal Candidates. Chem Pharm Bull (Tokyo) 2011; 59:1363-1368. [DOI: 10.1248/cpb.59.1363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
| | | | - Essam Ezzeldin
- Drug Bioavailability Laboratory, College of Pharmacy, King Saud University
| | | | | | - Abdel-Galil El-Sayed Amr
- Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University
- Applied Organic Chemistry Department, National Research Center, Egypt
| |
Collapse
|